ACADEMIC REGULATIONS & COURSE STRUCTURE

For

DECS, ECE, DECE

(Applicable for batches admitted from 2016-2017)
I Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Subject</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital System Design</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Detection & Estimation Theory</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Digital Data Communications</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Advanced Digital Signal Processing</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Transform Techniques</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II. VLSI Technology & Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Radar Signal Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Statistical Signal Processing</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II. Optical Communication Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Network Security & Cryptography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. System Design & Data Communications Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

II Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Subject</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coding Theory & Applications</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Embedded System Design</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Image and Video Processing</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Wireless Communications & Networks</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. CMOS Analog & Digital IC Design</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II. Advanced Computer Architecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Soft Computing Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV. Cyber Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. DSP Processors and Architectures</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II. EMI / EMC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III. Object Oriented Programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Advanced Communications Laboratory</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
III Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comprehensive Viva-Voce</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Seminar – I</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Project Work Part – I</td>
<td>--</td>
<td>--</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

IV Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seminar – II</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Project Work Part - II</td>
<td>--</td>
<td>--</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
UNIT-I: Minimization Procedures and CAMP Algorithm:

Review on minimization of switching functions using tabular methods, k-map, QM algorithm, CAMP-I algorithm, Phase-I: Determination of Adjacencies, DA, CSC, SSMs and EPCs,, CAMP-I algorithm, Phase-II: Passport checking, Determination of SPC, CAMP-II algorithm: Determination of solution cube, Cube based operations, determination of selected cubes are wholly within the given switching function or not, Introduction to cube based algorithms.

UNIT-II: PLA Design, Minimization and Folding Algorithms:

Introduction to PLDs, basic configurations and advantages of PLDs, PLA-Introduction, Block diagram of PLA, size of PLA, PLA design aspects, PLA minimization algorithm (IISc algorithm), PLA folding algorithm (COMPACT algorithm) - Illustration of algorithms with suitable examples.

UNIT-III: Design of Large Scale Digital Systems:

Algorithmic state machinecharts-Introduction, Derivation of SM Charts, Realization of SM Chart, control implementation, control unit design, data processor design, ROM design, PAL design aspects, digital system design approaches using CPLDs, FPGAs and ASICs.

UNIT-IV: Fault Diagnosis in Combinational Circuits:

Faults classes and models, fault diagnosis and testing, fault detection test, test generation, testing process, obtaining a minimal complete test set, circuit under test methods- Path sensitization method, Boolean difference method, properties of Boolean differences, Kohavi algorithm, faults in PLAs, DFT schemes, built in self-test.

UNIT-V: Fault Diagnosis in Sequential Circuits:

Fault detection and location in sequential circuits, circuit test approach, initial state identification, Haming experiments, synchronizing experiments, machine identification, distinguishing experiment, adaptive distinguishing experiments.

TEXT BOOKS:

1. Logic Design Theory-N. N. Biswas, PHI
3. Digital system Design using PLDd-Lala

REFERENCE BOOKS:

UNIT –I:
Random Processes:
Discrete Linear Models, Markov Sequences and Processes, Point Processes, and Gaussian Processes.

UNIT –II:
Detection Theory:
Basic Detection Problem, Maximum A posteriori Decision Rule, Minimum Probability of Error Classifier, Bayes Decision Rule, Multiple-Class Problem (Bayes)- minimum probability error with and without equal a priori probabilities, Neyman-Pearson Classifier, General Calculation of Probability of Error, General Gaussian Problem, Composite Hypotheses.

UNIT –III:
Linear Minimum Mean-Square Error Filtering:
Linear Minimum Mean Squared Error Estimators, Nonlinear Minimum Mean Squared Error Estimators. Innovations, Digital Wiener Filters with Stored Data, Real-time Digital Wiener Filters, Kalman Filters.

UNIT –IV:
Statistics:

UNIT –V:
Estimating the Parameters of Random Processes from Data:

TEXT BOOKS:
REFERENCE BOOKS:

3. Introduction to Statistical Signal Processing with Applications - Srinath, Rajasekaran, Viswanathan, 2003, PHI.
UNIT -I:
Digital Modulation Schemes:
BPSK, QPSK, 8PSK, 16PSK, 8QAM, 16QAM, DPSK – Methods, Band Width Efficiency, Carrier Recovery, Clock Recovery.

