III B. Tech I Semester Regular Examinations, October/November - 2018 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Answer any ONE Question from Part - A and any THREE Questions from Part - B
 IS: 456-2000 \& Column interaction diagrams only from SP-16 are to be Provided to the student in the Examination hall.

 PART -A

Design a continuous RC slab for a hall 7 m and 14 m long. The slab is supported on RCC beams each 300 mm wide which are monolithic. The ends of the slab are supported on walls. 300 mm wide. Design the slab for a live load of $3 \mathrm{kN} / \mathrm{m}^{2}$. Assume the weight of roof finishing equal to $1.0 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe 415 steel.
a) Draw the reinforcement of the slab in plan view.
b) Draw cross section of the slab including beams with reinforcement details.
(OR)
The T beam floor consists of 12 cm thick R.C. slab monolithic with 30 cm wide beams. The beams are spaced at 3.5 m center to center and their effective span is 8 m . If the superimposed on the slab is $6.5 \mathrm{kN} / \mathrm{m}^{2}$, design an intermediate beam Use M25 mix and FE 415 grade steel.
a) Longitudinal section showing the reinforcement details.
b) The cross section of the beam at salient points, showing reinforcement details

PART -B

A rectangular beam section is 20 cm wide and 35 cm deep up to the center of tension steel, which consist of $4-16 \mathrm{~mm}$ TOR bars. Find the position of the neutral axis, the lever arm, forces of compression and tension, cracking moment and safe moment of resistance of concrete is of M20 mix and steel is of Fe500 grade.

The flange of a T beam flange of the beam is 90 cm x 12 cm and web below is 30 cm x 40 cm . It is reinforced with $4-25 \mathrm{~mm}$ plus $4-12 \mathrm{~mm}$ Fe 415 steel bars in tension at an effective cover of 50 mm . Determine the shear reinforcement needed for a shear force of 250 kN (i) If the mix is M20 and (ii) if the mix is M25. Take load factor $=1.5$.

Design a square spread footing to carry a column of 1800 kN from a 60 cm square tied column containing 25 mm bars as the longitudinal reinforcement. The bearing capacity of soil is $180 \mathrm{kN} / \mathrm{m}^{2}$. Consider base of footing as 1 m below the ground level. The unit weight of earth is $20 \mathrm{kN} / \mathrm{m}^{3}$. Use $\sigma_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ and $\sigma_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}$.

6 a) What is the minimum percentage of steel allowed in a RC column. Explain why it is necessary to specify the minimum percentage.
b) A column $230 \mathrm{~mm} \times 350 \mathrm{~mm}$ is reinforced with 4 bars 20 mm one at each corner effective cover of 50 mm . It is loaded with characteristic load $=340 \mathrm{kN}$. Factored Moment in the direction of larger dimension Mux $=30 \mathrm{kNm}$. Factored Moment in the direction of shorter dimension Muy $=18 \mathrm{kNm}$. About Y axis bisecting the width. Assume concrete grade M 20 and steel grade Fe 415 steel. Check the safety of the column.
$7 \quad$ Write short notes on
i) Reason to design as a under reinforced section
ii) Diagonal tension
iii) Torsion provisions in beams
iv) Uniaxial and Biaxial bending in columns

III B. Tech I Semester Regular Examinations, October/November - 2018
 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Answer any ONE Question from Part - A and any THREE Questions from Part - B IS:456-2000 \& Column interaction diagrams only from SP-16 are to be Provided to the student in the Examination hall.

PART -A
1 The T beam floor consists of 12 cm thick R.C. slab monolithic with 30 cm wide beams. The beams are spaced at 3.0 m center to center and their effective span is 7.5 m . If the superimposed on the slab is $6 \mathrm{kN} / \mathrm{m}^{2}$, design an intermediate beam. Use M20 mix and FE 415 grade steel. Draw to scale
a) Longitudinal section showing the reinforcement details.
b) The cross section of the beam at salient points, showing reinforcement details
(OR)
Design a continuous RC slab for a hall 4 m wide and 12 m long supported on floor beams spaced at $3 \mathrm{~m} \mathrm{c} / \mathrm{c}$. Design the slab for a live load of $2.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M20concrete and Fe 415 steel.
a) Draw the reinforcement of the slab in plan view
b) Draw cross section of the slab including beams with reinforcement details.

PART - B

A beam section is 230 mm wide and 400 mm deep is reinforced with tension reinforcement $2000 \mathrm{~mm}^{2}$ at an effective cover of 30 mm . Determine the ultimate moment of resistance of beam section. Use M20 mix and steel is of Fe 415 grade steel.

4 a) What are the assumptions for the design of a reinforced concrete section for limit state of collapse in bending?
b) Show that the limiting depth of neutral axis for a rectangular cross section reinforced with FE415 grade steel in 0.48 d .

An RC beam has an effective depth of 450 mm and breadth of 250 mm . It contains $4-25 \mathrm{~mm}$ bars mild steel out of which two bars are bent up at 30 degrees near the support in tension. Calculate the shear resistance of the bent up bars. What additional stirrups are needed if it has to resist a design shear force of 150 kN . Use M20 mix.

6 Design an isolated square column $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ reinforced with $6-20 \mathrm{~mm}$ diameter bars carrying a service load of 1400 kN The bearing capacity of soil is 200 $\mathrm{kN} / \mathrm{m}^{2}$ at a depth of 1.5 m below ground. The footing is restricted to 2.0 m in one direction Assume M20 grade concrete and Fe 415 grade steel for the footing and M25 concrete and Fe 415 steel for the column.

