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UNIT V - CODE OPTIMIZATION AND CODE GENERATION 
 

INTRODUCTION 

 

¾ The code produced by the straight forward compiling algorithms can often be made to run 

faster or take less space, or both. This improvement is achieved by program transformations 

that are traditionally called optimizations. Compilers that apply code-improving 

transformations are called optimizing compilers. 
 
¾ Optimizations are classified into two categories. They are  

Machine independent optimizations:  
Machine dependant optimizations: 

 
Machine independent optimizations: 

 

Machine independent optimizations are program transformations that improve the target code 

without taking into consideration any properties of the target machine. 
 

Machine dependant optimizations: 

 

Machine dependant optimizations are based on register allocation and utilization of special 

machine-instruction sequences. 
 
The criteria for code improvement transformations: 

 

9 Simply stated, the best program transformations are those that yield the most benefit for the 

least effort. 
 
9 The transformation must preserve the meaning of programs. That is, the optimization must 

not change the output produced by a program for a given input, or cause an error such as 

division by zero, that was not present in the original source program. At all times we take the 

“safe” approach of missing an opportunity to apply a transformation rather than risk changing 

what the program does. 
 
9 A transformation must, on the average, speed up programs by a measurable amount. We are 

also interested in reducing the size of the compiled code although the size of the code has less 

importance than it once had. Not every transformation succeeds in improving every program, 

occasionally an “optimization” may slow down a program slightly. 
 
9 The transformation must be worth the effort. It does not make sense for a compiler writer to 

expend the intellectual effort to implement a code improving transformation and to have the 

compiler expend the additional time compiling source programs if this effort is not repaid 

when the target programs are executed. “Peephole” transformations of this kind are simple 

enough and beneficial enough to be included in any compiler. 
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Organization for an Optimizing Compiler:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

¾ Flow analysis is a fundamental prerequisite for many important types of code 

improvement. 

Generally control flow analysis precedes data flow analysis.  
Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA 

constructs such as 

control flow 

graph Call graph  
Data flow analysis (DFA) is the process of ascerting and collecting information prior to 

program execution about the possible modification, preservation, and use of certain 

entities (such as values or attributes of variables) in a computer program. 
 

PRINCIPAL SOURCES OF OPTIMISATION 

 

A transformation of a program is called local if it can be performed by looking only at the 

statements in a basic block; otherwise, it is called global.  
Many transformations can be performed at both the local and global levels. Local 

transformations are usually performed first.  
Function-Preserving Transformations 

 

There are a number of ways in which a compiler can improve a program without 

changing the function it computes. 
 

The transformations 
 

9 Common sub expression elimination,  
9 Copy propagation, 
9 Dead-code elimination, and 
9 Constant folding 

 

are common examples of such function-preserving transformations. The other 

transformations come up primarily when global optimizations are performed. 
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Frequently, a program will include several calculations of the same value, such as an 

offset in an array. Some of the duplicate calculations cannot be avoided by the 

programmer because they lie below the level of detail accessible within the source 

language. 
 

¾ Common Sub expressions elimination: 

 

An occurrence of an expression E is called a common sub-expression if E was 

previously computed, and the values of variables in E have not changed since the 

previous computation. We can avoid recomputing the expression if we can use the 

previously computed value.  
For example 

t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t4: = 4*i 

t5: = n 

t6: = b [t4] +t5 
 

The above code can be optimized using the common sub-expression elimination as 

t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t5: = n 

t6: = b [t1] +t5 
 

The common sub expression t4: =4*i is eliminated as its computation is already in t1. 

And value of i is not been changed from definition to use. 
 

¾ Copy Propagation: 

 

Assignments of the form f : = g called copy statements, or copies for short. The idea 

behind the copy-propagation transformation is to use g for f, whenever possible after the 

copy statement f: = g. Copy propagation means use of one variable instead of another. 

This may not appear to be an improvement, but as we shall see it gives us an opportunity 

to eliminate x.  
For example: 

 

x=Pi;  
…… 

A=x*r*r; 

The optimization using copy propagation can be done as follows: 
 

A=Pi*r*r; 

 

Here the variable x is eliminated 
 

¾ Dead-Code Eliminations:  

 
A variable is live at a point in a program if its value can be used subsequently; otherwise, it is 
dead at that point. A related idea is dead or useless code, statements that compute  
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values that never get used. While the programmer is unlikely to introduce any dead code  
intentionally, it may appear as the result of previous transformations. An optimization can 

be done by eliminating dead code. 

Example: 
 

i=0;  
if(i=1) 

{ 

a=b+5; 

} 
 

Here, „if‟ statement is dead code because this condition will never get satisfied. 
 

¾ Constant folding:  

 

We can eliminate both the test and printing from the object code. More generally, 

deducing at compile time that the value of an expression is a constant and using the 

constant instead is known as constant folding. 
 
 

One advantage of copy propagation is that it often turns the copy statement into dead 

code.  
9 For example,  

a=3.14157/2 can be replaced by 

a=1.570 there by eliminating a division operation. 
 

¾ Loop Optimizations:   

We now give a brief introduction to a very important place for optimizations, namely 

loops, especially the inner loops where programs tend to spend the bulk of their time. The 

running time of a program may be improved if we decrease the number of instructions in 

an inner loop, even if we increase the amount of code outside that loop.  
Three techniques are important for loop optimization: 

 

9 code motion, which moves code outside a loop;  
9 Induction-variable elimination, which we apply to replace variables from inner loop. 
9 Reduction in strength, which replaces and expensive operation by a cheaper one, such 

as a multiplication by an addition. 
 
¾ Code Motion:   

An important modification that decreases the amount of code in a loop is code motion. 

This transformation takes an expression that yields the same result independent of the 

number of times a loop is executed ( a loop-invariant computation) and places the 

expression before the loop. Note that the notion “before the loop” assumes the existence 

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant 

computation in the following while-statement: 
 

while (i <= limit-2) /* statement does not change limit*/ 

 

Code motion will result in the equivalent of 
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t= limit-2; 

while (i<=t) 

 

 

/* statement does not change limit or t */ 
 

¾ Induction Variables :   

Loops are usually processed inside out. For example consider the loop around B3.  

Note that the values of j and t 4 remain in lock -step; every time the value of j decreases 

by 1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 
induction variables.  
When there are two or more induction variables in a loop, it may be possible to get rid of all 
but one, by the process of induction -variable elimination. For the inner loop around B3 in 

Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4. However, we 

can illustrate reduction in strength and illustrate a part of the process of induction-variable 
elimination. Eventually j will be eliminated when the outer loop of B2  
- B5 is considered. 

