R16

Set No. 1

Code No: **R1641041**

IV B.Tech I Semester Regular Examinations, October/November - 2019 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours

(Electronics and Communication Engineering

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	a)	Define the Probability of detection.	[2]
	b)	Write the applications of CW Radar.	[2]
	c)	What is the first blind speed of an l-band Radar operating at 1.25 GHZ, when the	
		PRF has a maximum unambiguous range of 380 km?	[3]
	d)	What are the drawbacks in sequential-lobing tracking?	[2]
	e)	Define noise temperature and describe the relation between noise figure and	
		noise temperature.	[3]
	f)	Write the various functions of a duplexer.	[2]

<u>**PART-B**</u> (4x14 = 56 Marks)

2.	a) b)	With the help of a neat block diagram, explain the principle of operation of Radar. A Pulse Radar transmits a peak power of 1 MW. It has a PRT equal to 1000 micro	[7]
		sec. and the transmitted pulse width is 1 micro sec. Calculate (i) Maximum unambiguous range (ii) Average Power (iii)Duty Cycle (iv) Energy transmitted.	[7]
3.	a)	How the Doppler shift and Radar range can be measured with FM-CW Radar?	[7]
	b)	Explain. Explain the operation of the multiple frequency CW Radar.	[7] [7]
4.	a)	Explain the operation of an MTI Radar with power oscillator transmitter.	[7]
	D)	gated Doppler filters.	[7]
5.	a)	Draw the block diagram and explain the operation of a Conical scan tracking	[7]
	b)	What is automatic detection and tracking? Explain its limitations.	[7] [7]
6.	a) b)	Explain the principle and characteristics of a Matched filter. Derive the expression for matched filter's frequency response function.	[7] [7]
7.	a)	Draw and explain the structures of balanced duplexer during transmission and reception modes.	[7]
	b)	Briefly explain the concept of beam steering of Phased array antennas.	[7]

1 of 1

WWW.MANARESULTS.CO.IN

|"|'||||"|"||||

Code No: **R1641041**

Set No. 2

IV B.Tech I Semester Regular Examinations, October/November - 2019 **RADAR SYSTEMS**

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	a)	Describe the functions performed by the Radar.	[3]
	b)	Define the Doppler effect.	[2]
	c)	What are the limitations of MTI Radar?	[2]
	d)	Define the elevation angle with respect to Radar.	[2]
	e)	Define the efficiency of a Matched filter.	[2]
	f)	Write advantages of phased array antennas.	[3]

<u>PART-B</u> (4x14 = 56 Marks)

2.	a) b)	What are the various Radar system losses? Explain in detail. A monostatic radar uses the same circular aperture antenna for transmission and reception at 8 GHz; its diameter is 2.6 m, aperture efficiency of 60%; and radiation loss of 1.04; the transmit path loss is 1.4. The radar is to produce a minimum detectable signal of 4×10^{-14} w, when the targets radar cross section is 1 m ² at a maximum range of 92 km. If the channel has a one way loss of 1.6, what transmitter peak power is required if the antenna points directly to the target?	[7]
3.	a) b)	Explain the principle of operation of Frequency Modulated Continuous Wave Radar with a neat block diagram. Calculate the Doppler frequency seen by a Stationary Continuous Wave Radar with a transmit frequency of 5 GHz when the target radial velocity is 100 km/h.	[7] [7]
4.	a) b)	What is the importance of staggered pulse repetition frequencies in the design of an MTI Radar? Explain. Explain the function of a single delay line canceller and derive an expression for the frequency response function.	[7] [7]
5.	a) b)	Explain amplitude comparison Monopulse tracking radar with the help of a neat block diagram. Write a brief note on acquisition and scanning patterns.	[7] [7]
6.	a) b)	Derive the expression for the frequency response of a Matched filter receiver with non white noise input. Derive an expression for the effective Noise figure of two cascaded networks.	[7] [7]
7.	a) b)	Explain the functioning and characteristics of PPI display and A-Scope display. What are Radomes? Explain its characteristics.	[7] [7]

