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Conventions and Notation 
 

Vectors have an arrow over their variable name:  ~v. Points are denoted with a bar instead:  p¯ .  
Matrices are represented by an uppercase letter. 

 
When written with parentheses and commas separating elements, consider a vector to be a column 

 
 
 
 
 

x 
vector. That is, (x, y) = . Row vectors are denoted with square braces and no commas: 

y 
x  y = (x, y)

T
  = y T 

. 

  x  
 
 

The set of real numbers is represented by R. The real Euclidean plane is R
2
, and similarly Eu-

clidean three-dimensional space is R
3
. The set of natural numbers (non-negative integers) is rep-

resented by N. 
 

There are some notable differences between the conventions used in these notes and those found 
in the course text. Here, coordinates of a point p¯  are written as px, py , and so on, where the 
book uses the notation xp, yp, etc. The same is true for vectors.  

 
Aside:  
Text in ―aside‖ boxes provide extra background or informati on that you are not re-
quired to know for this course.  
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1 Introduction to Graphics 
 

1.1 Raster Displays 
 
The screen is represented by a 2D array of locations called pixels.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Zooming in on an image made up of pixels 
 

 

The convention in these notes will follow that of OpenGL, placing the origin in the lower left 
corner, with that pixel being at location (0, 0). Be aware that placing the origin in the upper left 
is another common convention. 
 

One of 2
N

 intensities or colors are associated with each pixel, where N is the number of bits per 
pixel. Greyscale typically has one byte per pixel, for 2

8
 = 256 intensities. Color often requires 

one byte per channel, with three color channels per pixel: red, green, and blue. 
 
Color data is stored in a frame buffer. This is sometimes called an image map or bitmap. 
 
Primitive operations: 
 

• setpixel(x, y, color)  
Sets the pixel at position (x, y) to the given color. 

 
• getpixel(x, y)  

Gets the color at the pixel at position (x, y). 
 
 
Scan conversion is the process of converting basic, low level objects into their corresponding 
pixel map representations. This is often an approximation to the object, since the frame buffer is 
a discrete grid. 
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Scan conversion of a circle  
 
 
 
 
 
 
 
 
 
 
 
 
 

1.2 Basic Line Drawing 
 
Set the color of pixels to approximate the appearance of a line from (x0, y0) to (x1, 
y1). It should be 
 

• ―straight‖ and pass through the end points. 
 

• independent of point order. 
 

• uniformly bright, independent of slope. 
 

The explicit equation for a line is y = mx + b.  

 

Note: 
Given two points (x0, y0) and (x1, y1) that lie on a line, we can solve for m and b 
for the line. Consider y0 = mx0 + b and y1 = mx1 + b. 
Subtract y0 from y1 to solve for m = 

y1 
−y0  and b = y0 − mx0. 

x1−x0  

Substituting in the value for b, this equation can be written as y = m(x − x0) + y0.   
Consider this simple line drawing algorithm: 
 
int x  
float m, y  
m = (y1 - y0) / (x1 - x0)  
for (x = x0; x <= x1; ++x) { 

y = m * (x - x0) + y0 
setpixel(x, round(y), linecolor)  

} 

 

 2 



 
 
 
  
 
 
Problems with this algorithm: 
 

• If x1  < x0 nothing is drawn.  
Solution: Switch the order of the points if x1  < x0. 

 
• Consider the cases when m < 1 and m > 1:  

 
 
 
 
 
 
 
 
 
 

(a) m < 1 (b) m > 1 
 
 

 
A different number of pixels are on, which implies different brightness between the two. Solution: When m > 1, loop over y = y0 . . . y1 instead of x, then x =  

 

 
• Inefficient because of the number of operations and the use of floating point numbers. 

Solution: A more advanced algorithm, called Bresenham's Line Drawing Algorithm. 
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m

1
 (y − y0) + x0. 



 
 

 
  
 
 

2 Curves 
 

2.1 Parametric Curves 
 
There are multiple ways to represent curves in two dimensions: 
 

• Explicit: y = f (x), given x, find  y.  
 

Example:  
The explicit form of a line is y = mx + b. There is a problem with this 
representation–what about vertical lines?  

 

 

• Implicit: f (x, y) = 0, or in vector form, f (p¯) = 0 .  
 

Example: 
The implicit equation of a line through p¯ 0 and p¯ 1 is 

 

(x − x0)(y1 − y0) − (y − y0)(x1 − x0) = 0. 
 

Intuition: 
~ 

– The direction of the line is the vector d = p¯ 1 − p¯ 0. 
~ 

–
 

So a vector from p¯ 0 to any point on the line must be parallel to d. 

– Equivalently, any point on the line must have direction from p¯ 0  perpendic- 
~⊥ 

ular to d = (dy , −dx) ≡ ~n. 
~  ~⊥ 

= (dx, dy ) · (dy , −dx) = 0. This can be checked with d · d 
–  So for any point p¯  on the line, (p¯  − p¯ 0) · ~n = 0.  

Here ~n = (y1 − y0, x0 − x1). This is called a normal. 
– Finally, (p¯  − p¯ 0) · ~n = (x − x0, y − y0) · (y1 − y0, x0 − x1) = 0. 

Hence, the line can also be written as: 
 

(p¯ − p¯0) · ~n = 0  
 

 

Example: 

The implicit equation for a circle of radius r and center p¯ c = (xc, yc) 

is (x − xc)
2
 + (y − yc)

2
 = r

2
, 

or in vector form,  

kp¯ − p¯ck
2
  = r

2
.  
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• 

¯  ¯  2 

, may be written as p¯(λ) or (x(λ), y(λ)). Parametric: p¯ =  f (λ) where f : R → R 
  Example:     

  A parametric line through p¯ 0 and p¯ 1 is 

     ~  

    p¯(λ) = p¯0 + λd,  
~ 

where d = p¯ 1 − p¯ 0. 
Note that bounds on λ must be specified:  

–  Line segment from p¯ 0 to p¯ 1: 0 ≤ λ ≤ 1.  

–  Ray from p¯ 0 in the direction of p¯ 1: 0 ≤ λ < ∞. 

–  Line passing through p¯ 0 and p¯ 1: −∞ < λ < ∞  
 

Example: 
What's the perpendicular bisector of the line segment between p¯ 0 and p¯ 1? 

 

–  The midpoint is p¯(λ) where λ = 
1 
, that is, p¯ 0 

  1 ~ p¯ 0+p¯ 1 
. 2 +  2 d =  2 

– The line perpendicular to p¯(λ) has direction parallel to the normal of 

p¯(λ), which is ~n = (y1 − y0, −(x1 − x0)). 
 

  
1 ~ 

Hence, the perpendicular bisector is the line ℓ(α) = p¯ 0 + 2 d + α~n.  

 

Example: 
¯  ~ 

and f (p¯) = (p¯  − p¯ 1) · ~n1 = 0. Find the intersection of the lines l(λ) = p¯ 0 + λd0 
¯  

equation  f (p¯)   to  see  what  value of  λ Substitute  l(λ)  into  the  implicit 
satisfies it: 

 
¯  

f l(λ) 
 
 
 
 

~ 
Therefore, if d0 · ~n1  =6 0, 

 
  

~ 

= p¯ 0 + λd0 − p¯1 · ~n1 
~  

= λd0 · ~n1 − (p¯1 − p¯0) · ~n1  
= 0 

 

 

λ∗ = (p¯ 1 − p¯0) · ~n1 ,  
~ 

d0 · ~n1  
¯  ∗ ~ 

· ~n1 = 0, then the two lines are parallel and the intersection point is l(λ  ). If d0 
with no intersection or they are the same line.  
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Example:  
The parametric form of a circle with radius r for 0 ≤ λ < 1 is 

 
p¯(λ) = (r cos(2πλ), r sin(2πλ)). 

 
This is the polar coordinate representation of a circle. There are an infinite 
number of parametric representations of most curves, such as circles. Can you 
think of others?  

 
An important property of parametric curves is that it is easy to generate points along a 
curve by evaluating p¯(λ) at a sequence of λ values. 

 

2.1.1 Tangents and Normals 
 
The tangent to a curve at a point is the instantaneous direction of the curve. The line containing 
the tangent intersects the curve at a point. It is given by the derivative of the parametric form 
p¯(λ) with regard to λ. That is, 

~τ(λ) =  dλ = dλ  ,   dλ  . 

 dp¯(λ)   dx(λ) dy(λ)   
          

 
 

 

The normal is perpendicular to the tangent direction. Often we normalize the normal to have 
unit length. For closed curves we often talk about an inward-facing and an outward-facing 
normal. When the type is unspecified, we are usually dealing with an out ward-facing normal. 
 

τ(λ) 
n(λ)

 tangent 
normal  

 
 
 

p(λ)  
 curve 

 

We can also derive the normal from the implicit form. The normal at a point p¯ = (x, y)  on a 
curve defined by f (p¯) =  f (x, y) = 0 is: 

~n(p¯) = ∇f (p¯)| p¯  = ∂x , ∂y  
 ∂f (x, y)  ∂f (x, y)  
      

 

 

Derivation:  
For any curve in implicit form, there also exists a parametric representation p¯(λ) = 
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(x(λ), y(λ)). All points on the curve must satisfy f (p¯) = 0 . Therefore, for any 
choice of λ, we have:  
    0 = f (x(λ), y(λ))      

We can differentiate both side with respect to λ:      

0 =  d  f (x(λ), y(λ))      (1) 
        

   dλ               

0 =  ∂f  dx(λ) + ∂f dy(λ)    (2) 
      

∂y 
  

dλ 
    

0 =  ∂x dλ ,  dλ  (3) 
∂x , ∂y   ·     dλ  

    ∂f  ∂f  dx(λ) dy(λ)   
                

(4) 0 =  ∇f (p¯)| p¯  · ~τ(λ)         
 

This last line states that the gradient is perpendicular to the curve tangent, which is 
the definition of the normal vector.  