Example: 

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not 
changed elsewhere in the inner loop around B3, it follows that just after the statement j:=j-1 

the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t4:= 4*j by 

t4:= t4-4. The only problem is that t4 does not have a value when we enter block B3 for the 

first time. Since we must maintain the relationship t4=4*j on entry to the block B3, we place 

an initializations of t4 at the end of the block where j itself is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

before after 

 

initialized, shown by the dashed addition to block B1 in second Fig. 
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The replacement of a multiplication by a subtraction will speed up the object code 

if multiplication takes more time than addition or subtraction, as is the case on 

many machines. 
 

¾ Reduction In Strength: 

 

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the 

target machine. Certain machine instructions are considerably cheaper than others and can 

often be used as special cases of more expensive operators. 

For example, x is invariably cheaper to implement as x*x than as a call to an 

exponentiation routine. Fixed-point multiplication or division by a power of two is 

cheaper to implement as a shift. Floating-point division by a constant can be implemented 

as multiplication by a constant, which may be cheaper. 
 

OPTIMIZATION OF BASIC BLOCKS 
 

There are two types of basic block optimizations. They are : 
 

9 Structure-Preserving Transformations  
9 Algebraic Transformations 

 

Structure-Preserving Transformations: 
 

The primary Structure-Preserving Transformation on basic blocks are: 
 

9 Common sub-expression elimination  
9 Dead code elimination 
9 Renaming of temporary variables 
9 Interchange of two independent adjacent statements. 

 
¾ Common sub-expression elimination: 

 

Common sub expressions need not be computed over and over again. Instead they can be 

computed once and kept in store from where it‟s referenced when encountered again – of course 

providing the variable values in the expression still remain constant. 
 

Example: 

 

a: =b+c  
b: =a-d 

c: =b+c 

d: =a-d 
 

The 2
nd

 and 4
th

 statements compute the same expression: b+c and 

a-d Basic block can be transformed to  
a: = b+c 

b: = a-d 

c: = a 

d: = b 
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¾ Dead code elimination: 

 

It‟s possible that a large amount of dead (useless) code may exist in the program. This 

might be especially caused when introducing variables and procedures as part of constructio n or 

error-correction of a program – once declared and defined, one forgets to remove them in case 

they serve no purpose. Eliminating these will definitely optimize the code. 
 

¾ Renaming of temporary variables: 
 

 A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is 

another temporary name, and change all uses of t to u. 

  In this we can transform a basic block to its equivalent block called normal-form block. 
 
¾ Interchange of two independent adjacent statements: 

 
  Two statements 

 

t1:=b+c 
 

t2:=x+y 
 

can be interchanged or reordered in its computation in the basic block when value of t 1 

does not affect the value of t2. 
 

Algebraic Transformations:   

Algebraic identities represent another important class of optimizations on basic blocks. 

This includes simplifying expressions or replacing expensive operation by cheaper ones 

i.e. reduction in strength.  
Another class of related optimizations is constant folding. Here we evaluate constant 

expressions at compile time and replace the constant expressions by their values. Thus the 

expression 2*3.14 would be replaced by 6.28.  
The relational operators <=, >=, <, >, + and = sometimes generate unexpected common 

sub expressions.  
Associative laws may also be applied to expose common sub expressions. For example, if 

the source code has the assignments 
 

a :=b+c  
e :=c+d+b 

 

the following intermediate code may be generated: 

 

a :=b+c 

t :=c+d 

e :=t+b 
 
 

Example: 

 

x:=x+0 can be removed 

 

x:=y**2 can be replaced by a cheaper statement x:=y*y 
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The compiler writer should examine the language carefully to determine what 

rearrangements of computations are permitted, since computer arithmetic does not always 

obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-x*z as 

x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c. 
 

LOOPS IN FLOW GRAPH 
 

A graph representation of three-address statements, called a flow graph, is useful for 

understanding code-generation algorithms, even if the graph is not explicitly constructed by a 

code-generation algorithm. Nodes in the flow graph represent computations, and the edges 

represent the flow of control. 
 

Dominators: 
 

In a flow graph, a node d dominates node n, if every path from initial node of the flow 

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the 

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. 

Similarly every node dominates itself. 
 

Example: 

 

*In the flow graph below,  
*Initial node,node1 dominates every node. 

*node 2 dominates itself 

*node 3 dominates all but 1 and 2. 

*node 4 dominates all but 1,2 and 3. 

*node 5 and 6 dominates only themselves,since flow of control can skip around either by 

goin through the other. 

*node 7 dominates 7,8 ,9 and 10. 

*node 8 dominates 8,9 and 10. 

*node 9 and 10 dominates only themselves.  
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The way of presenting dominator information is in a tree, called the dominator tree in 

which the initial node is the root. 
 

The parent of each other node is its immediate dominator.   
Each node d dominates only its descendents in the tree.  
The existence of dominator tree follows from a property of dominators; each node has a 

unique immediate dominator in that is the last dominator of n on any path from the initial 

node to n.  
In terms of the dom relation, the immediate dominator m has the property is d=!n and d 

dom n, then d dom m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D(1)={1} D(2)={1,2} 

 

D(3)={1,3} 

 

D(4)={1,3,4} 

 

D(5)={1,3,4,5} 

 

D(6)={1,3,4,6} 

 

D(7)={1,3,4,7} 

 

D(8)={1,3,4,7,8} 

 

D(9)={1,3,4,7,8,9} 

 

D(10)={1,3,4,7,8,10} 
 

 



Natural Loop:  

 

One application of dominator information is in determining the loops of a flow graph suitable 

for improvement. 
 
 

The properties of loops are 

 

 A loop must have a single entry point, called the header. This entry point-dominates all 

nodes in the loop, or it would not be the sole entry to the loop.


 There must be at least one way to iterate the loop(i.e.)at least one path back to the header. 
 

One way to find all the loops in a flow graph is to search for edges in the flow graph whose 

heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of 

edges are called as back edges. 
 

 Example:

 

In the above graph, 

 

7 → 4 4 DOM 7 

10 →77 DOM 10 

4 → 3  

8 → 3  

9 →1   

 

The above edges will form loop in flow graph.   
Given a back edge n → d, we define the natural loop of the edge to be d plus the set of nodes 

that can reach n without going through d. Node d is the header of the loop. 
 

Algorithm: Constructing the natural loop of a back edge. 

 

Input: A flow graph G and a back edge n→d. 

 

Output: The set loop consisting of all nodes in the natural loop n→d. 

 

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make 

sure that m‟s predecessors are also placed in loop. Each node in loop, except for d, is placed once 

on stack, so its predecessors will be examined. Note that because d is put in the loop initially, we 

never examine its predecessors, and thus find only those nodes that reach n without going 

through d. 
 