UNIT -II:
Basic Concepts of Data Communications, Interfaces and Modems:

UNIT -III:
Error Correction: Types of Errors, Vertical Redundancy Check (VRC), LRC, CRC, Checksum, Error Correction using Hamming code
Data Link Control: Line Discipline, Flow Control, Error Control

UNIT -IV:
Multiplexing: Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), Multiplexing Application, DSL.
Local Area Networks: Ethernet, Other Ether Networks, Token Bus, Token Ring, FDDI.
Metropolitan Area Networks: IEEE 802.6, SMDS
Switching: Circuit Switching, Packet Switching, Message Switching.
Networking and Interfacing Devices: Repeaters, Bridges, Routers, Gateway, Other Devices.

UNIT -V:
Multiple Access Techniques:
Frequency- Division Multiple Access (FDMA), Time - Division Multiple Access (TDMA), Code - Division Multiple Access (CDMA), OFDM and OFDMA. Random Access, Aloha- Carrier Sense Multiple Access (CSMA)- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Controlled Access- Reservation- Polling- Token Passing, Channelization.

TEXT BOOKS:
REFERENCES BOOKS:
1. Data Communications and Computer Networks - Prakash C. Gupta, 2006, PHI.
UNIT –I:
Review of DFT, FFT, IIR Filters and FIR Filters:
Multi Rate Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate Conversion, Filter design & Implementation for sampling rate conversion.

UNIT –II:
Applications of Multi Rate Signal Processing:

UNIT -III:
Non-Parametric Methods of Power Spectral Estimation: Estimation of spectra from finite duration observation of signals, Non-parametric Methods: Bartlett, Welch & Blackman-Tukey methods, Comparison of all Non-Parametric methods

UNIT –IV:
Implementation of Digital Filters:
Introduction to filter structures (IIR & FIR), Frequency sampling structures of FIR, Lattice structures, Forward prediction error, Backward prediction error, Reflection coefficients for lattice realization, Implementation of lattice structures for IIR filters, Advantages of lattice structures.

UNIT –V:

TEXT BOOKS:
REFERENCE BOOKS:

I Year I Semester

<table>
<thead>
<tr>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

TRANSFORM TECHNIQUES
(ELECTIVE – I)

UNIT -I:
Fourier Analysis:

UNIT -II:
Transforms:
Walsh, Hadamard, Haar and Slant Transforms, DCT, DST, KLT, Singular value Decomposition – definition, properties and applications

UNIT -III:
Continuous Wavelet Transform (CWT):
Short comings of STFT, Need for wavelets, Wavelet Basis- Concept of Scale and its relation with frequency, Continuous time wavelet Transform Equation- Series Expansion using Wavelets- CWT- Tiling of time scale plane for CWT. Important Wavelets: Haar, Mexican Hat, Meyer, Shannon, Daubechies.

UNIT -IV:
Multi Rate Analysis and DWT:
Need for Scaling function – Multi Resolution Analysis, Two-Channel Filter Banks, Perfect Reconstruction Condition, Relationship between Filter Banks and Wavelet Basis, DWT, Structure of DWT Filter Banks, Daubechies Wavelet Function, Applications of DWT.

UNIT -V:
Wavelet Packets and Lifting: Wavelet Packet Transform, Wavelet packet algorithms, Thresholding-Hard thresholding, Soft thresholding, Multidimensional Wavelets, Bi-orthogonal basis- B-Splines, Lifting Scheme of Wavelet Generation, Multi Wavelets

TEXT BOOKS:
REFERENCE BOOKS:
UNIT-I:
VLSI Technology: Fundamentals and applications, IC production process, semiconductor processes, design rules and process parameters, layout techniques and process parameters.

VLSI Design: Electronic design automation concept, ASIC and FPGA design flows, SOC designs, design technologies: combinational design techniques, sequential design techniques, state machine logic design techniques and design issues.

UNIT-II:
CMOS VLSI Design: MOSTechnology and fabrication process of pMOS, nMOS, CMOS and BiCMOS technologies, comparison of different processes.

Building Blocks of a VLSI circuit: Computer architecture, memory architectures, communication interfaces, mixed signal interfaces.