 
Example: 

The implicit form of a circle at the origin is: f (x, y) = x
2
 + y

2
 −R

2
  = 0. The normal 

at a point (x, y) on the circle is: ∇f = (2x, 2y).  
 
Exercise: show that the normal computed for a line is the same, regardless of whether it is com-
puted using the parametric or implicit forms. Try it for another surface. 

 

2.2 Ellipses 
 

• Implicit: 
x
a2

2 + 
y
b2

2 = 1. This is only for the special case where the ellipse is centered at 
the origin with the major and minor axes aligned with y = 0 and x = 0.  

 
 
 
 

b 
 

a 
 
 
 
 
 

 

• Parametric: x(λ) = a cos(2πλ),  y(λ) = b sin(2πλ), or in vector form 
 

  
a cos(2πλ) 

p¯(λ) = . 
b sin(2πλ) 
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The implicit form of ellipses and circles is common because there is no explicit functional form.  
This is because y is a multifunction of x. 

 

2.3 Polygons 
 
A polygon is a continuous, piecewise linear, closed planar curve. 
 

• A simple polygon is non self-intersecting. 
 

• A regular polygon is simple, equilateral, and equiangular. 
 

• An n-gon is a regular polygon with n sides. 
 

• A polygon is convex if, for any two points selected inside the polygon, the line segment 
between them is completely contained within the polygon.  

 
Example:  
To find the vertices of an  n-gon, find  n equally spaced points on a circle.  

 

 

r 
 

θ 
 
 
 
 
 

 

In polar coordinates, each vertex (xi, yi) = (r cos(θi), r sin(θi)), where θi  = i 
2
n

π
  for   

i = 0 . . . n − 1. 
 

• To translate: Add (xc, yc) to each point. 
 

• To scale: Change r.  

• To rotate: Add θ to each θi.  
 
 

2.4 Rendering Curves in OpenGL 
 
OpenGL does not directly support rendering any curves other that lines and polylines. However, 
you can sample a curve and draw it as a line strip, e.g.,: 
 
float x, y;  
glBegin(GL_LINE_STRIP);  
for (int t=0 ; t <= 1 ; t += .01) 
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computeCurve( t, &x, &y);  
glVertex2f(x, y);  

}  
glEnd(); 
 
You can adjust the step-size to determine how many line segments to draw. Adding line 
segments will increase the accuracy of the curve, but slow down the rendering. 
 
The GLU does have some specialized libraries to assist with generating and rendering curves. For 
example, the following code renders a disk with a hole in its center, centered about the z-axis. 
 
GLUquadric q = gluNewQuadric();  
gluDisk(q, innerRadius, outerRadius, sliceCount, 
1); gluDeleteQuadric(q); 
 
See the OpenGL Reference Manual for more information on these routines. 
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3 Transformations 
 

3.1 2D Transformations 
 
Given a point cloud, polygon, or sampled parametric curve, we can use transformations for 
several purposes: 
 

1. Change coordinate frames (world, window, viewport, device, etc). 
 

2. Compose objects of simple parts with local scale/position/orientation of one part defined 
with regard to other parts. For example, for articulated objects. 

 
3. Use deformation to create new shapes. 

 
4. Useful for animation. 

 
 
There are three basic classes of transformations: 
 

1. Rigid body - Preserves distance and angles. 
 

• Examples: translation and rotation. 
 

2. Conformal - Preserves angles. 
 

• Examples: translation, rotation, and uniform scaling. 
 

3. Affine  - Preserves parallelism. Lines remain lines. 
 

• Examples: translation, rotation, scaling, shear, and refle ction. 
 
 
Examples of transformations: 
 

• Translation by vector 
~

t: p¯ 1  = p¯ 0 + 
~

t. 
 
 
 
 
 
 

 

•   sin(θ) cos(θ)  

 Rotation counterclockwise by θ: p¯ 1 = cos(θ) − sin(θ) p¯ 0. 
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• Uniform scaling by scalar a: p¯ 1  = 
a 0 

p¯ 0. 0 a 

     
     

     

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Nonuniform scaling by a and b: p¯ 1  = 
a 0 

p¯ 0. 
 

0 b  

         
         

         

         
          

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Shear by scalar h: p¯ 1  = 
1 h 

p¯ 0. 
 

0 1  

      
      

      

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
• 

Reflection  about the y-axis: p¯ 1 

  0 1 

p¯ 0.  = −1 0 



         
         

         

          
 
 

3.2 Affine Transformations 
 

An affine transformation takes a point p¯  to q¯  according to q¯ =  F (p¯) =  Ap¯ +  
~

t, a linear transfor-
mation followed by a translation. You should understand the following proofs. 
 11 



 
 
 

  
 

 
• The inverse of an affine transformation is also affine, assumi  ng it exists.  

 
Proof: 

~      −1 exists, i.e. det(A) 6= 0.  
Let q¯ =  Ap¯ +  t and assume A    ~ Then Apq ~  A −1 q¯   A −1~ 

t, so p    

− 
t. This can be rewritten as p¯ = Bq¯ + d , 

¯ = ¯ −−1  ¯ =    −1     

where B = A 

 ~     ~    

and d = −A    t.      
Note:  
The inverse of a 2D linear transformation is 

 

A−1  = 

a  b 

 

−1 1 

 

d b 

. 

 

c  d 

 

= 

 

−c −a  ad − bc  
 
 

• Lines and parallelism are preserved under affine transforma tions.  
 

Proof:  
To prove lines are preserved, we must show that 

~ ¯  ~ 

F (p¯) = Ap¯ + t and l(λ) = p¯0 + λd. 

 
¯  

q¯(λ) = F (l(λ)) is a line, where 

 
q¯(λ) = Al¯(λ) + ~t 

~ ~ 

= A(p¯ 0 + λd) + t 
~ ~ 

= (Ap¯ 0 + t) + λAd  
~ ~ 

This is a parametric form of a line through Ap¯ 0 + t with direction Ad.  
 

• Given a closed region, the area under an affine transformatio n Ap¯ +  
~

t is scaled by 
det(A). Note:  

 
–  Rotations and translations have det(A) = 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1   0 

0   0 



 

 

–  Scaling A = a 0 
has det(A) = ab. 

0 b    
– Singularities have det(A) = 0.  

 

Example: 
 
 
 
 
 
 
 
 
 
 

 

 
The matrix A = maps all points to the x-axis, so the area of any closed 

 
region will become zero. We have det(A) = 0, which verifies that any closed 
region's area will be scaled by zero.  
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• A composition of affine transformations is still affine.  
 

Proof: 

Let F1(p¯) =  A1p¯ +  
~

t1 and F2(p¯) =  A2p¯ +  
~

t2. 
Then, 

 

F (p¯)  = F2(F1(p¯))  

= A2(A1p¯ + 
~

t1) + 
~

t2 

= A2A1p¯ + (A 2
~

t1 + 
~

t2).  

Letting A = A2A1 and 
~

t = A2
~

t1 + 
~

t2, we have F (p¯) =  Ap¯ +  
~

t, and this is 
an affine transformation.  

 

3.3 Homogeneous Coordinates 
 
Homogeneous coordinates are another way to represent points to simplify the way in which we 
express affine transformations. Normally, bookkeeping wou ld become tedious when affine 

trans-formations of the form Ap¯ +  
~

t are composed. With homogeneous coordinates, affine 
transfo rma-tions become matrices, and composition of transformations is as simple as matrix 
multiplication. In future sections of the course we exploit this in much more powerful ways. 
 

With homogeneous coordinates, a point p¯  is augmented with a 1, to form pˆ = 

p¯  

. 1 

All points (αp,¯ α) represent the same point p¯  for real α 6= 0.   
 
Given pˆ in homogeneous coordinates, to get p¯ , we divide pˆ by its last component and discard 
the last component.  
 

Example:  
The homogeneous points (2, 4, 2) and (1, 2, 1) both represent the Cartesian point 
(1, 2). It's the orientation of pˆ that matters, not its length.  

 
 
Many transformations become linear in homogeneous coordinates, including affine transforma-
tions: 

qy  = c  d py + ty  

qx   a b  px  tx  
  = c d ty py   
    b tx 

 px   
   1   

   a 

 

 

 

 

  

= A ~t  pˆ 
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To produce qˆ rather than q¯ , we can add a row to the matrix: 

qˆ =
   ~0T 1 pˆ = c  d  ty pˆ. 

 ~  a b tx  
t 0 0 1  

A 

 

   

      
This is linear! Bookkeeping becomes simple under composition.  
 

Example: 
   ~ = F3(F2(F1(p¯))) ,  where Fi(p¯)  =  A i(p¯) + t i  becomes M3M2M1p¯ ,  where Mi 

 

Ai 
~ 

. 

 
ti  

~0
T 

1   
 
With homogeneous coordinates, the following properties of affine transformations become 
appar-ent: 
 

• Affine transformations are associative. For 
affine transformations F1, F2, and F3, 

 

(F3 ◦ F2) ◦ F1  = F3 ◦ (F2 ◦ F1). 
 

• Affine transformations are not commutative. 
For affine transformations F1 and F2, 

 

F2 ◦ F1  =6 F1 ◦ F2. 
 