WWW.MANARESULTS.CO.IN

1.1.1.1.1.1.1.1.1.1.1.1

Code No: **R1641041**

IV B.Tech I Semester Regular Examinations, October/November - 2019

RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours

initiation Engineering)

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	 a) b) c) d) e) f) 	Write the applications of Radar.What are the limitations of CW Radar?Define Blind Speed and write the expression for it.What are the functions of AGC in tracking Radar?Define noise figure and describe the relation between noise figure and noise temperature.Define beam width of an antenna and write the expression for it.	[2] [2] [3] [2] [3] [2]
2.	a) b)	<u>PART-B</u> ($4x14 = 56$ Marks) What is probability of false alarm? Derive the expression for it. In a Radar receiver the mean noise voltage is 80 mV and the IF bandwidth is 1 MHz. If the tolerable false alarm time is 25 minutes, calculate the threshold voltage level and the probability of false alarm.	[7] [7]
3.	a)	Explain the principle of operation of Continuous Wave Radar with non-zero IF receiver.	[7]
	b)	List down and explain the applications of CW and FM-CW Radar.	[7]
4.	a) b)	 Explain the operation of an MTI Radar with power amplifier transmitter. A S-band air surveillance Radar operating at 3.1 GHz utilizes a staggered waveform with four different PRFs, which are 1222, 1031, 1138 and 1000 Hz. (i) What is the 1st blind speed if a constant PRF is used which has a PRT is equal to average of four periods of the staggered waveform? (ii) What is the first blind speed of the staggered PRF waveform? (Note that n_i for these four frequencies are 27, 32, 29 and 33 respectively). 	[7] [7]
5.	a)	Explain the basic principle of a sequential lobing tracking Radar with neat diagrams.	[7]
	b)	What are the factors need to be considered for optimum squint angle? Explain.	[7]
6.	a)	Derive the frequency response function of the matched filter.	[7]
	b)	Explain about the efficiency of non-matched filters.	[7]
7.	a)	What is a Duplexer and explain the principle of operation of typical Duplexer with a schematic diagram.	[7]
	b)	How the beam width of a Phased array antenna varies with the steering angle? Explain.	[7]

www.manaresults.co.in

|"|'||||'||"|"||||

Code No: **R1641041**

IV B.Tech I Semester Regular Examinations, October/November - 2019 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	a)	Describe the classification of Radars.	[2]
	b)	List out the advantages of FM-CW Radar.	[2]
	c)	Compare the MTI and Pulse Doppler Radar.	[3]
	d)	Define the azimuth angle with respect to Radar.	[2]
	e)	Write the properties of Matched filter.	[3]
	f)	Write the limitations of phased array antennas.	[2]

<u>PART-B</u> (4x14 = 56 Marks)

2.	a) b)	Derive the expression for Radar range equation in terms of Signal-to-noise ratio. A Radar uses one antenna with a gain of $3x10^4$ and operates with a peak transmitter power of 50 kW, wavelength of 7.5 cm and a total loss of 1.6. For a target range of 97.2 nmi, what target radar cross section is needed to produce an available received power of $2x10^{-12}$ W, if antenna points directly to the target?	[7] [7]
3.	a)	Explain the principle of operation of FM-CW altimeter with a near diagram.	[7]
	b)	What are the factors that limit the amount of isolation between Transmitter and Receiver of CW Radar? Explain.	[7]
4.	a) b)	What are the limitations of MTI Radar? Explain. MTI radar is operating at a frequency of 9 GHz with a PRF of 3000 Hz. Calculate the first two lowest blind speeds for this radar. Derive the formula used.	[7] [7]
5.	a)	Explain the Monopulse tracking in two angel coordinates.	[7]
	b)	Compare the various tracking techniques.	[7]
6.	a)	What is meant by correlation? Explain cross correlation with the help of a neat block diagram.	[7]
	b)	Define noise figure and noise temperature. Obtain the relation between them.	[7]
7.	a)	Explain characteristics of different radar displays.	[7]
	b)	Draw and explain the radiation pattern of phased array antennas.	[7]

1 of 1

WWW.MANARESULTS.CO.IN

Set No. 4

Max. Marks: 70

R16