VLSI Design Issues: Design process, design for testability, technology options, power calculations, package selection, clock mechanisms, mixed signal design.

UNIT-III:
Basic electrical properties of MOS and BiCMOS circuits, MOS and BiCMOS circuit design processes, Basic circuit concepts, scaling of MOS circuits- qualitative and quantitative analysis with proper illustrations and necessary derivations of expressions.

UNIT-IV:
Subsystem Design and Layout: Some architectural issues, switch logic, gate logic, examples of structured design (combinational logic), some clocked sequential circuits, other system considerations.

Subsystem Design Processes: Some general considerations and an illustration of design processes, design of an ALU subsystem.

UNIT-V:
Floor Planning: Introduction, Floor planning methods, off-chip connections.

Architecture Design: Introduction, Register-Transfer design, high-level synthesis, architectures for low power, architecture testing.

Chip Design: Introduction and design methodologies.

TEXT BOOKS:
REFERENCE BOOKS:
RADAR SIGNAL PROCESSING
(ELECTIVE -I)

UNIT -I:
Introduction:

UNIT -II:
Detection of Radar Signals in Noise:

UNIT -III:
Waveform Selection [3, 2]:

UNIT -IV:
Pulse Compression in Radar Signals:

UNIT V:
Phase Coding Techniques:
Principles, Binary Phase Coding, Barker Codes, Maximal Length Sequences (MLS/LRS/PN), Block Diagram of a Phase Coded CW Radar.
Poly Phase Codes : Frank Codes, Costas Codes, Non-Linear FM Pulse Compression, Doppler Tolerant PC Waveforms – Short Pulse, Linear Period Modulation (LPM/HFM), Sidelobe Reduction for Phase Coded PC Signals.
TEXT BOOKS:

REFERENCE BOOKS:
STATISTICAL SIGNAL PROCESSING

(ELECTIVE - II)

UNIT I

Signal models and characterization: Types and properties of statistical models for signals and how they relate to signal processing. Common second-order methods of characterizing signals including autocorrelation, partial correlation, cross-correlation, power spectral density and cross-power spectral density.

UNIT II

Spectral estimation: Nonparametric methods for estimation of power spectral density, autocorrelation, cross-correlation, transfer functions, and coherence from finite signal samples.

UNIT III

Review of signal processing: A review on random processes, a review on filtering random processes, Examples.

UNIT IV

Eigen structure based frequency estimation: Pisarenko, MUSIC, ESPRIT their application to sensor array direction finding.

Spectrum estimation: Moving average (MA), Auto Regressive (AR), Auto Regressive Moving Average (ARMA), Various non-parametric approaches.

UNIT V

Wiener filtering: The finite impulse case, causal and non-causal infinite impulse responses cases, Least mean squares adaptation, recursive least squares adaptation, Kalman filtering.

TEXT BOOKS:

REFERENCE BOOKS:

I Year I Semester

L P C
4 0 3

OPTICAL COMMUNICATIONS TECHNOLOGY
(ELECTIVE – II)

UNIT –I:
Signal propagation in Optical Fibers:

UNIT –II:
Fiber Optic Components for Communication & Networking:
Couplers, Isolators and Circulators, Multiplexers, Bragg Gratings, Fabry-Perot Filters, Mach Zender Interferometers, Arrayed Waveguide Grating, Tunable Filters, High Channel Count Multiplexer Architectures, Optical Amplifiers, Direct and External Modulation Transmitters, Pump Sources for Amplifiers, Optical Switches and Wavelength Converters.

UNIT –III:
Modulation and Demodulation:

UNIT -IV:
Transmission System Engineering:
System Model, Power Penalty in Transmitter and Receiver, Optical Amplifiers, Crosstalk and Reduction of Crosstalk, Cascaded Filters, Dispersion Limitations and Compensation Techniques.

UNIT –V:
Fiber Non-linearities and System Design Considerations:
Limitation in High Speed and WDM Systems due to Non-linearities in Fibers, Wavelength Stabilization against Temperature Variations, Overall System Design considerations – Fiber Dispersion, Modulation, Non-Linear Effects, Wavelengths, All Optical Networks.
TEXT BOOKS:

REFERENCE BOOKS:
UNIT -I:
Introduction:

Modern Techniques:
Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operations.