3.4 Uses and Abuses of Homogeneous Coordinates 
 
Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot be 
treated in quite the same way. For example, consider the midpoint between two points p¯ 1 = (1, 1) 
and p¯ 2 = (5, 5). The midpoint is (p¯ 1 + p¯ 2)/2 = (3, 3). We can represent these points in 
homogeneous coordinates as pˆ1 = (1, 1, 1) and pˆ2 = (5, 5, 1). Directly applying the same  
computation as above gives the same resulting point: (3, 3, 1). However, we can also represent these 

points as pˆ
′
1 = (2, 2, 2) and pˆ

′
2 = (5, 5, 1). We then have (pˆ

′
1 + pˆ

′
2)/2 = (7/2, 7/2, 3/2), which 

cooresponds to the Cartesian point (7/3, 7/3). This is a different point, and illustrates that  
we cannot blindly apply geometric operations to homogeneous coordinates. The simplest 
solution is to always convert homogeneous coordinates to Cartesian coordinates. That said, 
there are several important operations that can be performed correctly in terms of homogeneous 
coordinates, as follows. 
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Affine transformations. An important case in the previous section is applying an affin e trans-
formation to a point in homogeneous coordinates: 
 

q¯  = 
   ~ 

F (p¯) = Ap¯ + t  

qˆ = 
ˆ ′ ′ T 
Apˆ = (x , y , 1) 

 
It is easy to see that this operation is correct, since rescaling pˆ does not change the result: 
 

ˆ ˆ ′ ′ 
, α) 

T 
A(αpˆ) = α(Apˆ) = αqˆ = (αx , αy  

 

which is the same geometric point as qˆ = (x
′
, y

′
, 1)

T 

 
(5) 
 
(6) 
 
 

 

(7) 

 
Vectors. We can represent a vector ~v = (x, y) in homogeneous coordinates by setting the last 
element of the vector to be zero: vˆ = (x, y, 0). However, when adding a vector to a point, the 
point must have the third component be 1. 
 

qˆ = pˆ + vˆ (8) 

(x
′
, y

′
, 1)

T 
= (xp, yp, 1) + (x, y, 0) (9) 

 
The result is clearly incorrect if the third component of the vector is not 0.  
 

Aside:  
Homogeneous coordinates are a representation of points in projective geometry.  

 
 

3.5 Hierarchical Transformations 
 
It is often convenient to model objects as hierarchically connected parts. For example, a robot 
arm might be made up of an upper arm, forearm, palm, and fingers. Rot ating at the shoulder on 
the upper arm would affect all of the rest of the arm, but rotating the forearm at the elbow would 
affect the palm and fingers, but not the upper arm. A reasonable hiera rchy, then, would have the 
upper arm at the root, with the forearm as its only child, which in turn connects only to the palm, 
and the palm would be the parent to all of the fingers. 
 
Each part in the hierarchy can be modeled in its own local coordinates, independent of the other 
parts. For a robot, a simple square might be used to model each of the upper arm, forearm, and so 
on. Rigid body transformations are then applied to each part relative to its parent to achieve the 
proper alignment and pose of the object. For example, the fingers are positioned to be in the 
appropriate places in the palm coordinates, the fingers and p alm together are positioned in 
forearm coordinates, and the process continues up the hierarchy. Then a transformation applied 
to upper arm coordinates is also applied to all parts down the hierarchy. 
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3.6 Transformations in OpenGL 
 
OpenGL manages two 4 × 4 transformation matrices: the modelview matrix, and the projection 
matrix. Whenever you specify geometry (using glVertex), the vertices are transformed by the 
current modelview matrix and then the current projection matrix. Hence, you don't have to 
perform these transformations yourself. You can modify the entries of these matrices at any time. 
OpenGL provides several utilities for modifying these matrices. The modelview matrix is 
normally used to represent geometric transformations of objects; the projection matrix is 
normally used to store the camera transformation. For now, we'll focus just on the modelview 
matrix, and discuss the camera transformation later. 
 
To modify the current matrix, first specify which matrix is go ing to be manipulated: use glMatrixMode(GL 
MODE to modify the modelview matrix. The modelview matrix can then be initialized to the identity with 
glLoadIdentity(). The matrix can be manipulated by directly filling its values , multiplying it   
by an arbitrary matrix, or using the functions OpenGL provides to multiply the matrix by specific 
transformation matrices (glRotate, glTranslate, and glScale). Note that these transforma-
tions right-multiply the current matrix; this can be confusing since it means that you specify 
transformations in the reverse of the obvious order. Exercise: why does OpenGL right-multiply 
the current matrix? 
 
OpenGL provides a stacks to assist with hierarchical transformations. There is one stack for the 
modelview matrix and one for the projection matrix. OpenGL provides routines for pushing and 
popping matrices on the stack. 
 
The following example draws an upper arm and forearm with shoulder and elbow joints. The 
current modelview matrix is pushed onto the stack and popped at the end of the rendering, so, for 
example, another arm could be rendered without the transformations from rendering this arm 
affecting its modelview matrix. Since each OpenGL transformation is applied by multiplying a 
matrix on the right-hand side of the modelview matrix, the transformations occur in reverse 
order. Here, the upper arm is translated so that its shoulder position is at the origin, then it is 
rotated, and finally it is translated so that the shoulder is in its appr opriate world-space position. 
Similarly, the forearm is translated to rotate about its elbow position, then it is translated so that 
the elbow matches its position in upper arm coordinates. 
 
glPushMatrix(); 

 
glTranslatef(worldShoulderX, worldShoulderY, 0.0f);  
drawShoulderJoint();  
glRotatef(shoulderRotation, 0.0f, 0.0f, 1.0f);  
glTranslatef(-upperArmShoulderX, -upperArmShoulderY, 0.0f);  
drawUpperArmShape(); 

 
glTranslatef(upperArmElbowX, upperArmElbowY, 0.0f); 
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drawElbowJoint();  
glRotatef(elbowRotation, 0.0f, 0.0f, 1.0f); 
glTranslatef(-forearmElbowX, -forearmElbowY, 
0.0f); drawForearmShape(); 

 
glPopMatrix(); 
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4 Coordinate Free Geometry 
 
Coordinate free geometry (CFG) is a style of expressing geometric objects and relations that 
avoids unnecessary reliance on any specific coordinate syst em. Representing geometric 
quantities in terms of coordinates can frequently lead to confusion, and to derivations that rely on 
irrelevant coordinate systems. 
 
We first define the basic quantities: 
 

1. A scalar is just a real number. 
 

2. A point is a location in space. It does not have any intrinsic coordinates. 
 

3. A vector is a direction and a magnitude. It does not have any intrinsic coordinates. 
 
A point is not a vector: we cannot add two points together. We cannot compute the magnitude of 
a point, or the location of a vector.  
Coordinate free geometry defines a restricted class of operat ions on points and vectors, even 
though both are represented as vectors in matrix algebra. The following operations are the only 
operations allowed in CFG. 
 

1. k~vk: magnitude of a vector. 
 

2. p¯ 1 + ~v1  = p¯ 2, or ~v1  = p¯ 2 − p¯1.: point-vector addition. 
 

3. ~v1 + ~v2  = ~v3.: vector addition 
 

4. α~v1 = ~v2: vector scaling. If α > 0, then ~v2 is a new vector with the same direction as 

~v1, but magnitude αk~v1k. If α < 0, then the direction of the vector is reversed. 

5. ~v1 · ~v2: dot product = k~v1kk~v2k cos(θ), where θ is the angle between the vectors. 
 

6. ~v1 × ~v2: cross product, where ~v1 and ~v2 are 3D vectors. Produces a new vector 
perpedicular to ~v1 and to ~v2, with magnitude k~v1kk~v2k sin(θ). The orientation of the 
vector is determined by the right-hand rule (see textbook). 

 

7. 
P

i αi~vi = ~v: Linear combination of vectors 
 

8. 
P

i αip¯ i = p¯ , if 
P

i αi = 1: affine combination of points. 

9. 
P

i αip¯ i = ~v, if 
P

i αi = 0 
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Example: 
 

• p¯ 1 + (p¯ 2 − p¯3) = p¯ 1 + ~v = p¯ 4. 
 

• αp¯2 − αp¯1  = α~v1  = ~v2. 

• 
1
2 (p1 + p2) = p1 + 

1
2 (p¯ 2 − p¯1) = p¯ 1 + 

1
2 ~v = p¯ 3.  

 
Note:  
In order to understand these formulas, try drawing some pictures to illustrate 
different cases (like the ones that were drawn in class).  

 
Note that operations that are not in the list are undefined. 

These operations have a number of basic properties, e.g., commutivity of dot product: ~v1  · ~v2  = 
~v2 · ~v1, distributivity of dot product: ~v1 · (~v2 + ~v3) = ~v1 · ~v2 + ~v1 · ~v3. 
CFG helps us reason about geometry in several ways: 
 

1. When reasoning about geometric objects, we only care about the intrinsic geometric prop-
erties of the objects, not their coordinates. CFG prevents us from introducing irrelevant 
concepts into our reasoning. 

 
2. CFG derivations usually provide much more geometric intuition for the steps and for the 

results. It is often easy to interpret the meaning of a CFG formula, whereas a coordinate-
based formula is usually quite opaque. 

 
3. CFG derivations are usually simpler than using coordinates, since introducing coordinates 

often creates many more variables. 
 

4. CFG provides a sort of ―type-checking‖ for geometric reaso ning. For example, if you derive a 

formula that includes a term p¯  · ~v, that is, a ―point dot vector,‖ then there may be a bug in 

your reasoning. In this way, CFG is analogous to type-checking in compilers. Although you 
could do all programming in assembly language — which doe s not do type-checking and will 
happily led you add, say, a floating point value to a fu nction pointer — most people would 
prefer to use a compiler which performs type-checking and can thus find many bugs. 

 
In order to implement geometric algorithms we need to use coordinates. These coordinates are part of 
the representation of geometry — they are not fundamental to reasoning about geometry itself.  
 

