III B. Tech I Semester Regular Examinations, October/November - 2018 DIGITAL IC APPLICATIONS

(Common to Electronics Communication Engineering and Electronics Instrumentation Engineering)

T	ime: 3	S hours Max. Marks:	70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		PART -A	
1.	a) b)	What are the advantages and disadvantages of CMOS technology? Give the program structure.	[2M] [2M]
	c) d)	What is the difference between if and case statement. Write a VHDL program for 4x1 multiplexer.	[2M] [3M]
	e) f)	What is the difference between Ring Counter and Twisted ring counter? Explain the significance of State Reduction.	[3M] [2M]
		PART -B	
2.	a) b)	Explain the terms i) DC noise margin ii) Fan-out with reference to TTL gate. Design CMOS transistor circuit for 3-input AND gate. With the help of function Tables explain the operation of the circuit diagram.	[7M] [7M]
3.	a) b)	Explain the structure of various LOOP statements in VHDL with examples. Explain the difference in program structure of VHDL and any other procedural language. Give an example.	[7M] [7M]
4.	a) b)	Design a 2 to 4 decoder circuit. Give its entity declaration behavioural model. Also draw the waveform giving relation between its inputs and outputs. Explain about variable assignment statement, signal assignment statement, wait statement.	[7M]
5.	a)	Design a 24-bit comparator circuit using 74×682 ICs and explain the functionality	[7M]
	b)	of the circuit. Also implement VHDL source code in data flow style. Design and implement counter using VHDL which counts up to 9 and down counts again from 9 to 0.	[7M]
6.	a)	Design a conversion circuit to convert a D flip-flop to J-K flip-flop. Write data-flow style VHDL program.	[7M]
	b)	Draw the circuit of a bidirectional shift register with parallel loading using 2 to 4 line decoder and D-flip-flops.	[7M]
7.	a)	What is meant by finite state machine? What are the capabilities and limitations of finite state machine?	[7M]
	b)	Write short notes on the following with suitable examples. i)State diagram ii)State table iii)state assignment	[7M]

III B. Tech I Semester Regular Examinations, October/November - 2018
DIGITAL IC APPLICATIONS

(Common to Electronics Communication Engineering and Electronics Instrumentation Engineering)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any **FOUR** Questions from **Part-B** PART -A 1. Give the logic levels of CMOS and TTL families. a) [2M] What is Enumeration data type in VHDL? Give examples. b) [2M]Define and explain Loop statement. c) [2M] Write a VHDL program for 1 x 4 demultiplexer. d) [3M] e) Distinguish between Synchronous Counters and Asynchronous Counters. [3M] Define the terms State diagram and state table. f) [2M] Draw the dynamic electrical behaviour of CMOS inverter and explain. 2. a) [7M] Explain the differences between TTL, ECL & CMOS logic family. b) [7M] 3. Discuss the binding? Discuss the binding between entity and components. [7M] a) Write a process based VHDL program for the prime-number detector of 4-bit b) [7M] input and explain the flow using logic circuit. 4. Discuss Inertial Delay Model? a) [7M] b) Explain the concept of internal logic synthesizer and also draw the schematic. [7M] 5. a) With the help of logic diagram explain 74×157 multiplexer. Write the data flow [7M] Style VHDL program for this IC? Explain about Comparator and design a 16-bit comparator using 74×85 IC's. b) [7M] Write VHDL program. Explain how a JK- flip-flop can be constructed using a T- flip-flop. 6. [7M] a) Write down truth table, VHDL Code for the 4 bit register with parallel load. b) [7M] Also draw the circuit and output waveform. 7. Explain the minimization of completely specified sequential machines. a) [7M] Convert the following melay machine into a corresponding Moore machine. b) [7M] P.S NS.X=0 Ζ, X=1 B.0 E.0 Α В E,0 D,0 C D,1 A,0 D C.1 E.0

III B. Tech I Semester Regular Examinations, October/November - 2018 DIGITAL IC APPLICATIONS

(**Common to** Electronics Communication Engineering and Electronics Instrumentation Engineering)

Tir	me: 3 hours Max. Max		ks: 70	
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B		
		<u>PART –A</u>		
1.	a)	Give the logic levels and noise margins of TTL families.	[2M]	
	b)	Write a VHDL program for 2x4 Decoder.	[2M]	
	c)	Define and explain Next statement.	[2M]	
	d)	<u>.</u>	[3M]	
	e)	<u> </u>	[3M]	
	f)	What is One hot encoding?	[2M]	
		PART -B		
2.	a)	Explain the effect of floating inputs on CMOS gate.	[7M]	
	b)	Draw the circuit diagram of basic TTL NAND gate and explain the three parts with the help of functional operation.	[7M]	
3.	a)	Explain about dataflow design elements of VHDL.	[7M]	
	b)	Write a VHDL program for comparing 8 bit unsigned integers.	[7M]	
4.	a)	With examples explain the sequential assignment statements.	[7M]	
	b)	Discuss Transport Delay Model.	[7M]	
5.	a)	Draw the circuit of a 4-bit ripple carry adder circuit and explain how it is different from look-a-head carry circuit. Give the equation for C_1 to C_4 for a look-ahead carry adder circuit.	[7M]	
	b)		[7M]	
6.	a)	Write down the VHDL code of S-R flip flop.	[7M]	
	b)	Give a VHDL code for a 4-bit up counter with enable and clear inputs.	[7M]	
7.	a)	Draw the logic diagram of Melay model & explore its operation with examples.	[7M]	
	b)	Write down the VHDL code for the serial adder.	[7M]	

III B. Tech I Semester Regular Examinations, October/November - 2018 DIGITAL IC APPLICATIONS

(**Common to** Electronics Communication Engineering and Electronics Instrumentation Engineering)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer **ALL** the question in **Part-A** 3. Answer any **FOUR** Questions from **Part-B** PART -A 1. a) Explain the term Transition time with respect to CMOS logic. [2M]b) What are the operators available in VHDL? [2M]Define and explain assertion statement. c) [2M]Define three state devices. d) [3M] e) Write short note on Universal Shift Registers.. [3M] f) Distinguish between Mealy and Moore Machines. [2M]**PART-B** Design a CMOS transistor circuit for 3-input AND gate. With the help of 2. [7M] a) function table explain the circuit. What is interfacing? Explain interfacing between low voltage TTL and low b) [7M] voltage CMOS logic. Explain about the following i) Packages with syntax ii) Libraries with syntax. 3. [7M] a) What is the Significance of time dimension in VHDL? Explain its function. [7M] b) 4. Explain about Inside of a logic synthesizer and Give its schematic. a) [7M] Discuss about Signal Drivers. b) [7M] Write a VHDL code for 4-bit Look ahead carry generator. 5. a) [7M] Implement the 32 input to 5 output priority encoder using four 74LS148 & gates. b) [7M] Write down truth table, VHDL Code for the J-K flip flop using behavioural 6. [7M] a) Modelling. Draw the circuit of MOD 16 Down ripple counter with D-flip-flops and explain [7M] b) its operation. 7. Draw the logic diagram of Moore model & explore its operation with examples. a) [7M] b) Explain the minimization procedure for determining the set of equivalent state of [7M] a specified machine M.