UNIT -II:
Encryption Algorithms:

UNIT -III:
Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptography. Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat’s and Euler’s theorems, Testing for primality, Euclid’s Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT -IV:

UNIT –V:
IP Security:

Intruders, Viruses and Worms
Intruders, Viruses and Related threats.
Fire Walls: Fire wall Design Principles, Trusted systems.
TEXT BOOKS:

REFERENCE BOOKS:
1. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
5. Introduction to Cryptography, Buchmann, Springer.
A student has to do at least 6 Experiments from each Part.

Part A:

Systems Design experiments

- The students are required to design the logic to perform the following experiments using necessary Industry standard simulator to verify the logical /functional operation, perform the analysis with appropriate synthesizer and to verify the implemented logic with different hardware modules/kits (CPLD/FPGA kits).
- Consider the suitable switching function and data to implement the required logic if required.

List of Experiments:

11. Determination of EPCs using CAMP-I Algorithm.
12. Determination of SPCs using CAMP-I Algorithm.
14. PLA minimization algorithm (IISc algorithm)
15. PLA folding algorithm (COMPACT algorithm)
16. ROM design.
17. Control unit and data processor logic design
18. Digital system design using FPGA.
20. Hamming experiments.

Lab Requirements:

Software: Industry standard software with perpetual licence consisting of required simulator, synthesizer, analyzer etc. in an appropriate integrated environment.

Hardware: Personal Computer with necessary peripherals, configuration and operating System and relevant VLSI (CPLD/FPGA) hardware Kits.
Part-B:

Data Communications Experiments

1. Study of serial interface RS – 232
2. Study of pc to pc communication using parallel port
3. To establish pc- pc communication using LAN
4. Study of LAN using star topology, bus topology and tree topology
5. Study and configure modem of a computer
6. To configure a hub/switch
7. To study the interconnections of cables for data communication
8. Study of a wireless communication system

Software and Equipment required

- Data Communication Trainer kits
- Computers
- LAN Trainer kit
- ST 5001 Software/ NS2 Software
- Serial and parallel port cables
- Patch cords (2 mm), FOE/LOE Cables, Main power cords
- Ethernet Cables (CAT5, CAT5E, CAT6, CAT7)
- Hubs, Switches, MODEMs
- RS 232 DB25/DB9 Connectors
CODING THEORY AND APPLICATIONS

UNIT –I:
Coding for Reliable Digital Transmission and Storage:
Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes:
Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT –II:
Cyclic Codes:
Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT –III:
Convolutional Codes:
Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT –IV:
Burst –Error-Correcting Codes:

UNIT -V:
BCH – Codes:
BCH code- Definition, Minimum distance and BCH Bounds, Decoding Procedure for BCH Codes- Syndrome Computation and Iterative Algorithms, Error Location Polynomials and Numbers for single and double error correction
TEXT BOOKS:

REFERENCE BOOKS:
1. Digital Communications-Fundamental and Application - Bernard Sklar, PE.
3. Introduction to Error Control Codes-Salvatore Gravano-oxford
5. Information Theory, Coding and Cryptography – Ranjan Bose, 2nd Ed, 2009, TMH.
UNIT-I: **Introduction**

An Embedded System-Definition, Examples, Current Technologies, Integration in system Design, Embedded system design flow, hardware design concepts, software development, processor in an embedded system and other hardware units, introduction to processor based embedded system design concepts.

UNIT-II: **Embedded Hardware**

Embedded hardware building blocks, Embedded Processors – ISA architecture models, Internal processor design, processor performance, Board Memory – ROM, RAM, Auxiliary Memory, Memory Management of External Memory, Board Memory and performance.

Embedded board Input / output – Serial versus Parallel I/O, interfacing the I/O components, I/O components and performance, Board buses – Bus arbitration and timing, Integrating the Bus with other board components, Bus performance.

UNIT-III: **Embedded Software**

Device drivers, Device Drivers for interrupt-Handling, Memory device drivers, On-board bus device drivers, Board I/O drivers, Explanation about above drivers with suitable examples.

Embedded operating systems – Multitasking and process Management, Memory Management, I/O and file system management, OS standards example – POSIX, OS performance guidelines, Board support packages, Middleware and Application Software – Middleware, Middleware examples, Application layer software examples.