Example:  
CFG says that we cannot add two points; there is no meaning to this operation. But 
what happens if we try to do so anyway, using coordinates? 
Suppose we have two points: p¯ 0  = (0, 0) and p¯ 1  = (1, 1), and we add them together 
coordinate-wise: p¯ 2 = p¯ 0 + p¯ 1 = (1, 1). This is not a valid CFG operation, but 
we have done it anyway just to tempt fate and see what happens. We see that the 
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resulting point is the same as one of the original points: p¯ 2  = p¯ 1.  
Now, on the other hand, suppose the two points were represented in a different 
coor-dinate frame: q¯ 0 = (1, 1) and q¯ 1 = (2, 2). The points q¯ 0 and q¯ 1 are the 
same points as p¯ 0 and p¯ 1, with the same vector between them, but we have just 
represented them in a different coordinate frame, i.e., with a different origin. 
Adding together the points we get q¯ 2 = q¯ 0 + q¯ 1 = (3, 3). This is a different 
point from q¯ 0 and q¯ 1, whereas before we got the same point.  
The geometric relationship of the result of adding two points depends on the coordi-
nate system. There is no clear geometric interpretation for adding two points.  

 

Aside:  
It is actually possible to define CFG with far fewer axioms than the ones listed 
above. For example, the linear combination of vectors is simply addition and 
scaling of vectors.  
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5 3D Objects 
 

5.1 Surface Representations 
 
As with 2D objects, we can represent 3D objects in parametric and implicit forms. (There are 
also explicit forms for 3D surfaces — sometimes called ―heig ht fields‖ — but we will not cover 
them here). 

 

5.2 Planes 
 

• Implicit: (p¯  − p¯ 0) · ~n = 0, where p¯ 0 is a point in R
3
 on the plane, and ~n is a normal 

vector perpendicular to the plane.  
 

n 
 

 

p 

0  
 
 
 
 

A plane can be defined uniquely by three non-colinear points  p¯ 1, p¯ 2, p¯ 3. Let ~a = p¯ 2 − p¯ 1 and 
~ ~ ~ 

b = p¯ 3 − p¯1, so ~a and b are vectors in the plane. Then ~n = ~a × b. Since the points 

are not colinear, k~nk =6 0. 
 

~ 
• Parametric: s¯(α, β) = p¯0 + α~a + βb, for α, β ∈ R.   

Note: 
¯  

This is similar to the parametric form of a line: l(α) = p¯ 0 + α~a.  
 

A planar patch is a parallelogram defined by bounds on  α and β.  
 

Example:  
Let 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1:  

 

 
a  

 
 

 

p
0 b 
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5.3 Surface Tangents and Normals 
 
The tangent to a curve at p¯  is the instantaneous direction of the curve at p¯ . 
 
The tangent plane to a surface at p¯  is analogous. It is defined as the plane containing tangent 
vectors to all curves on the surface that go through p¯ . 
 
A surface normal at a point p¯  is a vector perpendicular to a tangent plane. 
 

 

5.3.1 Curves on Surfaces 
 
The parametric form p¯(α, β) of a surface defines a mapping from 2D points to 3D points: ever y 
2D point (α, β) in R 2       3   ¯   

 corresponds to a 3D point p¯  in R .  Moreover, consider a curve l(λ)  = 

(α(λ), β(λ)) in 2D — there is a corresponding curve in 3D contained within t ¯ ∗ (λ) = he surface: l 
¯                

p¯( l(λ)).               

5.3.2   Parametric Form           

For a curve c¯(λ) = (x(λ), y(λ), z(λ))
T

  in 3D, the tangent is    

   dc¯(λ) dx(λ)  dy(λ)  dz(λ) 

. 

  
     

= 

 

, 

 

, 

   

(10)    dλ dλ dλ  dλ  
 
For a surface point s¯(α, β), two tangent vectors can be computed: 
 

∂s¯ and  ∂s¯ . (11) 
  

∂α ∂β   
 
 

 

Derivation: 
Consider a point (α0, β0) in 2D which corresponds to a 3D point s¯(α0, β0). 
Define two straight lines in 2D: 

¯  
T 

d(λ1) = (λ1, β0) 

e¯(λ2) = (α0, λ2)
T 

 
These lines correspond to curves in 3D:  

¯ ∗ ¯  

d (λ1) = s¯(d(λ1)) 
  ¯  

e¯ (λ2) = s¯(d(λ2)) 

 
(12) 
 
(13) 
 
 

 

(14) 
 
(15) 
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Using the chain rule for vector functions, the tangents of these curves are:   

  ¯ ∗    
∂s¯ 

¯      ¯     
∂s¯ 

    
  ∂d  =     ∂dα + ∂s¯ ∂dβ =    (16)                   

 

 

∂λ1  

     

∂β ∂λ1 
     

  ∂α ∂λ1     ∂α     

  ∂e¯∗  =   ∂s¯  ∂e¯α + ∂s¯ ∂e¯β =  ∂s¯   (17)  
                

  

∂λ2  

    

∂β ∂λ2 

     

    ∂α ∂λ2     ∂β     
                         

The normal of s¯  at α = α0, β = β0 is             
! × 

     
! 
   

 ~n(α0, β0) =     ∂α 
 

α0,β0 
∂β

 α0,β0 . (18) 
            ∂s¯      ∂s¯       
                           
                           

                           
The tangent plane is a plane containing the surface at s¯(α0, β0) with normal vector equal to the 
surface normal. The equation for the tangent plane is: 
 

~n(α0, β0) · (p¯ − s¯(α0, β0))   =   0. (19)  
What if we used different curves in 2D to define the tangent plan e? It can be shown that we get 
the same tangent plane; in other words, tangent vectors of all 2D curves through a given surface 
point are contained within a single tangent plane. (Try this as an exercise).  
 

Note:  
The normal vector is not unique. If ~n is a normal vector, then any vector α~n is 
also normal to the surface, for α ∈ R. What this means is that the normal can be 
scaled, and the direction can be reversed.  

 

5.3.3 Implicit Form 
 
In the implicit form, a surface is defined as the set of points p¯  that satisfy f (p¯) = 0  for some 
function f . A normal is given by the gradient of f , 
 

~n(p¯) = ∇f (p¯)| p¯  (20) 

where ∇f = 

∂f (p¯)  ∂f (p¯)    ∂f (p¯)  

. 

 

, 

 

, 

 

∂x ∂y ∂z  
Derivation:  
Consider a 3D curve c¯(λ) that is contained within the 3D surface, and that passes 
through p¯ 0 at λ0. In other words, c¯(λ0) = p¯ 0 and 

 
f (¯c(λ))   =   0 (21) 
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for all λ. Differentiating both sides gives:   
∂f 

(22)  =   0 
 

∂λ  
 

Expanding the left-hand side, we see: 
 

∂f =  
∂f ∂c¯x + 

∂f ∂c¯y + 
∂f ∂c¯z (23)             

∂λ  

∂x ∂λ ∂y ∂λ ∂z ∂λ      

 

= ∇f (p¯)| p¯  · 

dc¯      

(24) 
  

= 0 
    

 dλ     
 

This last line states that the gradient is perpendicular to the curve tangent, which is 
the definition of the normal vector.  

 
Example: 

The implicit form of a sphere is: f (p¯) =  kp¯  − c¯k
2
 − R

2
  = 0. The normal at a point 

p¯ is: ∇f = 2(p¯ − c¯).  
 
Exercise: show that the normal computed for a plane is the same, regardless of whether it is 
computed using the parametric or implicit forms. (This was done in class). Try it for another 
surface. 

 

5.4 Parametric Surfaces 
 
5.4.1 Bilinear Patch 
 
A bilinear patch is defined by four points, no three of which are colinear. 
 

p
01  l1(α) 

 
 
 
 

 

p00 
l
0
(α) 

 
α 

 

 

Given p¯ 00, p¯ 01, p¯ 10, p¯ 11, define 

 

p
11 

  

 β 
 

p
10 

 
¯  

(α) = (1 − α)p¯00 + αp¯10, l0 
¯  

(α) = (1 − α)p¯01 + αp¯11. l1 
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¯  ¯  
Then connect l0(α) and l1(α) with a line: 

¯  
p¯(α, β) = (1 − β)l0(α) 

 
for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. 

 
 
 
 

¯  
+ βl1(α), 

 
Question: when is a bilinear patch not equivalent to a planar patch? Hint: a planar patch is 
defined by 3 points, but a bilinear patch is defined by 4. 

 

5.4.2 Cylinder 
 

A cylinder is constructed by moving a point on a line l along a planar curve p0(α) such that the 
direction of the line is held constant.  

~ 
If the direction of the line l is d, the cylinder is defined as  

~ 
p¯(α, β) = p0(α) + βd.  

~ 
A right cylinder has d perpendicular to the plane containing p0(α). 
 

A circular cylinder is a cylinder where p0(α) is a circle.  
 

 

Example: 
A right circular cylinder can be defined by p0(α) = (r cos(α), r sin(α), 0), for 0 ≤ 

~ 

α < 2π, and d = (0, 0, 1). 
 

So p0(α, β) = (r cos(α), r sin(α), β), for 0 ≤ β ≤ 1. 
 

To  find  the  normal  at  a  point on this  cylinder,  we  can  use  the  imp licit  form 

f (x, y, z) = x
2
 + y

2
 − r

2
  = 0 to find ∇f = 2(x, y, 0).    

Using the parametric form directly to find the normal, we have    

  ∂p¯    ∂p¯    
   

= r(− sin(α), cos(α), 0), and 
 

= (0, 0, 1), so 
  

  ∂α ∂β   

    ∂p¯ ∂p¯       
   

 

 

× 
 

= (r cos(α)r sin(α), 0). 
   

   ∂α ∂β    
          

 Note:   
~ 

   
        , b2 , b3) can   The cross product of two vectors ~a = (a1, a2, a3) and b = (b1  
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be found by taking the determinant of the matrix,  
 

  
i j k 

a1 a2 a3 . b1 
b2 b3  

 
 
 
 
 
 

5.4.3 Surface of Revolution 
 
To form a surface of revolution, we revolve a curve in the x-z plane, c¯(β) = (x(β), 0, z(β)), 
about the z-axis. 
 