7 The section of a cantilever beam designed for a span of 4.0 m is having dimensions $300 \times 600 \mathrm{~mm}$ with 3 numbers 20 mm diameter bars in compression and 3 numbers 16 mm diameter bars in tension. The beam has been designed for a bending moment of 170 kNm (at support) under service loads, of which 65 percent is due to permanent (dead) loads. The loading is uniformly distributed on the span. Assume M20 concrete and Fe 415 steel.
i) Calculate the maximum short-term deflection
ii) The short-term deflection due to live loads alone.

III B. Tech I Semester Regular Examinations, October/November - 2018
 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

(Civil Engineering)

Time: 3 hours
Max. Marks: 70

Answer any ONE Question from Part - A and any THREE Questions from Part - B IS:456-2000 \& Column interaction diagrams only from SP-16 are to be Provided to the student in the Examination hall.

 PART -A

Design a continuous RC slab for a hall 6.5 m and 13.5 m long. The slab is supported on RCC beams each 240 mm wide which are monolithic. The ends of the slab are supported on walls. 300 mm wide. Design the slab for a live load of $2 \mathrm{kN} / \mathrm{m}^{2}$. Assume the weight of roof finishing equal to $1.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M15 concrete and Fe 415 steel.
i) Draw the reinforcement of the slab in plan view
ii) Draw cross section of the slab including beams with reinforcement details.
(OR)
A T beam floor consists of 12 cm thick R.C. slab monolithic with 30 cm wide beams. The beams are spaced at 4.0 m center to center and their effective span is 7.5 m . If the superimposed on the slab is $7.0 \mathrm{kN} / \mathrm{m}^{2}$, design an intermediate. Use M20 mix and TMT 415 grade steel .draw to scale
a) Longitudinal section showing the reinforcement details.
b) The cross section of the beam at salient points, showing reinforcement details

PART -B

An RC beam has an effective depth of 300 mm and breadth of 150 mm . It contains 4 20 mm bars. Determine the shear resistance of the concrete beam if $\sigma_{\mathrm{sv}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ for i) $\sigma_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ and ii) $\sigma_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$

The section of a cantilever beam designed for a span of 5.0 m is having dimensions 300 x 600 mm with 3 numbers 28 mm diameter bars in compression and 3 numbers 20 mm diameter bars in tension. The beam has been designed for a bending moment of 200 kNm (at support) under service loads, of which 70 percent is due to permanent (dead) loads. The loading is uniformly distributed on the span. Assume M20 concrete and Fe 415 steel. Calculate the maximum short-term deflection. load of $25-\mathrm{kN} / \mathrm{m}$ and working live load of $20 \mathrm{kN} / \mathrm{m}$. Use M20 mix and steel is of Fe 415 grade steel.

An L beam has flange of the beam is $90 \mathrm{~cm} \times 12 \mathrm{~cm}$ and web below is $23 \mathrm{~cm} \times 50 \mathrm{~cm}$. Determine the area of compression and tension steels needed for the cross section if it is to carry a factored bending moment of 400 kNm . Assume M20 concrete and TMT 500 grade steel.

Design a short circular column 6 m long to carry an axial load of 250 kN if both ends of the column are fully restrained using i) Lateral ties and ii) helical steel
[28M]
[28M]

III B. Tech I Semester Regular Examinations, October/November - 2018
 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Answer any ONE Question from Part - A and any THREE Questions from Part - B IS:456-2000 \& Column interaction diagrams only from SP-16 are to be Provided to the student in the Examination hall.

PART -A
Design an isolated square footing for a column $450 \mathrm{~mm} \times 450 \mathrm{~mm}$ reinforced with 825 mm diameter bars carrying a service load of 2000 kN The bearing capacity of soil is $250 \mathrm{kN} / \mathrm{m}^{2}$ at a depth of 1.5 m below ground. The footing is restricted to 2.0 m in one direction Assume M20 grade concrete and Fe 415 grade steel for the footing and M25 concrete and Fe 415 steel for the column.
Draw to scale:
a) Longitudinal section showing the reinforcement details.
b) The plan showing reinforcement details.
(OR)
2 Design a simply supported roof slab for a room $4.5 \mathrm{~m} \times 6 \mathrm{~m}$ measuring from inside. Thickness of the wall is 400 mm . The superimposed load exclusive of the self weight is $2.5 \mathrm{kN} / \mathrm{m}^{2}$. The slab may be assumed to be simply supported on all four edges with corners held down. Use M20 mix and Fe 415 grade steel.
a) Draw the reinforcement of the slab in plan view
b) Draw cross section of the slab including beams with reinforcement details

PART -B

3 Design a balanced singly reinforced concrete beam with a span of 6 m to carry a dead load of $30-\mathrm{kN} / \mathrm{m}$ and working live load of $25 \mathrm{kN} / \mathrm{m}$. Use M15 mix and steel is of Fe 415 grade steel.

An RC beam has an effective depth of 450 mm and breadth of 300 mm . It contains 520 mm bars mild steel out of which two bars curtailed at a section where shear force at service load is 100 kN . Design the shear reinforcement if the concrete is M20.

6 Draw axial force moment interaction curve for a rectangular column with 2% steel distributed equally on two faces. Assume a minimum of 12 bars placed at an effective cover of 0.15 D .

7 Explain short-term deflection. Explain the difficulty in estimating short term deflection as per IS code procedure when applied moment at service loads is marginally less than the cracking moment Are the nominal detailing requirements of the code adequate for ensuring crack width control? Comment.