UNIT-IV: **Embedded System Design, Development, Implementation and Testing**

Embedded system design and development lifecycle model, creating an embedded system architecture, introduction to embedded software development process and tools- Host and Target machines, linking and locating software, Getting embedded software into the target system, issues in Hardware-Software design and co-design.

Implementing the design-The main software utility tool, CAD and the hardware, Translation tools, Debugging tools, testing on host machine, simulators, Laboratory tools, System Boot-Up.
UNIT-V: Embedded System Design-Case Studies

Case studies- Processor design approach of an embedded system –Power PC Processor based and Micro Blaze Processor based Embedded system design on Xilinx platform-NiosII Processor based Embedded system design on Altera platform-Respective Processor architectures should be taken into consideration while designing an Embedded System.

TEXT BOOKS:

REFERENCE BOOKS:

UNIT –I:
Fundamentals of Image Processing and Image Transforms:
Introduction, Image sampling, Quantization, Resolution, Image file formats, Elements of image processing system, Applications of Digital image processing
Introduction, Need for transform, image transforms, Fourier transform, 2D Discrete Fourier transform and its transforms, Importance of phase, Walsh transform, Hadamard transform, Haar transform, slant transform, Discrete cosine transform, KL transform, singular value decomposition, Radon transform, comparison of different image transforms.

UNIT –II:
Image Enhancement:
Spatial domain methods: Histogram processing, Fundamentals of Spatial filtering, Smoothing spatial filters, Sharpening spatial filters.
Frequency domain methods: Basics of filtering in frequency domain, image smoothing, image sharpening, Selective filtering.
Image Restoration:
Introduction to Image restoration, Image degradation, Types of image blur, Classification of image restoration techniques, Image restoration model, Linear and Nonlinear image restoration techniques, Blind deconvolution

UNIT –III:
Image Segmentation:
Introduction to image segmentation, Point, Line and Edge Detection, Region based segmentation, Classification of segmentation techniques, Region approach to image segmentation, clustering techniques, Image segmentation based on thresholding, Edge based segmentation, Edge detection and linking, Hough transform, Active contour
Image Compression:

UNIT -IV:
Basic Steps of Video Processing:
UNIT –V:

2-D Motion Estimation:
Optical flow, General Methodologies, Pixel Based Motion Estimation, Block- Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

TEXT BOOKS:

REFERENCE BOOKS:
UNIT -I:
The Cellular Concept-System Design Fundamentals:
Introduction, Frequency Reuse, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference, Power Control for Reducing interference, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations, Trunking and Grade of Service

UNIT –II:
Mobile Radio Propagation: Large-Scale Path Loss:

UNIT –III:
Mobile Radio Propagation: Small-Scale Fading and Multipath
Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke’s model for flat fading, spectral shape due to Doppler spread in Clarke’s model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV:
Equalization and Diversity
Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

UNIT -V:
Wireless Networks
Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, HiperLan, WLL.

TEXT BOOKS:

REFERENCE BOOKS:
2. Wireless Digital Communications – KamiloFeher, 1999, PHI.
UNIT-I:

MOS Devices and Modeling

MOS Design

Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II:

Combinational MOS Logic Circuits:

MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates , AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.

Sequential MOS Logic Circuits

Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT-III:

Dynamic Logic Circuits

Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.

Semiconductor Memories

Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash.
UNIT -IV:

Analog CMOS Sub-Circuits

MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT-V:

CMOS Amplifiers

Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

CMOS Operational Amplifiers

TEXT BOOKS:

REFERENCE BOOKS:

3. CMOS: Circuit Design, Layout and Simulation- Baker, Li and Boyce, PHI.

UNIT-I: Fundamentals of Computer Design:

Fundamentals of Computer design, Changing faces of computing and task of computer designer, Technology trends, Cost price and their trends, measuring and reporting performance, Quantitative principles of computer design, Amdahl’s law.

Instruction set principles and examples- Introduction, classifying instruction set- memory addressing- type and size of operands, Operations in the instruction set.

UNIT-II:

Pipelines:

Introduction, basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties.

Memory Hierarchy Design:

UNIT-III:

Instruction Level Parallelism (ILP)-The Hardware Approach:

Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo’s approach, Branch prediction, High performance instruction delivery- Hardware based speculation.