Hence, each point on c¯  traces out a circle parallel to the x-y plane with radius |x(β)|. Circles 
then have the form (r cos(α), r sin(α)), where α is the parameter of revolution. So the rotated 
surface has the parametric form 
 

s¯(α, β) = (x(β) cos(α), x(β) sin(α), z(β)).  
 

Example:  
If c¯(β) is a line perpendicular to the x-axis, we have a right circular cylinder. 

 
A torus is a surface of revolution: 

 
c¯(β) = (d + r cos(β), 0, r sin(β)).  

 
 
 
 
5.4.4 Quadric 
 
A quadric is a generalization of a conic section to 3D. The implicit form of a quadric in the 
standard position is 
 

ax
2
 + by

2
 + cz

2
 + d = 0, 

ax
2
 + by

2
 + ez = 0, 

 
for a, b, c, d, e ∈ R. There are six basic types of quadric surfaces, which depend on the signs of 
the parameters.  
They are the ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic 
paraboloid, and hyperbolic paraboloid (saddle). All but the hyperbolic paraboloid may be ex-
pressed as a surface of revolution. 
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Example:  
An ellipsoid has the implicit form 

x2 y2 z2 

a2 
+ 

b2  + c2  − 1 = 0. 
  

In parametric form, this is 
 

s¯(α, β) = (a sin(β) cos(α), b sin(β) sin(α), c 

cos(β)), for β ∈ [0, π] and α ∈ (−π, π]. 
 
 
 
 

5.4.5 Polygonal Mesh 
 
A polygonal mesh is a collection of polygons (vertices, edges, and faces). As polygons may be 
used to approximate curves, a polygonal mesh may be used to approximate a surface. 
 

edge  
 

 
face 

 
 

 
vertex 

 

 

A polyhedron is a closed, connected polygonal mesh. Each edge must be shared by two faces. 
 
A face refers to a planar polygonal patch within a mesh. 
 
A mesh is simple when its topology is equivalent to that of a sphere. That is, it has no holes. 
 
Given a parametric surface, s¯( α, β), we can sample values of α and β to generate a polygonal 
mesh approximating s¯ . 

 

5.5 3D Affine Transformations 
 
Three dimensional transformations are used for many different purposes, such as coordinate 
trans-forms, shape modeling, animation, and camera modeling. 
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~ R3×3 ~ R
3 

. A An affine transform in 3D looks the same as in 2D:  F (p¯) =  Ap¯ +  t for A ∈  , p,¯  t ∈  
homogeneous affine transformation is 
 

ˆ ˆ 
F (pˆ) = M p,ˆ where pˆ = 

 
 

 

Translation: A = I, 
~

t = (tx, ty , tz ). 
~ ~ 

Scaling: A = diag(sx, sy , sz ), t = 0. 
~ ~ 

Rotation: A = R, t = 0, and det(R) = 1. 

 

1 , M
ˆ 

= ~0T ~ . 
1 

p¯    A t  

 
3D rotations are much more complex than 2D rotations, so we will consider only elementary 
rotations about the x, y, and z axes. 
 
For a rotation about the z-axis, the z coordinate remains unchanged, and the rotation occurs in 
the x-y plane. So if q¯ = Rp¯ , then qz = pz . That is, 

qy   sin(θ)cos(θ) py  

qx  = cos(θ)   − sin(θ) px . 
 

Including the z coordinate, this becomes 
Rz (θ) = sin(θ) cos(θ) 0 . 

  cos(θ) − sin(θ) 0  

  0 0 1  
Similarly, rotation about the x-axis is   

− sin(θ)   . Rx(θ) = 0 cos(θ) 
 1 0 0  

 0 sin(θ) cos(θ)  
For rotation about the y-axis, 

 
   

. Ry (θ) = 0 1 0 
  cos(θ) 0 sin(θ)  

 − sin(θ) 0 cos(θ)  
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5.6 Spherical Coordinates 
 

Any three dimensional vector ~u = (ux, uy , uz ) may be represented in spherical coordinates. 
By computing a polar angle φ counterclockwise about the y-axis from the z-axis and an 
azimuthal angle θ counterclockwise about the z-axis from the x-axis, we can define a vector in 
the appropriate direction. Then it is only a matter of scaling this vector to the correct length (u

2
x 

+ u
2

y + u
2
z)

−1/2
 to match ~u. 

 

z   
u 

 
φ 

 
 
 
 

 
y  

θ 
x 

u
xy 

 
 
 
Given angles φ and θ, we can find a unit vector as  ~u = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)).  
 (ux

2
+uy

2
 )

1/2      
Given a vector ~u, its azimuthal angle is given by θ =  arctan  uy  and its polar angle is φ = ux       

arctan 

 

. This formula does not require that ~u be a unit vector. 

 

uz  
5.6.1   Rotation of a Point About a Line       

Spherical coordinates are useful in finding the rotation of a point about an arbitrary line. Let 
¯  

l(λ) = λ~u with k~uk = 1, and ~u having azimuthal angle θ and polar angle φ.  We may compose 
¯  

elementary rotations to get the effect of rotating a point p¯  about l(λ) by a counterclockwise 
angle ρ: 
 

1. Align ~u with the z-axis. 
 

• Rotate by −θ about the z-axis so ~u goes to the xz-plane. 
 

• Rotate up to the z-axis by rotating by −φ about the y-axis. 
 

Hence, q¯ =  Ry (−φ)Rz (−θ)p¯ 
 

2.  Apply a rotation by ρ about the z-axis: Rz (ρ). 
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3.  Invert the first step to move the  z-axis back to ~u: Rz (θ)Ry (φ) = (Ry (−φ)Rz (−θ))
−1

. 
 

Finally, our formula is q¯ =  R~u(ρ)p¯ = Rz (θ)Ry (φ)Rz (ρ)Ry (−φ)Rz (−θ)p¯. 
 

5.7 Nonlinear Transformations 
 
Affine transformations are a first-order model of shape defor mation. With affine 
transformations, scaling and shear are the simplest nonrigid deformations. Common higher-order 
deformations include tapering, twisting, and bending.  
 
 

Example:  
To create a nonlinear taper, instead of constantly scaling in x and y for all z, as in 

 

 a 0 0  
q 0 b 0 p, 

¯ =  0 0 1 ̄  
let a and b be functions of z, so 

(0z b(p¯ z )   0 
 

q¯ =  p¯.  
 a p¯ )  0 0   

 0 0 1   
A linear taper looks like a(z) = α0 + α1z.     
A quadratic taper would be a(z) = α0 + α1z + α2z

2
.  

x    x  
 
 
 
 

 
z z 

 
y y 

 
(c) Linear taper (d) Nonlinear taper 

 
 
 

 

5.8 Representing Triangle Meshes 
 
A triangle mesh is often represented with a list of vertices and a list of triangle faces. Each vertex 
consists of three floating point values for the x, y, and z positions, and a face consists of three 
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indices of vertices in the vertex list. Representing a mesh this way reduces memory use, since each 
vertex needs to be stored once, rather than once for every face it is on; and this gives us connectivity 
information, since it is possible to determine which faces share a common vertex. This can easily be 
extended to represent polygons with an arbitrary number of vertices, but any polygon can be 
decomposed into triangles. A tetrahedron can be represented with the following lists: 
 

Vertex index x y z 
    

0 0 0 0 
    

1 1 0 0 
    

2 0 1 0 
    

3 0 0 1 
    

 
 

Face index Vertices 
  

0 0, 1, 2 
  

1 0, 3, 1 
  

2 1, 3, 2 
  

3 2, 3, 0 
  

 
Notice that vertices are specified in a counter-clockwise or der, so that the front of the face and 
back can be distinguished. This is the default behavior for OpenGL, although it can also be set to 
take face vertices in clockwise order. Lists of normals and texture coordinates can also be 
specified, with each face then associated with a list of verti ces and corresponding normals and 
texture coordinates. 

 

5.9 Generating Triangle Meshes 
 
As stated earlier, a parametric surface can be sampled to generate a polygonal mesh. Consider 
the surface of revolution 
 ¯         T 
 S(α, β) = [x(α) cos β, x(α) sin β, z(α)]  

¯   T 

and β ∈ [0, 2π]. 
    

with the profile  C(α) = [x(α), 0, z(α)]       
To take a uniform sampling, we can use        

 α = α1 − α0 , and   β = 2π ,  
   

n 
 

    m      
where m is the number of patches to take along the z-axis, and n is the number of patches to take 
around the z-axis. 
 
Each patch would consist of four vertices as follows: 
 

Sij  =  ¯    = ¯  
S¯ ((i + 1 )Δα, j  β)  S¯ i+1,j  

  S(i α, j  β) 
 

 Si,j 
 S¯ (i α, (j + 1)Δβ) S¯ i+1,j+1 

  ¯     ¯  
  S((i + 1)Δα, (j +  1)Δβ )    S 

      i,j+1 

 
 
 
 
 

i ∈ [0, m − 1], 
, 

for 
j ∈ [0, n − 1] 

To render this as a triangle mesh, we must tesselate the sampled quads into triangles. This is 
accomplished by defining triangles Pij and Qij given Sij as follows:  

¯  ¯  ¯  ¯  ¯  ¯  

Pij  = (Si,j , Si+1,j , Si+1,j+1), 
and

 Qij  = (Si,j , Si+1,j+1, Si,j+1) 
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6 Camera Models 
 
Goal: To model basic geometry of projection of 3D points, curves, and surfaces onto a 2D 
surface, the view plane or image plane. 

 

6.1 Thin Lens Model 
 
Most modern cameras use a lens to focus light onto the view plane (i.e., the sensory surface). 
This is done so that one can capture enough light in a sufficiently s hort period of time that the 
objects do not move appreciably, and the image is bright enough to show significant detail over a 
wide range of intensities and contrasts.   