Procedure insert(m); 
 

if m is not in loop then begin 
loop := loop U {m}; 

push m onto stack  

end; 
 

stack : = empty; 
 
 
 
 

 

 



loop : = {d}; 
 

insert(n); 

while stack is not empty do begin 
pop m, the first element of stack, off stack;  
for each predecessor p of m do insert(p)  

end 
 

Inner loop:  

 

If we use the natural loops as “the loops”, then we have the useful property that unless 

two loops have the same header, they are either disjointed or one is entirely contained in 

the other. Thus, neglecting loops with the same header for the moment, we have a natural 

notion of inner loop: one that contains no other loop.  
When two natural loops have the same header, but neither is nested within the other, they 

are combined and treated as a single loop. 
 

Pre-Headers:   

Several transformations require us to move statements “before the header”. Therefore 

begin treatment of a loop L by creating a new block, called the preheater. 
 
 

The pre-header has only the header as successor, and all edges which formerly entered the 

header of L from outside L instead enter the pre-header. 
 
 

Edges from inside loop L to the header are not changed.  
 

Initially the pre-header is empty, but transformations on L may place statements in it.  
 
 

 

header  
pre-header 

 

loop L 

 

header 
 

loop L 
 

(a) Before (b) After 
 
 

Reducible flow graphs:  

 

Reducible flow graphs are special flow graphs, for which several code optimization 

transformations are especially easy to perform, loops are unambiguously defined, 

dominators can be easily calculated, data flow analysis problems can also be solved 

efficiently. 
 
 

Exclusive use of structured flow-of-control statements such as if-then-else, while-do, 

continue, and break statements produces programs whose flow graphs are always 

reducible. 

 
 

 

 



The most important properties of reducible flow graphs are that there are no jumps into 

the middle of loops from outside; the only entry to a loop is through its header. 
 

Definition:   

A flow graph G is reducible if and only if we can partition the edges into two disjoint 

groups, forward edges and back edges, with the following properties. 
 

 The forward edges from an acyclic graph in which every node can be reached from initial 

node of G.


 The back edges consist only of edges where heads dominate theirs tails.


 Example: The above flow graph is reducible. 
 

If we know the relation DOM for a flow graph, we can find and remove all the back 

edges. 
 
 

The remaining edges are forward edges.  
 

If the forward edges form an acyclic graph, then we can say the flow graph reducible.  
 

In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7 

whose heads dominate their tails, the remaining graph is acyclic. 
 
 

The key property of reducible flow graphs for loop analysis is that in such flow graphs 

every set of nodes that we would informally regard as a loop must contain a back edge. 
 

PEEPHOLE OPTIMIZATION  

 

A statement-by-statement code-generations strategy often produce target code that 

contains redundant instructions and suboptimal constructs .The quality of such target 

code can be improved by applying “optimizing” transformations to the target program.  
A simple but effective technique for improving the target code is peephole optimization, a 

method for trying to improving the performance of the target program by examining a 

short sequence of target instructions (called the peephole) and replacing these 

instructions by a shorter or faster sequence, whenever possible.  
The peephole is a small, moving window on the target program. The code in the peephole 

need not contiguous, although some implementations do require this.it is characteristic of 

peephole optimization that each improvement may spawn opportunities for additional 

improvements.  
We shall give the following examples of program transformations that are characteristic 

of peephole optimizations: 
 

 Redundant-instructions elimination


 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

 Unreachable Code
 
 
 
 

 

 



Redundant Loads And Stores: 

 

If we see the instructions sequence 
 

(1) MOV R0,a 
 

(2) MOV a,R0 

 

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of 

a is already in register R0.If (2) had a label we could not be sure that (1) was always executed 
immediately before (2) and so we could not remove (2). 
 

Unreachable Code:   

Another opportunity for peephole optimizations is the removal of unreachable instructions. 

An unlabeled instruction immediately following an unconditional jump may be removed. 

This operation can be repeated to eliminate a sequence of instructions. For ex ample, for 

debugging purposes, a large program may have within it certain segments that are executed 

only if a variable debug is 1. In C, the source code might look like: 
 

#define debug 0 

 

…. 

 

If ( debug ) { 

 

Print debugging information 
 

}  

 

In the intermediate representations the if-statement may be translated as: 

 

If debug =1 goto L2 

 

goto L2 

 

L1: print debugging information 

 

L2: …………………………(a)  

 

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what 

the value of debug; (a) can be replaced by: 
 

If debug ≠1 goto L2 

 

Print debugging information 

 

L2: ……………………………(b) 
 

As the argument of the statement of (b) evaluates to a constant true it can be replaced by 
 
 
 
 
 

 



If debug ≠0 goto L2 

 

Print debugging information 

 

L2: ……………………………(c)  

 

As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by 

goto L2. Then all the statement that print debugging aids are manifestly unreachable and can 

be eliminated one at a time. 
 

Flows-Of-Control Optimizations:  

 

The unnecessary jumps can be eliminated in either the intermediate code or th e target code 

by the following types of peephole optimizations. We can replace the jump sequence 
 

goto L1 

 

…. 

 

L1: gotoL2 

 

by the sequence 

 

goto L2 

 

…. 

 

L1: goto L2  

 

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto 

L2 provided it is preceded by an unconditional jump .Similarly, the sequence 
 

if a < b goto L1 

 

…. 

 

L1: goto L2 

 

can be replaced by 

 

If a < b  goto  L2 

 

…. 

 

L1: goto L2  
 

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto. 

Then the sequence 
 

goto L1 

 

…….. 

 



L1: if a < b goto L2 

 

L3: …………………………………..(1)  
 

May be replaced by 

 

If a < b goto L2 

 

goto L3 

 

……. 

 

L3: ………………………………….(2)  

 

While the number of instructions in (1) and (2) is the same, we sometimes skip the 

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time 
 

Algebraic Simplification:  

 

There is no end to the amount of algebraic simplification that can be attempted through 

peephole optimization. Only a few algebraic identities occur frequently enough that it is 

worth considering implementing them .For example, statements such as 
 

x := x+0 

 

Or 

 

x := x * 1  

 

Are often produced by straightforward intermediate code-generation algorithms, and they can 

be eliminated easily through peephole optimization. 
 

Reduction in Strength:   

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target 

machine. Certain machine instructions are considerably cheaper than others and can often be 

used as special cases of more expensive operators.  
For example, x is invariably cheaper to implement as x*x than as a call to an exponentiation 

routine. Fixed-point multiplication or division by a power of two is cheaper to implement as a 

shift. Floating-point division by a constant can be implemented as multiplication by a 

constant, which may be cheaper. 
 