ILP Software Approach:

Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues - Hardware verses Software.
UNIT-IV: Multi Processors and Thread Level Parallelism:

Multi Processors and Thread level Parallelism- Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared – Memory architecture, Synchronization.

UNIT-V:

Inter Connection and Networks:

Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters.

Intel Architecture: Intel IA-64 ILP in embedded and mobile markets Fallacies and pit falls.

TEXT BOOKS:

REFERENCE BOOKS:

UNIT –I:

Introduction:

Approaches to intelligent control, Architecture for intelligent control, Symbolic reasoning system, Rule-based systems, the AI approach, Knowledge representation - Expert systems.

UNIT –II:

Artificial Neural Networks:

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron, Learning and Training the neural network, Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations, Hopfield network, Self-organizing network and Recurrent network, Neural Network based controller.

UNIT –III:

Fuzzy Logic System:

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning, Introduction to fuzzy logic modeling and control, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, Fuzzy modeling and control schemes for nonlinear systems, Self-organizing fuzzy logic control, Fuzzy logic control for nonlinear timedelay system.

UNIT –IV:

Genetic Algorithm:

Basic concept of Genetic algorithm and detail algorithmic steps, Adjustment of free parameters, Solution of typical control problems using genetic algorithm, Concept on some other search techniques like Tabu search and ant-colony search techniques for solving optimization problems.
UNIT –V:

Applications:

TEXT BOOKS:

REFERENCE BOOKS:

I Year II Semester

L P C
4 0 3

Cyber Security
(ELECTIVE - II)
UNIT –I:
Introduction to Digital Signal Processing:
Introduction, A Digital signal-processing system, The sampling process, Discrete time sequences. Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation.

Computational Accuracy in DSP Implementations:
Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

UNIT –II:
Architectures for Programmable DSP Devices:
Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation UNIT, Programmability and Program Execution, Speed Issues, Features for External interfacing.

UNIT -III:
Programmable Digital Signal Processors:
Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline operation of TMS320C54XX Processors.

UNIT –IV:
Analog Devices Family of DSP Devices:
Introduction to Blackfin Processor - The Blackfin Processor, Introduction to Micro Signal Architecture, Overview of Hardware Processing Units and Register files, Address Arithmetic Unit, Control Unit, Bus Architecture and Memory, Basic Peripherals.

UNIT –V:
Interfacing Memory and I/O Peripherals to Programmable DSP Devices:
Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).
TEXT BOOKS:

REFERENCE BOOKS:
4. Digital Signal Processing Applications Using the ADSP-2100 Family by The Applications Engineering Staff of Analog Devices, DSP Division, Edited by Amy Mar, PHI
UNIT -I:

Introduction, Natural and Nuclear Sources of EMI / EMC:

Electromagnetic environment, History, Concepts, Practical experiences and concerns, frequency spectrum conservations, An overview of EMI / EMC, Natural and Nuclear sources of EMI.

UNIT -II:

EMI from Apparatus, Circuits and Open Area Test Sites:

Electromagnetic emissions, Noise from relays and switches, Non-linearities in circuits, passive intermodulation, Cross talk in transmission lines, Transients in power supply lines, Electromagnetic interference (EMI), Open area test sites and measurements.

UNIT -III:

Radiated and Conducted Interference Measurements and ESD:

Anechoic chamber, TEM cell, GH TEM Cell, Characterization of conduction currents / voltages, Conducted EM noise on power lines, Conducted EMI from equipment, Immunity to conducted EMI detectors and measurements, ESD, Electrical fast transients / bursts, Electrical surges.

UNIT -IV:

Grounding, Shielding, Bonding and EMI filters:

Principles and types of grounding, Shielding and bonding, Characterization of filters, Power lines filter design.