Aside:  
In a conventional camera, the view plane contains either photoreactive chemicals; 
in a digital camera, the view plane contains a charge-coupled device (CCD) array. 
(Some cameras use a CMOS-based sensor instead of a CCD). In the human eye, 
the view plane is a curved surface called the retina, and and contains a dense array 
of cells with photoreactive molecules.  

 
Lens models can be quite complex, especially for compound lens found in most cameras. Here 
we consider perhaps the simplist case, known widely as the thin lens model. In the thin lens 
model, rays of light emitted from a point travel along paths through the lens, convering at a point 
behind the lens. The key quantity governing this behaviour is called the focal length of the lens. 
The focal length,, |f |, can be defined as distance behind the lens to which rays from a n infinitely 
distant source converge in focus. 
 
 
 

view plane 

 
surface point  

 
lens 
 

 
optical axis  

z
0 

z
1 

 
 
 

More generally, for the thin lens model, if z1 is the distance from the center of the lens (i.e., the 
nodal point) to a surface point on an object, then for a focal length |f |, the rays from that surface 
point will be in focus at a distance z0 behind the lens center, where z1 and z0 satisfy the thin lens 
equation: 

1 = 1 + 1 (25) 

|f | 
 

z1  z0  
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6.2 Pinhole Camera Model 
 
A pinhole camera is an idealization of the thin lens as aperture shrinks to zero. 
 

view plane  
 
 
 
 
 

infinitesimal  
pinhole 

 

 

Light from a point travels along a single straight path through a pinhole onto the view plane. The 
object is imaged upside-down on the image plane.  
 

Note:  
We use a right-handed coordinate system for the camera, with the x-axis as the hor-
izontal direction and the y-axis as the vertical direction. This means that the optical 
axis (gaze direction) is the negative z-axis.  

y  

 

-z 
 
 
 

x 
 

z  
 

Here is another way of thinking about the pinhole model. Suppose you view a scene with one eye 
looking through a square window, and draw a picture of what you see through the window:  
 
 
 
 
 
 
 
 
 
 
 
 

(Engraving by Albrecht Durer,¨ 1525). 
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The image you'd get corresponds to drawing a ray from the eye position and intersecting it with 
the window. This is equivalent to the pinhole camera model, except that the view plane is in 
front of the eye instead of behind it, and the image appears rightside-up, rather than upside down. 
(The eye point here replaces the pinhole). To see this, consider tracing rays from scene points 
through a view plane behind the eye point and one in front of it:  
 
 
 
 
 
 
 
 
 
 
For the remainder of these notes, we will consider this camera model, as it is somewhat easier to 
think about, and also consistent with the model used by OpenGL.  
 

Aside:  
The earliest cameras were room-sized pinhole cameras, called camera obscuras. 
You would walk in the room and see an upside-down projection of the outside 
world on the far wall. The word camera is Latin for ―room;‖ camera obscura 
means ―dark room.‖  

 
 
 
 
 

 

18th-century camera obscuras. The camera on the right uses a mirror in the roof to 
project images of the world onto the table, and viewers may rotate the mirror.  

 

6.3 Camera Projections 
 
Consider a point p¯  in 3D space oriented with the camera at the origin, which we want to project 
onto the view plane. To project py  to y, we can use similar triangles to get y  = f 

py . This is  
pz 

perspective projection. 
 
Note that f < 0, and the focal length is |f |. 
 
In perspective projection, distant objects appear smaller than near objects: 
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p
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y   

p
y 

 

z 
f  

pinhole image 
 

 

Figure 1: *  
Perspective projection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The man without the hat appears to be two different sizes, even though the two images of him 
have identical sizes when measured in pixels. In 3D, the man without the hat on the left is about 
18 feet behind the man with the hat. This shows how much you might expect size to change due 
to perspective projection. 

 

6.4 Orthographic Projection 
 

For objects sufficiently far away, rays are nearly parallel,  and variation in pz is insignificant.  
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Here, the baseball players appear to be about the same height in pixels, even though the batter is 
about 60 feet away from the pitcher. Although this is an example of perspective projection, the 
camera is so far from the players (relative to the camera focal length) that they appear to be 
roughly the same size. 
 

In the limit, y = αpy for some real scalar α. This is orthographic projection: 
 

y  
 
 
 

 

z 
 

image 
 
 

6.5 Camera Position and Orientation 
 
Assume camera coordinates have their origin at the ―eye‖ (pi nhole) of the camera, e¯ . 
 

y v  
 

u 
g e  

w 
 

x 
 

z 
 

 

Figure 2: 
 
Let ~g be the gaze direction, so a vector perpendicular to the view plane (parallel to the camera  
z -axis) is  

w~ = −~g (26) 

k~gk    
 
 

 

 36 



 
 

 
  
 

 

We need two more orthogonal vectors ~u and ~v to specify a camera coordinate frame, with ~u 
and ~v parallel to the view plane. It may be unclear how to choose them directly. However, we 
can instead specify an ―up‖ direction. Of course this up directi on will not be perpendicular to the 

gaze direction.  

Let 
~

t be the ―up‖ direction (e.g., toward the sky so  
~

t = (0, 1, 0)). Then we want ~v to be the closest 
~ ~ 

vector in the viewplane to t.  This is really just the projection of t onto the view plane.  And of  
course, ~u must be perpendicular to ~v and w~. In fact, with these definitions it is easy to show that  ~u 

~    ~  

must also be perpendicular to t, so one way to compute ~u and ~v from t and ~g is as follows:  
 ~     

~u = t × w~ ~v = w~ × ~u (27) ~     

 kt × w~k      

Of course, we could have use many different ―up‖ directions, so long as 
~

t × w~ =6 0. 
 
Using these three basis vectors, we can define a camera coordinate system, in which 3D points 
are represented with respect to the camera's position and orientation. The camera coordinate 
system has its origin at the eye point e¯  and has basis vectors ~u, ~v, and w~, corresponding to 
the x, y, and z axes in the camera's local coordinate system. This explains why we chose w~ to 
point away from the image plane: the right-handed coordinate system requires that z (and, hence, 
w~) point away from the image plane.  
Now that we know how to represent the camera coordinate frame within the world coordinate 
frame we need to explicitly formulate the rigid transformation from world to camera coordinates. 
With this transformation and its inverse we can easily express points either in world coordinates 
or camera coordinates (both of which are necessary).  
To get an understanding of the transformation, it might be helpful to remember the mapping from 
points in camera coordinates to points in world coordinates. For example, we have the following 
correspondences between world coordinates and camera coordinates: Using such correspondences 
 

Camera coordinates (xc, yc, zc) World coordinates (x, y, z) 
(0, 0, 0) e¯  

(0, 0, f ) e¯ + f w~  
(0, 1, 0) e¯ + ~v  
(0, 1, f ) e¯ + ~v + f w ~ 

  

 

it is not hard to show that for a general point expressed in camera coordinates as p¯
c
 = (xc, yc, 

zc), the corresponding point in world coordinates is given by 
 

p¯
w

    = e¯ + x c~u + yc~v + zcw~ (28) 
=  cw ¯  + e¯.   

(29) =  ~u ~v  w~ p¯
c
 + e¯  

 M p
c 

 (30) 
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where w~ = u2 v2 w2  (31) 
Mcw =   ~u   ~v  

   u1 v1 w1   

   u3 v3 w3    
Note: We can define the same transformation for points in homo geneous coordinates: 

Mˆcw = ~0
T 

1 . 
 Mcw e¯   

 
 

 
Now, we also need to find the inverse transformation, i.e., fr om world to camera coordinates. 
Toward this end, note that the matrix Mcw is orthonormal. To see this, note that vectors ~u, ~v 
and, w~ are all of unit length, and they are perpendicular to one another. You can also verify this 
by computing Mcw

T
 Mcw . Because Mcw is orthonormal, we can express the inverse 

transformation (from camera coordinates to world coordinates) as 
 

    p¯
c 
 =   Mcw

T
 (p¯

w
 − e¯)    

         w ¯    

      =   Mwcp¯  − d ,   
 

 
~u

T 

. (why?), and d
¯

 = Mcw
T
 e¯ . 

   
where Mwc = Mcw

T
 = ~v

T 
   

  w~
T 
 

ˆ 
  

, where 

    
   c w     

In homogeneous coordinates, pˆ  = Mwcpˆ      
     

 

 Mwc 

− 

M e¯    

   M
ˆ
v =  ~0

T 1wc    
     

 

 
Mwc 

~  
I −e¯  

 
    =  0  . 

      ~0
T 

1 ~0T 1  
This transformation takes a point from world to camera-centered coordinates. 

 

6.6 Perspective Projection 
 
Above we found the form of the perspective projection using the idea of similar triangles. Here 
we consider a complementary algebraic formulation. To begin, we are given 
 

• a point p¯
c
 in camera coordinates (uvw space), 

 
• center of projection (eye or pinhole) at the origin in camera coordinates, 

 
• image plane perpendicular to the z-axis, through the point (0, 0, f ), with f < 0, and 
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• line of sight is in the direction of the negative z-axis (in camera coordinates), 

we can find the intersection of the ray from the pinhole to p¯
c
 with the view plane. 

   c          c  ¯                

The ray from the pinhole to p¯  is r¯(λ) = λ(p¯  − 0).         
¯  

   
                          c is on The image plane has normal (0, 0, 1) = ~n and contains the point (0, 0, f ) = f . So a point x¯   

the plane when (¯x  

c ¯    c     c 

, y 

c c 

), then the plane satisfies  z 

c 

− f = 0. 

  

 
− f ) · ~n = 0. If 

x¯    = (x  , z    
To find the intersection of the plane z

c
 = f and ray ~r(λ) = λp¯

c
, substitute ~r into the plane equation. 