X
2
 → X*X 

 

Use of Machine Idioms:   

The target machine may have hardware instructions to implement certain specific operations 

efficiently. For example, some machines have auto-increment and auto-decrement addressing 

modes. These add or subtract one from an operand before or after using its value.  
The use of these modes greatly improves the quality of code when pushing or popping a 

stack, as in parameter passing. These modes can also be used in code for statements like i : 

=i+1. 
 

 

 



i:=i+1 → i++  
i:=i-1 → i- - 

 

INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS  

 

In order to do code optimization and a good job of code generation , compiler needs 

to collect information about the program as a whole and to distribute this information 

to each block in the flow graph. 
 
 

A compiler could take advantage of “reaching definitions” , such as knowing where a 

variable like debug was last defined before reaching a given block, in order to 

perform transformations are just a few examples of data-flow information that an 

optimizing compiler collects by a process known as data-flow analysis. 
 
 

Data-flow information can be collected by setting up and solving systems of equations 

of the form : 
 

out [S] = gen [S] U ( in [S] – kill [S] ) 
 

This equation can be read as “ the information at the end of a statement is either 

generated within the statement , or enters at the beginning and is not killed as control 

flows through the statement.” 
 
 

The details of how data-flow equations are set and solved depend on three factors. 
 

 The notions of generating and killing depend on the desired information, i.e., on the 

data flow analysis problem to be solved. Moreover, for some problems, instead of 

proceeding along with flow of control and defining out[s] in terms of in[s], we need to 

proceed backwards and define in[s] in terms of out[s].


 Since data flows along control paths, data-flow analysis is affected by the constructs in 

a program. In fact, when we write out[s] we implicitly assume that there is unique end 

point where control leaves the statement; in general, equations are set up at the level of 

basic blocks rather than statements, because blocks do have unique end points.


 There are subtleties that go along with such statements as procedure calls, 

assignments through pointer variables, and even assignments to array variables.
 

Points and Paths:  

 

Within a basic block, we talk of the point between two adjacent statements, as well as 

the point before the first statement and after the last. Thus, block B1 has four points: 

one before any of the assignments and one after each of the three assignments. 

 
 
 
 
 
 
 
 
 
 

 



B1  

 

d1 : i :=m-1 
 

d2: j :=n 
 

d3: a := u1 
 

B2 
 

d4 : I := i+1 
 

B3 
 

d5: j := j-1 
 

 

B4 
 
 

 

B5 B6 
 

d6 :a :=u2 
 

 

Now let us take a global view and consider all the points in all the blocks. A path from p 1 

to pn is a sequence of points p 1, p2,….,pn such that for each i between 1 and n-1, either 
  

 Pi is the point immediately preceding a statement and pi+1 is the point 

immediately following that statement in the same block, or


Pi is the end of some block and pi+1 is the beginning of a successor block.

 

Reaching definitions:   

A definition of variable x is a statement that assigns, or may assign, a value to x. The 

most common forms of definition are assignments to x and statements that read a 

value from an i/o device and store it in x. 
 

These statements certainly define a value for x, and they are referred to as 

unambiguous definitions of x. There are certain kinds of statements that may define a 

value for x; they are called ambiguous definitions. The most usual forms of 

ambiguous definitions of x are: 
 
 

 A call of a procedure with x as a parameter or a procedure that can access x because x is in 

the scope of the procedure.


 An assignment through a pointer that could refer to x. For example, the assignment * q: = y is 

a definition of x if it is possible that q points to x. we must assume that an assignment 

through a pointer is a definition of every variable.
 
 

We say a definition d reaches a point p if there is a path from the point immediately 

following d to p, such that d is not “killed” along that path. Thus a point can be reached 

 
 

 

 



by an unambiguous definition and an ambiguous definition of the same 

variable appearing later along one path. 
 

Data-flow analysis of structured programs:  

 

Flow graphs for control flow constructs such as do-while statements have a useful 

property: there is a single beginning point at which control enters and a single end point 

that control leaves from when execution of the statement is over. We exploit this 

property when we talk of the definitions reaching the beginning and the end of 

statements wit h the following syntax. 
 

S  id: = E| S; S | if E then S else S | do S while E 
 

E id + id| id  
 

Expressions in this language are similar to those in the intermediate code, but the flow 
 

graphs for statements have restricted forms.  
 
 
 
 
 
 
 
 

 

S1 
If E goto s1 

 
 
 
 
 

 

S2  
S1 S2 

 
 
 
 
 
 
 
 

 

S1 ; S2 

 
 
 
 
 
 
 
 
 

 

S1  
 
 
 
 
 
 
 
 
 

If E goto s1 

 

IF E then S1 else S2 do S1 while E 
 

We define a portion of a flow graph called a region to be a set of nodes N that includes a 

header, which dominates all other nodes in the region. All edges between nodes in N are 

in the region, except for some that enter the header. 
 

The portion of flow graph corresponding to a statement S is a region that obeys the further 

restriction that control can flow to just one outside block when it leaves the region. 
 
 
 
 

 



We say that the beginning points of the dummy blocks at the entry and exit of a 

statement‟s region are the beginning and end points, respectively, of the statement. The 

equations are inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S], and 

kill[S] for all statements S.  

gen[S] is the set of definitions “generated” by S while kill[S] is the set of 

definitions that never reach the end of S.  
Consider the following data-flow equations for reaching definitions : 

 

i )  
 
 
 
 

S d : a : = b + c 
  

 
 
 
 
 

 

gen [S] = { d } 

kill [S] = Da – { d }  
out [S] = gen [S] U ( in[S] – kill[S] )  

 

Observe the rules for a single assignment of variable a. Surely that assignment is a 

definition of a, say d. Thus  
Gen[S]={d}  
On the other hand, d “kills” all other definitions of a, so we 

write Kill[S] = Da – {d} 

Where, Da is the set of all definitions in the program for variable a. ii )  
 
 

 

S S1  
 
 

 

S2 
 
 
 
 
 
 
 
 
 
 

gen[S]=gen[S2] U (gen[S1]-kill[S2]) 

Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 
 

in [S1] = in [S] 

in [S2] = out [S1] 

out [S] = out [S2] 
 
 

 

 



 

Under what circumstances is definition d generated by S=S1; S 2? First of all, if it is 

generated by S2, then it is surely generated by S. if d is generated by S1, it will reach the 

end of S provided it is not killed by S2. Thus, we write  

gen[S]=gen[S2] U (gen[S1]-kill[S2]  
Similar reasoning applies to the killing of a definition, so we 

have Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 
 

Conservative estimation of data-flow information:  

 

There is a subtle miscalculation in the rules for gen and kill. We have made the 

assumption that the conditional expression E in the if and do statements are 

“uninterpreted”; that is, there exists inputs to the program that make their branches go 

either way. 
 