UNIT -V:

Cables, Connectors, Components and EMC Standards:

EMI suppression cables, EMC connectors, EMC gaskets, Isolation transformers, optoisolators, National / International EMC standards.
TEXT BOOKS:

REFERENCE BOOKS:

I Year II Semester

OBJECT ORIENTED PROGRAMMING
(ELECTIVE IV)

Objective: Implementing programs for user interface and application development using core java principles

UNIT I:
Objective: Focus on object oriented concepts and java program structure and its installation

Introduction to OOP
Introduction, Need of Object Oriented Programming, Principles of Object Oriented Languages, Procedural languages Vs OOP, Applications of OOP, History of JAVA, Java Virtual Machine, Java Features, Installation of JDK1.6

UNIT II:
Objective: Comprehension of java programming constructs, control structures in Java

Programming Constructs
Variables, Primitive Datatypes, Identifiers- Naming Conventions, Keywords, Literals, Operators- Binary, Unary and ternary, Expressions, Precedence rules and Associativity, Primitive Type Conversion and Casting, Flow of control- Branching, Conditional, loops,
Classes and Objects- classes, Objects, Creating Objects, Methods, constructors- Constructor overloading, Garbage collector, Class variable and Methods- Static keyword, this keyword, Arrays, Command line arguments

UNIT III:
Objective: Implementing Object oriented constructs such as various class hierarchies, interfaces and exception handling

Inheritance: Types of Inheritance, Deriving classes using extends keyword, Method overloading, super keyword, final keyword, Abstract class
Interfaces, Packages and Enumeration: Interface-Extending interface, Interface Vs Abstract classes, Packages-Creating packages, using Packages, Access protection, java.lang package
Exceptions & Assertions - Introduction, Exception handling techniques- try...catch, throw, throws, finally block, user defined exception, Assertions

UNIT IV:
Objective: Understanding of Thread concepts and I/O in Java

MultiThreading: java.lang.Thread, The main Thread, Creation of new threads, Thread priority, Multithreading, Synchronization, suspending and Resuming threads, Communication between Threads
Input/Output: reading and writing data, java.io package
UNIT V:
Objective: Being able to build dynamic user interfaces using applets and Event handling in java

Applets- Applet class, Applet structure, An Example Applet Program, Applet Life Cycle, paint(), update() and repaint()
Event Handling - Introduction, Event Delegation Model, java.awt.event Description, Event Listeners, Adapter classes, Inner classes

UNIT VI:
Objective: Understanding of various components of Java AWT and Swing and writing code snippets using them

Abstract Window Toolkit
Why AWT?, java.awt package, Components and Containers, Button, Label, Checkbox, Radio buttons, List boxes, Choice boxes, Text field and Text area, container classes, Layouts, Menu, Scroll bar
Swing:
Introduction, JFrame, JApplet, JPanel, Components in swings, Layout Managers, JList and JScrollPane, Split Pane, JTabbedPane, Dialog Box

Text Books:
1. The Complete Reference Java, 8ed, Herbert Schildt, TMH
3. JAVA for Beginners, 4e, Joyce Farrell, Ankit R. Bhavsar, Cengage Learning.
4. Object oriented programming with JAVA, Essentials and Applications, Raj Kumar Bhuyya, Selvi, Chu TMH
5. Introduction to Java rogramming, 7th ed, Y Daniel Liang, Pearson

Reference Books:
1. JAVA Programming, K.Rajkumar.Pearson
2. Core JAVA, Black Book, NageswaraRao, Wiley, Dream Tech
3. Core JAVA for Beginners, RashmiKanta Das, Vikas.
ADVANCED COMMUNICATIONS LAB

Note:

E. Minimum of 10 Experiments have to be conducted
F. All Experiments may be Simulated using MATLAB and to be verified using related training kits.

1. Measurement of Bit Error Rate using Binary Data
2. Verification of minimum distance in Hamming code
3. Determination of output of Convolutional Encoder for a given sequence
4. Determination of output of Convolutional Decoder for a given sequence
5. Efficiency of DS Spread- Spectrum Technique
6. Simulation of Frequency Hopping (FH) system
7. Effect of Sampling and Quantization of Digital Image
8. Verification of Various Transforms (FT / DCT/ Walsh / Hadamard) on a given Image (Finding Transform and Inverse Transform)
9. Point, Line and Edge detection techniques using derivative operators.
10. Implementation of FIR filter using DSP Trainer Kit (C-Code/ Assembly code)
11. Implementation of IIR filter using DSP Trainer Kit (C-Code/ Assembly code)
12. Determination of Losses in Optical Fiber
13. Observing the Waveforms at various test points of a mobile phone using Mobile Phone Trainer
15. Study of ISDN Training System with Protocol Analyzer