With p¯
c
 = (p

c 
, p

c
 , p

c
 ), we have λp

c
  = f , so λ∗ = f /p

c
 , and the intersection is    

x y  z z            z            

     p
c 

   py
c   p

c
   py

c 
 ≡      

     pzc    pzc  pzc  pzc      

   

~r(λ∗) = f 
x 

, f 
  

, f 
 

= f 
 x 

, 
 

, 1 
 

 

x¯ ∗. 
   

(32)                

The first two coordinates of this intersection  x¯ ∗ determine the image coordinates.   

2D points in the image plane can therefore be written as            

    x∗    f  px
c 
   1   0   0 

 

f c      
   

 
y∗ = 

 

pyc = 0   1   0 

 

p¯ .  

     

   pz
c pz

c      

The mapping from p¯
c
 to (x∗, y∗, 1) is called perspective projection.  

 
Note:  
Two important properties of perspective projection are:  

• Perspective projection preserves linearity. In other words, the projection of a 
3D line is a line in 2D. This means that we can render a 3D line segment by 
projecting the endpoints to 2D, and then draw a line between these points in 
2D. 

 
• Perspective projection does not preserve parallelism: two parallel lines in 3D 

do not necessarily project to parallel lines in 2D. When the projected lines 
inter-sect, the intersection is called a vanishing point, since it corresponds to 
a point infinitely far away. Exercise: when do parallel lines projec t to parallel 
lines and when do they not?  

 
Aside:  
The discovery of linear perspective, including vanishing points, formed a corner-
stone of Western painting beginning at the Renaissance. On the other hand, defying 
realistic perspective was a key feature of Modernist painting.  

 
To see that linearity is preserved, consider that rays from points on a line in 3D through a pinhole all 
lie on a plane, and the intersection of a plane and the image plane is a line. That means to draw 
polygons, we need only to project the vertices to the image plane and draw lines between them. 
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6.7 Homogeneous Perspective  

The mapping of p¯
c
  = (p

c
x, p

c
y , p

c
z ) to x¯ ∗ =  p

f
c (p

c
x, p

c
y , p

c
z ) is just a form of scaling transformation.  

z 

However, the magnitude of the scaling depends on the depth p
c

z . So it's not linear. 
 

Fortunately, the transformation can be expressed linearly (ie as a matrix) in homogeneous 
coordi-nates. To see this, remember that pˆ = (p,¯ 1) = α(p,¯ 1) in homogeneous coordinates. 
Using this property of homogeneous coordinates we can write x¯ ∗ as  

pc xˆ∗ 

= p
c

x, p
c

y , p
c

z , f
z
 .  

 

As usual with homogeneous coordinates, when you scale the homogeneous vector by the inverse 
of the last element, when you get in the first three elements is precisely the perspective 
projection. Accordingly, we can express xˆ∗ as a linear transformation of pˆ

c
: 

xˆ∗ = 0   10 0 pˆ
c 

 M
ˆ
ppˆ

c
. 

 

 

1 0 0 0 
 

   

 0 0 1/f 0  ≡  
  0 0 1 0     

          
Try multiplying this out to convince yourself that this all works. Finally, 

ˆ
 p is called the homogeneous 

perspective matrix, and since 
c 

M pˆ 

MˆpMˆwcpˆw . 

 
 

ˆ w ∗ 

= = Mwcpˆ  , we have xˆ  

 

6.8 Pseudodepth  

After dividing by its last element, xˆ∗ has its first two elements as image plane coordinates, and its 
           ˆ 
third element is f . We would like to be able to alter the homogeneous perspective matrix Mp  so 

that the third element of pz
c 
xˆ∗ encodes depth while keeping the transformation linear. 

 

Idea: Let xˆ  = 
  f 

b 
     

0 0 a pˆ , so z  =
 pzc 

(ap
z 
+

 
b). 

  1 0 0 0      

∗  0 1 0 0 c ∗  f c 
 0 0 1/f  0      

            

            
What should a and b be? We would like to have the following two constraints: 

z  =  1 when pz = F , 
 −  c  

 ∗   1 when pz
c 

= f  
 
 
where f gives us the position of the near plane, and F gives us the z coordinate of the far plane. 
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So −1 = af + b and 1 = af + b F
f
 . Then 2 = b F

f
  − b = b   

2F 

b = f − F . 
 

 

 
f  
F 

 

 
− 1  , and we can find 

 

Substituting this value for b back in, we get −1 = af + f
2
−

F
F , and we can solve for a:  

a  =   −f f − F + 1   
1  2F      

      

F =   −f f − F + f −
− 

1  2F  f F 
         

=   −f f + F   .   
1  f F     

− 
 
These values of a and b give us a function z∗(p

c
z ) that increases monotonically as p

c
z decreases 

(since p
c
z is negative for objects in front of the camera). Hence, z∗ can be used to sort points by 

depth. 
 
Why did we choose these values for a and b? Mathematically, the specific choices do not 
matter, but they are convenient for implementation. These are also the values that OpenGL uses. 
 
What is the meaning of the near and far planes? Again, for convenience of implementation, we will 
say that only objects between the near and far planes are visible. Objects in front of the near plane are 
behind the camera, and objects behind the far plane are too far away to be visible. Of course, this is 
only a loose approximation to the real geometry of the world, but it is very convenient for 
implementation. The range of values between the near and far plane has a number of subtle 
implications for rendering in practice. For example, if you set the near and far plane to be very far 
apart in OpenGL, then Z-buffering (discussed later in the course) will be very inaccurate due to 
numerical precision problems. On the other hand, moving them too close will make distant objects 
disappear. However, these issues will generally not affect rendering simple scenes. (For homework 
assignments, we will usually provide some code that avoids these problems). 

 

6.9 Projecting a Triangle 
 
Let's review the steps necessary to project a triangle from object space to the image plane. 
 

1.  A triangle is given as three vertices in an object-based coordinate frame: p¯
o

1, p¯
o

2, p¯
o

3. 
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y  
 

p2   
 
 
 

 

 
    

x p 
3 

 p 
    1 

  z    

A triangle in object coordinates. 
 

2.  Transform to world coordinates based on the object's transformation:  pˆ
w

 , pˆ
w

 , pˆ
w

 , where 
 

ˆ 1 2 3 

w o   

pˆi = Mow pˆi .    
 

 

 p
w 

c 2 
 

 y   

p1
w 

p3
w 

 
 

 

x 
 

z 
 

The triangle projected to world coordinates, with a camera at c¯ . 
 

c ˆ w 

3.  Transform from world to camera coordinates: pˆi  = Mwcpˆi . 
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p2
c 

 
 

y 
 
 
 

p1
c 

p3
c 

 

x 
 

z 
 

The triangle projected from world to camera coordinates. 
 

∗ ˆ c 

, where 4.  Homogeneous perspective transformation: xˆi = Mppˆi 
M

ˆ
p = 0   10 0 , 

 

 

1 0 0 0 
 

 

 0 0 1/f 0  
  0 0 a b   

         
5.  Divide by the last component:  

x∗ 

y∗ = f 

z∗ 

  
  px

c   

so xˆi
∗ = 

 pc   

 
c y 

 
. 

  pz  
   

f 
  

  

apz + b 
  

   c   

 
 
 

 
p

c
x  

pc 

z 

y .  
pc 
c

z 

apz +b  
p

c
z 

 

(1, 1, 1) 
p2

* 
 

p
* 

1 
 
 
 

(-1, -1, -1) 
 

The triangle in normalized device coordinates after perspective division. 
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Now (x∗, y∗) is an image plane coordinate, and z∗ is pseudodepth for each vertex of the 
triangle. 

 

6.10 Camera Projections in OpenGL 
 
OpenGL's modelview matrix is used to transform a point from object or world space to camera 
space. In addition to this, a projection matrix is provided to perform the homogeneous 
perspective transformation from camera coordinates to clip coordinates before performing 
perspective divi-sion. After selecting the projection matrix, the glFrustum function is used to 
specify a viewing volume, assuming the camera is at the origin: 
 
glMatrixMode(GL_PROJECTION);  
glLoadIdentity();  
glFrustum(left, right, bottom, top, near, far); 
 

For orthographic projection, glOrtho can be used instead: 
 
glOrtho(left, right, bottom, top, near, far); 
 
The GLU library provides a function to simplify specifying a perspective projection viewing 
frus-tum: 
 
gluPerspective(fieldOfView, aspectRatio, near, far); 
 
The field of view is specified in degrees about the x-axis, so it gives the vertical visible angle. 
The aspect ratio should usually be the viewport width over its height, to determine the horizontal 
field of view. 
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7 Visibility 
 
We have seen so far how to determine how 3D points project to the camera's image plane. Ad-
ditionally, we can render a triangle by projecting each vertex to 2D, and then filling in the pixels 
of the 2D triangle. However, what happens if two triangles project to the same pixels, or, more 
generally, if they overlap? Determining which polygon to render at each pixel is visibility. An 
object is visible if there exists a direct line-of-sight to that point, unobstructed by any other ob-
jects. Moreover, some objects may be invisible because they are behind the camera, outside of 
the field-of-view, or too far away. 

 

7.1 The View Volume and Clipping 
 
The view volume is made up of the space between the near plane, f , and far plane, F . It is 
bounded by B, T , L, and R on the bottom, top, left, and right, respectively. 
 
The angular field of view is determined by  f , B, T , L, and R: 
 

T  

 

α 
e f 

 
 
 

B 
 

 

From this figure, we can find that  tan(α) = 
1  T −B 

. 2  |f | 
 
Clipping is the process of removing points and parts of objects that are outside the view volume. 
 