 

We assume that any graph-theoretic path in the flow graph is also an execution path, i.e., 

a path that is executed when the program is run with least one possible input. 
 
 

When we compare the computed gen with the “true” gen we discover that the true gen is 

always a subset of the computed gen. on the other hand, the true kill is always a superset 

of the computed kill. 
 
 

These containments hold even after we consider the other rules. It is natural to wonder 

whether these differences between the true and computed gen and kill sets present a 

serious obstacle to data-flow analysis. The answer lies in the use intended for these data. 
 
 

Overestimating the set of definitions reaching a point does not seem serious; it merely 

stops us from doing an optimization that we could legitimately do. On the other hand, 

underestimating the set of definitions is a fatal error; it could lead us into making a 

change in the program that changes what the program computes. For the case of reaching 

definitions, then, we call a set of definitions safe or conservative if the estimate is a 

superset of the true set of reaching definitions. We call the estimate unsafe, if it is not 

necessarily a superset of the truth. 
 
 

Returning now to the implications of safety on the estimation of gen and kill for reaching 

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in 

the safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a 

point, and cannot prevent a definition from reaching a place that it truly reached. 

Decreasing kill can only increase the set of definitions reaching any given point. 
 

Computation of in and out:  
 

Many data-flow problems can be solved by synthesized translations similar to those used 

to compute gen and kill. It can be used, for example, to determine loop-invariant 

computations. 
 
 

However, there are other kinds of data-flow information, such as the reaching-definitions problem. It turns out 

that in is an inherited attribute, and out is a synthesized attribute depending on 

inwww.eintend.studentsfocusthatin[S]behesetofdefiniti.comnsreaching the beginning of 



S, taking into account the flow of control throughout the entire program, including 

statements outside of S or within which S is nested. 
 
 

The set out[S] is defined similarly for the end of s. it is important to note the distinction 

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S 

without following paths outside S. 
 
 

Assuming we know in[S] we compute out by equation, that is 
 

Out[S] = gen[S] U (in[S] - kill[S]) 
 

Considering cascade of two statements S1; S2, as in the second case. We start by 

observing in[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2], 

since a definition reaches the beginning of S2 if and only if it reaches the end of S 1. 

Now we can compute out[S2], and this set is equal to out[S].  
 

Considering if-statement we have conservatively assumed that control can follow either 

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the 

beginning of S. 
 

In[S1] = in[S2] = in[S] 
 
 

If a definition reaches the end of S if and only if it reaches the end of one or both sub 

statements; i.e, 
 

Out[S]=out[S1] U out[S2] 

 

Representation of sets:  

 

Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit 

vectors. We assign a number to each definition of interest in the flow graph. Then bit 

vector representing a set of definitions will have 1 in position I if and only if the 

definition numbered I is in the set. 
 
 

The number of definition statement can be taken as the index of statement in an array 

holding pointers to statements. However, not all definitions may be of interest during 

global data-flow analysis. Therefore the number of definitions of interest will typically be 

recorded in a separate table. 
 
 

A bit vector representation for sets also allows set operations to be implemented 

efficiently. The union and intersection of two sets can be implemented by logical or and 

logical and, respectively, basic operations in most systems-oriented programming 
 

languages. The difference A-B of sets A and B can be implemented by taking the 

complement of B and then using logical and to compute A 
 
 

 

. 
 

 



Local reaching definitions:  

 

Space for data-flow information can be traded for time, by saving information only at 
 

certain points and, as needed, recomputing information at intervening points. Basic  
blocks are usually treated as a unit during global flow analysis, with attention restricted to 

 
only those points that are the beginnings of blocks.  

 

Since there are usually many more points than blocks, restricting our effort to blocks is a 

significant savings. When needed, the reaching definitions for all points in a block can be 

calculated from the reaching definitions for the beginning of a block. 
 

Use-definition chains:  

 

It is often convenient to store the reaching definition information as” use-definition 

chains” or “ud-chains”, which are lists, for each use of a variable, of all the definitions 

that reaches that use. If a use of variable a in block B is preceded by no unambiguous 

definition of a, then ud-chain for that use of a is the set of definitions in in[B] that are 

definitions of a.in addition, if there are ambiguous definitions of a ,then all of these for 

which no unambiguous definition of a lies between it and the use of a are on the ud -

chain for this use of a. 
 

Evaluation order:  

 

The techniques for conserving space during attribute evaluation, also apply to the 

computation of data-flow information using specifications. Specifically, the only 

constraint on the evaluation order for the gen, kill, in and out sets for statements is that 

imposed by dependencies between these sets. Having chosen an evaluation order, we are 

free to release the space for a set after all uses of it have occurred. 
 
 

Earlier circular dependencies between attributes were not allowed, but we have seen that 

data-flow equations may have circular dependencies. 
 

General control flow:   

Data-flow analysis must take all control paths into account. If the control paths are 

evident from the syntax, then data-flow equations can be set up and solved in a syntax-

directed manner. 
 
 

When programs can contain goto statements or even the more disciplined break and 

continue statements, the approach we have taken must be modified to take the actual 

control paths into account. 
 
 

Several approaches may be taken. The iterative method works arbitrary flow 

graphs. Since the flow graphs obtained in the presence of break and continue 

statements are reducible, such constraints can be handled systematically using the 

interval -based methods 

 

 



However, the syntax-directed approach need not be abandoned when break and continue 

statements are allowed. 
 

CODE GENERATION 
 

The final phase in compiler model is the code generator. It takes as input an intermediate 

representation of the source program and produces as output an equivalent target program. The 

code generation techniques presented below can be used whether or not an optimizing phase 

occurs before code generation. 
 

  Position of code generator   

source 

 

intermediate 

                           

intermediate 

  

target 
                           

 

 

code front end            code      

program 
 

code 
       

optimizer 
    

 code  generator program             
              

                                   
 
 
 
 

symbol 
 

table 
 

ISSUES IN THE DESIGN OF A CODE GENERATOR 

 

The following issues arise during the code generation phase : 
 

1. Input to code generator  
2. Target program 

3. Memory management 

4. Instruction selection 

5. Register allocation 

6. Evaluation order 
 
1. Input to code generator:   

The input to the code generation consists of the intermediate representation of the source 

program produced by front end , together with information in the symbol table to 

determine run-time addresses of the data objects denoted by the names in the intermediate 

representation.  
Intermediate representation can be :  
a. Linear representation such as postfix notation 

b. Three address representation such as quadruples 

c. Virtual machine representation such as stack machine code 

d. Graphical representations such as syntax trees and dags.  
Prior to code generation, the front end must be scanned, parsed and translated into 

intermediate representation along with necessary type checking. Therefore, input to code 

generation is assumed to be error-free.  
2. Target program:  

The output of the code generator is the target program. The output may be : 

a. Absolute machine language  
- It can be placed in a fixed memory location and can be executed immediately. 
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b. Relocatable machine language  
- It allows subprograms to be compiled 

separately. c. Assembly language 

- Code generation is made easier. 
 
