

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)

Time: 3 hours

Max. Marks: 70

(14 Marks)

Note: 1. Question Paper consists of two parts (Part-A and	Part-B)
2. Answer ALL the question in Part-A	
3. Answer any FOUR Questions from Part-B	

<u>PART –A</u>

1.	a)	What is the use of level translator?	[2M]
	b)	List out the ideal characteristics of operational amplifier.	[3M]
	c)	Write the important features of Instrumentation Amplifier.	[2M]
	d)	Sketch the ideal frequency response graphs for low-pass, high-pass and band-pass filters.	[3M]
	e)	Draw the pin diagram of 555 Timer.	[2M]
	f)	Write short notes on Linearity of a converter.	[2M]
		<u>PART –B</u> (56 N	(arks)
2.	a)	Draw the circuit diagram of basic differential amplifier and explain it.	[7M]
	b)	Derive the expression for voltage gain of dual input unbalanced output differential amplifier.	[7M]
3.	a)	Explain about Input offset current and input offset voltage.	[7M]
	b)	What is the need for frequency compensation? Discuss about pole-zero compensation.	[7M]
4.	a)	Sketch the voltage to current converter circuit and explain its operation.	[7M]
	b)	With neat diagrams, explain the operation of Inverting comparator.	[7M]
5.	a)	Sketch the circuit of second order high pass active filter and explain its operation.	[7M]
	b)	Design a wide band pass filter having $f_1 = 600$ Hz, $f_h = 2$ KHz and pass band gain = 4.	[7M]
6.	a)	Sketch the block diagram of 555 Timer and explain each block in it.	[7M]
	b)	Explain about analog phase detector in a PLL system.	[7M]
7.	a)	Discuss about IC 1408 D/A converter.	[7M]
	b)	Draw the basic circuit of parallel A/D converter and explain its operation.	[7M]

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 LINEAR IC APPLICATIONS

R16

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)

Time: 3 hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B

PART -A

- 1. What is meant by balanced output and unbalanced output in differential a) [2M] amplifier? What are the advantages of integrated circuit over discrete component circuit? b) [2M]
 - Draw the circuit diagrams of Integrator and differentiator using op-amp. [2M] c)
 - d) Define bandwidth, cutoff frequency and transfer function in a filter. [3M]
 - Write the applications of VCO. e)
 - Write short notes on monotonicity in DAC. f)

PART –B (56 Marks)

- 2. a) List out the four differential amplifier circuit configurations and draw their [7M] circuit diagrams.
 - Derive the expression for voltage gain of single input balanced output b) [7M] differential amplifier.
- 3. What is slew rate? How it effect the performance of op-amp? Explain in detail. [7M] a)
 - Draw the block diagram of operational amplifier and explain about the function [7M] b) of each block.
- Draw the circuit diagram of Precision full-wave rectifier and explain its 4. [7M] a) operation.
 - Explain the operation of Triangular wave generator using op-amp. b) [7M]
- 5. Explain how a band pass filter can be constructed by the use of a low-pass and a) [7M] a high-pass filter?
 - Design a second order Butterworth high pass filter having lower cut-off b) [7M] frequency of 2 KHz.
- Explain how a 555 Timer can be used as astable multivibrator? 6. [7M] a) [7M]
 - b) Explain the use of PLL as a frequency translator.
- 7. With the necessary circuit diagram, explain the operation of Inverted R-2R a) [7M] ladder DAC.
 - Explain the operation of counter type A/D converter. b) [7M]

[3M]

[2M]

Max. Marks: 70

(14 Marks)

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B

PART –A (14 Marks)

1.	a)	What is meant by differential gain?	[2M]
	b)	Give the temperatures ranges for op-amp.	[2M]
	c)	Write short notes on op-amp as a subtractor.	[3M]
	d)	Write the advantages of active filters over passive filters.	[2M]
	e)	List out the applications of 555 Timer in monostable mode.	[3M]
	f)	Define resolution of a converter.	[2M]

PART –B (56 Marks)

2.	a)	Derive the expressions for output current and output voltage from the D.C analysis of differential amplifier.	[7M]
	b)	Derive the expressions for input resistance and output resistance of a single input unbalanced output differential amplifier.	[7M]
3.	a)	What are the various IC packages available? Explain.	[7M]
	b)	Explain in detail about CMRR and PSRR.	[7M]
4.	a)	Draw the circuit diagram of Antilog amplifier and explain its operation.	[7M]
	b)	Derive the expression for frequency of Astable Multivibrator using op-amp.	[7M]
5.	a)	What is an all pass filter? Explain in detail.	[7M]
	b)	Design fourth order Butterworth low pass filter with a cut-off frequency of 1 KHz.	[7M]
6.	a)	With the help of circuit diagram, explain how 555 timer is used as Schmitt Trigger?	[7M]
	b)	Draw the diagram of frequency multiplier using PLL and explain it.	[7M]
7.	a) b)	Discuss about the R-2R ladder DAC and write the advantage of it. Draw the functional diagram of the successive approximation ADC and explain	[7M] [7M]
		its operation.	

["]"]["]["][]www.manaresults.co.in

Max. Marks: 70

(14 Marks)

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)

Time: 3 hours

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A** 3. Answer any **FOUR** Questions from **Part-B**

<u>PART –A</u>

1.	a)	What is meant by D.C Coupling?	[2M]
	b)	What is the primary difference between linear ICs and Digital ICs?	[2M]
	c)	What are the advantages of precision diode?	[2M]
	d)	Define notch filter.	[3M]
	e)	Define lock-in range and capture range.	[2M]
	f)	The basic step of a 9-bit DAC is 10.3 mV. If 000000000 represents 0 V, what	[3M]
		output is produced if the input is 101101111?	

PART –B (56 Marks)

2.	a)	Draw the circuit diagram of dual input balanced output differential amplifier and derive the expression for voltage gain.	[7M]
	b)	Discuss about cascade differential amplifier stages.	[7M]
3.	a) b)	Discuss about power supplies used in op-amps. Explain about frequency compensation using Dominant-Pole approach.	[7M] [7M]
4.	a)	Draw the circuit diagram of Non-inverting summing amplifier and explain its operation.	[7M]
	b)	Discuss about Zero crossing detector and window detector.	[7M]
5.	a)	Draw the circuit diagram of general second order filter and derive the expression for transfer function of it.	[7M]
	b)	Design the first order high pass filter with pass band gain of 2 and lower cut-off frequency of 2 KHz.	[7M]
6.	a)	Design a square wave generator of frequency 100 Hz and duty cycle of 75% using 555 Timer.	[7M]
	b)	Draw the block schematic of the PLL and explain the function of each block in it.	[7M]
7.	a)	Draw the circuit diagram of simple Weighted Resistor DAC and explain its operation.	[7M]
	b)	Explain in detail about the dual slope ADC.	[7M]