3. Memory management:   

Names in the source program are mapped to addresses of data objects in run-time 

memory by the front end and code generator.  
It makes use of symbol table, that is, a name in a three-address statement refers to a 

symbol-table entry for the name.  
Labels in three-address statements have to be converted to addresses of 

instructions. For example, 
j : goto i generates jump instruction as follows : 

¾ if i < j, a backward jump instruction with target address equal to location of 

code for quadruple i is generated.  
¾ if i > j, the jump is forward. We must store on a list for quadruple i the 

location of the first machine instruction generated for quadruple j. When i 
is processed, the machine locations for all instructions that forward jumps 

to i are filled. 
 
4. Instruction selection:   

The instructions of target machine should be complete and uniform. 

Instruction speeds and machine idioms are important factors when efficiency of 

target program is considered.  
The quality of the generated code is determined by its speed and size.  
The former statement can be translated into the latter statement as shown below:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.  Register allocation   

Instructions involving register operands are shorter and faster than those involving 

operands in memory.  
The use of registers is subdivided into two subproblems :  
¾ Register allocation – the set of variables that will reside in registers at a 

point in the program is selected. 
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¾ Register assignment – the specific register that a variable will reside in is 

picked 
 

Certain machine requires even-odd register pairs for some operands and results.  
For example , consider the division instruction of the form : 

D x, y 
 

where, x – dividend even register in even/odd register 

pair y – divisor 
 

even register holds the remainder 
 

odd register holds the quotient 
 

6.  Evaluation order   

The order in which the computations are performed can affect the efficiency of the 
target code. Some computation orders require fewer registers to hold intermediate 

results than others. 
 

TARGET MACHINE   

Familiarity with the target machine and its instruction set is a prerequisite for designing 

a good code generator.  
The target computer is a byte-addressable machine with 4 bytes to a word. 

It has n general-purpose registers, R0, R1, . . . , Rn-1.  
It has two-address instructions of the form: 

op source, destination 
where, op is an op-code, and source and destination are data fields.  

 

It has the following op-codes :  
MOV (move source to destination) 

ADD (add source to destination) 

SUB (subtract source from destination) 
 

The source and destination of an instruction are specified by combining registers 

and memory locations with address modes. 
 

Address modes with their assembly-language forms 

 

MODE FORM ADDRESS ADDED COST 
    

absolute M M 1 
    

register R R 0 
    

indexed c(R) c+contents(R) 1 
    

indirect register *R contents (R) 0 
    

indirect indexed *c(R) contents(c+ 1 

  contents(R))  
    

literal #c c 1 
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For example : MOV R0, M stores contents of Register R0 into memory location M ; 

MOV 4(R0), M stores the value contents(4+contents(R0)) into M. 
 
 

Instruction costs :   

Instruction cost = 1+cost for source and destination address modes. This cost 

corresponds to the length of the instruction.  
Address modes involving registers have cost zero.  
Address modes involving memory location or literal have cost one.  
Instruction length should be minimized if space is important. Doing so also minimizes 

the time taken to fetch and perform the instruction.  
For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one, 

since it occupies only one word of memory.  
The three-address statement a : = b + c can be implemented by many different 

instruction sequences : 
 

i) MOV b, R0  

ADD c, R0 cost = 6 

MOV R0, a  

ii) MOV b, a  

ADD c, a cost = 6 
 

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c 

: MOV *R1, *R0 

ADD *R2, *R0 cost = 2 
 
 

In order to generate good code for target machine, we must utilize its 

addressing capabilities efficiently. 
 

RUN-TIME STORAGE MANAGEMENT   

Information needed during an execution of a procedure is kept in a block of storage 

called an activation record, which includes storage for names local to the procedure.  
The two standard storage allocation strategies are:  

1. Static allocation 

2. Stack allocation  
In static allocation, the position of an activation record in memory is fixed at compile 

time.  
In stack allocation, a new activation record is pushed onto the stack for each execution 

of a procedure. The record is popped when the activation ends.  
The following three-address statements are associated with the run-time allocation and 

deallocation of activation records: 

1. Call, 

2. Return, 

3. Halt, and 

4. Action, a placeholder for other statements.  
 

1. Code  
2. Static data 

3. Stack 
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Static allocation 
 

Implementation of call statement: 

 

The codes needed to implement static allocation are as follows: 
 

MOV #here + 20, callee.static_area /*It saves return address*/ 
 

GOTO callee.code_area /*It transfers control to the target code for the called procedure */ 

 

where,  
callee.static_area – Address of the activation record 

 

callee.code_area – Address of the first instruction for called procedure  

#here + 20 – Literal return address which is the address of the instruction following GOTO. 
 

Implementation of return statement: 
 

A return from procedure callee is implemented by : 

GOTO *callee.static_area 
 

This transfers control to the address saved at the beginning of the activation record. 
 

Implementation of action statement: 

 

The instruction ACTION is used to implement action statement. 
 

Implementation of halt statement: 

 

The statement HALT is the final instruction that returns control to the operating system. 
 

Stack allocation 

 

Static allocation can become stack allocation by using relative addresses for storage in 

activation records. In stack allocation, the position of activation record is stored in register so 

words in activation records can be accessed as offsets from the value in this register. 
 

The codes needed to implement stack allocation are as follows: 
 

Initialization of stack: 
 

MOV #stackstart , SP 
 

/* initializes stack */ 
 

Code for the first procedure 
 

HALT 
 

/* terminate execution */ 
 

Implementation of Call statement: 

 

ADD #caller.recordsize, SP 
 

/* increment stack pointer */ 
 

MOV #here + 16, *SP 
 

/*Save return address */ 
 

GOTO callee.code_area 
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where,  
caller.recordsize – size of the activation record 

 

#here + 16 – address of the instruction following the GOTO 
 

Implementation of Return statement: 
 

GOTO *0 ( SP ) /*return to the caller */ 
 

SUB #caller.recordsize, SP /* decrement SP and restore to previous value */ 

 

BASIC BLOCKS AND FLOW GRAPHS 
 

Basic Blocks 
 

A basic block is a sequence of consecutive statements in which flow of control enters at 

the beginning and leaves at the end without any halt or possibility of branching except at 

the end. 
 

The following sequence of three-address statements forms a basic block: 

t1  : = a * a 

t2  : = a * b 

t3 : = 2 * t2 
t4 : = t1 + t3 
t5  : = b * b 

t6 : = t4 + t5  

Basic Block Construction: 

 

Algorithm: Partition into basic blocks  
 

Input: A sequence of three-address statements 
 

Output: A list of basic blocks with each three-address statement in exactly one block 
 

Method: 
 

1. We first determine the set of leaders, the first statements of basic blocks. The rules 

we use are of the following: 

a. The first statement is a leader. 
b. Any statement that is the target of a conditional or unconditional goto is a 

leader.  
c. Any statement that immediately follows a goto or conditional goto statement 

is a leader. 

2. For each leader, its basic block consists of the leader and all statements up to but not 

including the next leader or the end of the program. 
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Consider the following source code for dot product of two vectors a and b of length 20  
 

 

begin 
 

prod :=0; 
 

i:=1; 
 

do begin 
 

prod :=prod+ a[i] * b[i]; 
 

i :=i+1; 
 

end 

 

while i <= 20 

 

end 
 
 

 

The three-address code for the above source program is given as :  

(1) prod := 0  

(2) i := 1  

(3) t1 := 4* i  

(4) t2 := a[t1] /*compute a[i] */ 

(5) t3 := 4* i  

(6) 
t

4 := b[t3] /*compute b[i] */ 

(7) t5 := t2*t4  

(8) t6 := prod+t5  

(9) prod := t6  

(10) t7 := i+1  

(11) i := t7  

(12) if i<=20 goto (3)  

    
 

 

Basic block 1: Statement (1) to (2) 
 

Basic block 2: Statement (3) to (12) 
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Transformations on Basic Blocks: 

 

A number of transformations can be applied to a basic block without changing the set of 

expressions computed by the block. Two important classes of transformation are : 
 
 

Structure-preserving transformations  
 

Algebraic transformations 
 

1. Structure preserving transformations: 
 

a) Common subexpression elimination: 

 

a : = b + c a : = b + c 

b : = a – d b : = a - d 

c : = b + c c : = b + c 

d : = a – d d : = b  
 

Since the second and fourth expressions compute the same expression, the basic block can 

be transformed as above. 
 

b) Dead-code elimination: 
 

Suppose x is dead, that is, never subsequently used, at the point where the statement x : 

= y + z appears in a basic block. Then this statement may be safely removed without 

changing the value of the basic block. 
 

c) Renaming temporary variables: 
 

A statement t : = b + c ( t is a temporary ) can be changed to u : = b + c (u is a new 

temporary) and all uses of this instance of t can be changed to u without changing the value 

of the basic block. 
 

Such a block is called a normal-form block. 
 

d) Interchange of statements: 

 

Suppose a block has the following two adjacent statements: 
 

t1 : = b + c  
t2 : = x + y 

 

We can interchange the two statements without affecting the value of the block if 

and only if neither x nor y is t1 and neither b nor c is t2. 
 

2. Algebraic transformations: 

 
Algebraic transformations can be used to change the set of expressions computed by a 

basic block into an algebraically equivalent set. 
 

Examples: 
 

i) x : = x + 0 or x : = x * 1 can be eliminated from a basic block without changing the set of 

expressions it computes. 
 

ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y. 
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Flow Graphs  

 

Flow graph is a directed graph containing the flow-of-control information for the set of 

basic blocks making up a program. 
 

The nodes of the flow graph are basic blocks. It has a distinguished initial node.  
E.g.: Flow graph for the vector dot product is given as follows: 

 

 

prod : = 0 B1 

i : = 1  
   

 

 

t1 : = 4 * i 
 

t2 : = a [ t1 ] 
t3 : = 4 * i 

B2 
t4 : = b [ t3 ]  
t5 : = t2 * t4 

 
t6 : = prod + t5  
prod : = t6 

 
t7 : = i + 1 

 
i : = t7 

 
if i <= 20 goto B2 

 
 
 
 
 
 

B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2. The 

target of jump from last statement of B1 is the first statement B2, so there is an edge from 

B1 (last statement) to B2 (first statement).  

B1 is the predecessor of B2, and B2 is a successor of B1. 
 

Loops  

 

A loop is a collection of nodes in a flow graph such that  
1. All nodes in the collection are strongly connected. 

2. The collection of nodes has a unique entry.  
A loop that contains no other loops is called an inner loop. 

 

NEXT-USE INFORMATION  

 

If the name in a register is no longer needed, then we remove the name from the register 

and the register can be used to store some other names. 
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Input: Basic block B of three-address statements 
 

Output: At each statement i: x= y op z, we attach to i the liveliness and next-uses of x, 

y and z. 
 

Method: We start at the last statement of B and scan backwards. 

 

1. Attach to statement i the information currently found in the symbol table 

regarding the next-use and liveliness of x, y and z.  
2. In the symbol table, set x to “not live” and “no next use”.  
3. In the symbol table, set y and z to “live”, and next-uses of y and z to i. 

 
 

 

Symbol Table: 

 

Names Liveliness Next-use 
   

x not live no next-use 
   

y Live i 
   

z Live i 
   

 

A SIMPLE CODE GENERATOR   

A code generator generates target code for a sequence of three- address statements and 

effectively uses registers to store operands of the statements. 
 

For example: consider the three-address statement a := b+c   

It can have the following sequence of codes: 
 

ADD Rj, Ri 

 

Cost = 1 
 

// if Ri contains b and Rj contains c 
 

(or) 
 

ADD c, Ri 

 

Cost = 2 
 

// if c is in a memory location 
 

(or) 
 

MOV c, Rj 

 

Cost = 3 
 

// move c from memory to Rj and add 
 

ADD Rj, Ri 

 

Register and Address Descriptors:  

 

A register descriptor is used to keep track of what is currently in each registers. The 

register descriptors show that initially all the registers are empty. 
 

An address descriptor stores the location where the current value of the name can be 

found at run time. 
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A code-generation algorithm: 

 

The algorithm takes as input a sequence of three-address statements constituting a basic block.  
For each three-address statement of the form x : = y op z, perform the following actions: 

 

1. Invoke a function getreg to determine the location L where the result of the computation y 

op z should be stored. 
 

2. Consult the address descriptor for y to determine y‟, the current location of y. Prefer the 

register for y‟ if the value of y is currently both in memory and a register. If the value of y 

is not already in L, generate the instruction MOV y’ , L to place a copy of y in L. 
 

3. Generate the instruction OP z’ , L where z‟ is a current location of z. Prefer a register to 

a memory location if z is in both. Update the address descriptor of x to indicate that x is 

in location L. If x is in L, update its descriptor and remove x from all other descriptors. 
 

4. If the current values of y or z have no next uses, are not live on exit from the block, and are 

in registers, alter the register descriptor to indicate that, after execution of x : = y op z , those 

registers will no longer contain y or z. 
 

Generating Code for Assignment Statements:  

 

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-

address code sequence:  
t : = a – b  
u : = a – c 

 
v : = t + u 

 
d : = v + u 

 
with d live at the end. 

 

Code sequence for the example is: 
 

 Statements Code Generated Register descriptor Address descriptor 
      

   Register empty   
      

 t : = a - b MOV a, R0 R0 contains t t in R0  

  SUB b, R0     
       

 u : = a - c MOV a , R1 R0 contains t t in R0  

  SUB c , R1 R1 contains u u in R1  

       

 v : = t + u ADD R1, R0 R0 contains v u in R1  

   R1 contains u v in R0  
       

 d : = v + u ADD R1, R0 R0 contains d d in R0  

  MOV R0, d   d in R0 and memory 
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Generating Code for Indexed Assignments 

 

The table shows the code sequences generated for the indexed assignment 

statements a : = b [ i ] and a [ i ] : = b 
 

Statements Code Generated Cost 
   

a : = b[i] MOV b(Ri), R 2 
   

a[i] : = b MOV b, a(Ri) 3 
   

 
 

Generating Code for Pointer Assignments 

 

The table shows the code sequences generated for the pointer 

assignments a : = *p and *p : = a 
 

Statements Code Generated Cost 
   

a : = *p MOV *Rp, a 2 
   

*p : = a MOV a, *Rp 2 
   

 
 

Generating Code for Conditional Statements 

 

Statement Code   
   

if x < y goto z CMP x, y  

 CJ< z /* jump to z if condition code 

   is negative */ 
   

x : = y +z MOV y, R0  

if x < 0 goto z ADD z, R0  

 MOV R0,x  

 CJ< z  
    

 
 

THE DAG REPRESENTATION FOR BASIC BLOCKS 
 

A DAG for a basic block is a directed acyclic graph with the following labels on nodes:   

1. Leaves are labeled by unique identifiers, either variable names or constants. 

2. Interior nodes are labeled by an operator symbol. 

3. Nodes are also optionally given a sequence of identifiers for labels to store the 

computed values.  
DAGs are useful data structures for implementing transformations on basic blocks.   
It gives a picture of how the value computed by a statement is used in subsequent 

statements.  

It provides a goodwwwwayof.determiningstudentsfocuscommonsub-expressions.com. 
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Algorithm for construction of DAG  

 

Input: A basic block 
 

Output: A DAG for the basic block containing the following information: 
 

1. A label for each node. For leaves, the label is an identifier. For interior nodes, an 
operator symbol.  

2. For each node a list of attached identifiers to hold the computed values. 
Case (i) x : = y OP z 

 

Case (ii) x : = OP y 
 

Case (iii) x : = y 
 

Method: 
 

Step 1: If y is undefined then create node(y). 
 

If z is undefined, create node(z) for case(i). 
 

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is 
 

node(z). ( Checking for common sub expression). Let n be this node. 
 

For case(ii), determine whether there is node(OP) with one child node(y). If not create such 

a node. 
 

For case(iii), node n will be node(y). 
 

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached 
 

identifiers for the node n found in step 2 and set node(x) to n. 
 

 

Example: Consider the block of three- address statements:  
 

1. t1 := 4* i 

2. t2 := a[t1] 
3. t3 := 4* i 
4. t4 := b[t3] 
5. t5 := t2*t4  
6. t6 := prod+t5 
7. prod := t6 
8. t7 := i+1  
9. i := t7  
10. if i<=20 goto (1) 
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Stages in DAG Construction  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Application of DAGs: 

 

1. We can automatically detect common sub expressions.  
2. We can determine which identifiers have their values used in the block. 
3. We can determine which statements compute values that could be used outside the block. 

 
 
 
 

 

 



GENERATING CODE FROM DAGs 

 

The advantage of generating code for a basic block from its dag representation is that, 

from a dag we can easily see how to rearrange the order of the final computation sequence than 

we can starting from a linear sequence of three-address statements or quadruples. 
 

Rearranging the order 
 

The order in which computations are done can affect the cost of resulting object code. 
 

For example, consider the following basic block: 

t1 : = a + b 

t2 : = c + d 

t3 : = e – t2 

t4 : = t1 – t3 
 

Generated code sequence for basic block: 
 

MOV a , R0 

ADD b , R0 

MOV c , R1 

ADD d , R1 

MOV R0 , t1 

MOV e , R0 

SUB R1 , R0 

MOV t1 , R1 

SUB R0 , R1 

MOV R1 , t4 
 

Rearranged basic block: 
 

Now t1 occurs immediately before t4. 
 

t2 : = c + d 

t3 : = e – t2 

t1 : = a + b 

t4 : = t1 – t3 
 

Revised code sequence: 
 

MOV c , R0 

ADD d , R0 

MOV a , R0 

SUB R0 , R1 

MOV a , R0 

ADD b , R0 

SUB R1 , R0 

MOV R0 , t4  

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved. 
 

 



A Heuristic ordering for Dags 

 

The heuristic ordering algorithm attempts to make the evaluation of a node immediately 

follow the evaluation of its leftmost argument. 
 

The algorithm shown below produces the ordering in reverse. 
 

Algorithm: 
 

1) while unlisted interior nodes remain do begin 
 
2) select an unlisted node n, all of whose parents have been listed;  
3) list n;  
4) while the leftmost child m of n has no unlisted parents and is not a leaf do 

 

 begin 

5) list m; 

6) n : = m 

end 
 

end 
 

 

Example: Consider the DAG shown below: 

 

1  
  *  

2 + - 3 
 

4 
* 

 

 

 5 -   + 8 
     

 6    +  7    c d   11  e   12 

a 
9 

b 
10 

   
     

 

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3). 
 

Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6). 
 

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we 

select a new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its 

left chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that. 
 

The resulting list is 1234568 and the order of evaluation is 8654321. 
 

 



Code 
 

sequence: 
 

t8 : = d + e 

t6 : = a + b 

t5 : = t6 – c 

t4 : = t5 * t8 

t3 : = t4 – e 

t2 : = t6 + t4 

t1 : = t2 * t3 
 

This will yield an optimal code for the DAG on machine whatever be the n umber of registers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