We would like to modify our homogeneous perspective transformation matrix to simplify 
clipping. We have  

ˆ  0 1    0  0  

  1 0    0  0  

Mp =  0 0 − 
 
 

 
 

 
 f f −F f −F 

 
0 0 

  
0 

 

     

− 
     

     1/f   
          

Since this is a homogeneous transformation, it may be multiplied by a constant without changing 
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ˆ                   

its effect. Multiplying Mp by f gives us                 
 0  f   0      0    

 f 0   0      0     

 0   0   − 
        

  
. 

 
f −F  f −F  

 

0 
 

0 
 

1 
 

0 
   

      

f +F 
  

2f F 
   

                   
If we alter the transform in the x and y coordinates to be     

xˆ∗ = 2f       R+L       pˆc, 
0   T −B   T −B    0 

 R−L  0     R−L    0  

 
   2f    T +B       

 0   0  
−
 f −F  f −F 

 0   0    1  0  
      

           f +F  2f F  

                   
then, after projection, the view volume becomes a cube with sides at −1 and +1. This is called 
the canonical view volume and has the advantage of being easy to clip against.  
 

Note:  
The OpenGL command glFrustum(l, r, b, t, n, f) takes the distance to the near and far 
planes rather than the position on the z-axis of the planes. Hence, the n used by 
glFrustum is our −f and the f used by glFrustum is −F . Substituting these values into 
our matrix gives exactly the perspective transformation matrix used by OpenGL.  

 
 
 

7.2 Backface Removal 
 
Consider a closed polyhedral object. Because it is closed, far side of the object will always be invis-
ible, blocked by the near side. This observation can be used to accelerate rendering, by removing  
back-faces.  
 

Example:  
For this simple view of a cube, we have three backfacing polygons, the left side, 
back, and bottom:  

 
 
 
 

 

Only the near faces are visible.  
 
We can determine if a face is back-facing as follows. Suppose we compute a normals ~n for a mesh 
face, with the normal chosen so that it points outside the object For a surface point p¯  on a planar 
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patch and eye point e¯ , if (p¯  − e¯)  · ~n > 0, then the angle between the view direction and 
normal is less than 90

◦
, so the surface normal points away from e¯ . The result will be the same 

no matter which face point p¯  we use. 
 
Hence, if (p¯  − e¯)  · ~n > 0, the patch is backfacing and should be removed. Otherwise, it might 
be visible. This should be calculated in world coordinates so the patch can be removed as early 
as possible.  
 

Note:  
To compute ~n, we need three vertices on the patch, in counterclockwise order, as 
seen from the outside of the object, p¯ 1, p¯ 1, and p¯ 3. Then the unit normal is 

 

(p¯ 2 − p¯1) × (p¯ 3 − p¯1) .   

k(p¯ 2 − p¯1) × (p¯ 3 − p¯1)k  
 
 
Backface removal is a ―quick reject‖ used to accelerate rende ring. It must still be used together 

with another visibility method. The other methods are more expensive, and removing backfaces 
just reduces the number of faces that must be considered by a more expensive method. 

 

7.3 The Depth Buffer 
 
Normally when rendering, we compute an image buffer I(i,j) that stores the color of the 
object that projects to pixel (i, j). The depth d of a pixel is the distance from the eye point to the 
object. The depth buffer is an array zbuf(i, j) which stores, for each pixel (i, j), the depth 
of the nearest point drawn so far. It is initialized by setting all depth buffer values to infinite 
depth: zbuf(i,j)= ∞. 
 
To draw color c at pixel (i, j) with depth d: 
 
if d < zbuf(i, j) then  
putpixel(i, j, c)  
zbuf(i, j) = d  

end 
 
 
When drawing a pixel, if the new pixel's depth is greater than the current value of the depth 
buffer at that pixel, then there must be some object blocking the new pixel, and it is not drawn. 
 
Advantages 
 

• Simple and accurate 
 

• Independent of order of polygons drawn 
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Disadvantages 
 

• Memory required for depth buffer 
 

• Wasted computation on drawing distant points that are drawn over with closer points that 
occupy the same pixel 

 
 
To represent the depth at each pixel, we can use pseudodepth, which is available after the homo-
geneous perspective transformation.

1
 Then the depth buffer should be initialized to 1, since the 

pseudodepth values are between −1 and 1. Pseudodepth gives a number of numerical advantages 
over true depth. 
 

To scan convert a triangular polygon with vertices x¯ 1, x¯ 2, and x¯ 3, pseudodepth values d1, 
d2, and d3, and fill color c, we calculate the x values and pseudodepths for each edge at each 
scanline. Then for each scanline, interpolate pseudodepth between edges and compare the value 
at each pixel to the value stored in the depth buffer. 

 

7.4 Painter's Algorithm 
 
The painter's algorithm is an alternative to depth buffering to attempt to ensure that the closest 
points to a viewer occlude points behind them. The idea is to draw the most distant patches of a 
surface first, allowing nearer surfaces to be drawn over them . 
 
In the heedless painter's algorithm, we first sort faces acco rding to depth of the vertex furthest 
from the viewer. Then faces are rendered from furthest to nearest. 
 
There are problems with this approach, however. In some cases, a face that occludes part of another 
face can still have its furthest vertex further from the viewer than any vertex of the face it occludes. 
In this situation, the faces will be rendered out of order. Also, polygons cannot intersect at all as they 
can when depth buffering is used instead. One solution is to split triangles, but doing this correctly is 
very complex and slow. Painter's algorithm is rarely used directly in practice; however, a data-
structure called BSP trees can be used to make painter's algorithm much more appealing. 

 

7.5 BSP Trees 
 
The idea of binary space partitioning trees (BSP trees) is to extend the painter's algorithm to 
make back-to-front ordering of polygons fast for any eye location and to divide polygons to 
avoid overlaps. 
 

Imagine two patches, T1 and T2, with outward-facing normals ~n1 and ~n2.  
 

1
The OpenGL documentation is confusing in a few places — ―dept h‖ is used to mean pseudodepth, in 

commands like glReadPixels and gluUnProject. 
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If the eye point, e¯ , and T2 are on the same side of T1, then we draw T1 before T2. Otherwise, 
T2 should be drawn before T1. 
 

We know if two points are on the same side of a plane containing T1 by using the implicit 
equation for T1, 
 

f1(¯x)  = (¯x − p¯1) · ~n.  (33) 
 

If x¯  is on the plane, f1(¯x) = 0 . Otherwise, if f1(¯x)  > 0, x¯  is on the ―outside‖ of T1, and if 
f1(¯x) < 0, x¯ is ―inside.‖ 
 
Before any rendering can occur, the scene geometry must be processed to build a BSP tree to 
represent the relative positions of all the facets with respect to their inside/outside half-planes. 
The same BSP tree can be used for any eye position, so the tree only has to be constructed once 
if everything other than the eye is static. For a single scene, there are many different BSP trees 
that can be used to represent it — it's best to try to construct bala nced trees. 
 
The tree traversal algorithm to draw a tree with root F is as follows: 
 
if eye is in the outside half-space of F 
draw faces on the inside subtree of F 
draw F  
draw faces on the outside subtree of F 

else   
draw faces on the outside subtree of F 
draw F (if backfaces are drawn) 
draw faces on the inside subtree of F 

end   

 

7.6 Visibility in OpenGL 
 
OpenGL directly supports depth buffering, but it is often used in addition to other visibility tech-
niques in interactive applications. For example, many games use a BSP tree to prune the amount 
of static map geometry that is processed that would otherwise not be visible anyway. Also, when 
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dealing with blended, translucent materials, these objects often must be drawn from back to front 
without writing to the depth buffer to get the correct appearance. For simple scenes, however, the 
depth buffer alone is sufficient. 
 
To use depth buffering in OpenGL with GLUT, the OpenGL context must be initialized with 
mem-ory allocated for a depth buffer, with a command such as 
 
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); 
 
Next, depth writing and testing must be enabled in OpenGL: 
 
glEnable(GL_DEPTH_TEST); 
 
OpenGL will automatically write pseudodepth values to the depth buffer when a primitive is ren-
dered as long as the depth test is enabled. The glDepthMask function can be used to disable depth 
writes, so depth testing will occur without writing to the depth buffer when rendering a primitive. 
 
When clearing the display to render a new frame, the depth buffer should also be cleared: 
 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
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8 Basic Lighting and Reflection 
 
Up to this point, we have considered only the geometry of how objects are transformed and pro-
jected to images. We now discuss the shading of objects: how the appearance of objects depends, 
among other things, on the lighting that illuminates the scene, and on the interaction of light with 
the objects in the scene. Some of the basic qualitative properties of lighting and object 
reflectance that we need to be able to model include: 
 
Light source - There are different types of sources of light, such as point sources (e.g., a small 
light at a distance), extended sources (e.g., the sky on a cloudy day), and secondary reflections 
(e.g., light that bounces from one surface to another). 
 
Reflectance - Different objects reflect light in different ways. For exam ple, diffuse surfaces ap-
pear the same when viewed from different directions, whereas a mirror looks very different from 
different points of view. 
 
In this chapter, we will develop simplified model of lighting that is easy to implement and fast to 
compute, and used in many real-time systems such as OpenGL. This model will be an 
approxima-tion and does not fully capture all of the effects we observe in the real world. In later 
chapters, we will discuss more sophisticated and realistic models. 

 

8.1 Simple Reflection Models 
 
8.1.1 Diffuse Reflection 
 
We begin with the diffuse reflectance model. A diffuse surfac e is one that appears similarly 
bright from all viewing directions. That is, the emitted light appears independent of the viewing 
location. Let p¯  be a point on a diffuse surface with normal ~n, light by a point light source in 
direction ~s from the surface. The reflected intensity of light is given by: 
 

Ld(p¯)   =   r d I max(0, ~s · ~n) (34)  

where I is the intensity of the light source, rd is the diffuse reflectance (or albedo) of the surface, 

and ~s is the direction of the light source. This equation requires the vectors to be normalized, 

i.e., ||~s|| = 1, ||~n = 1||. 
 
The ~s · ~n term is called the foreshortening term. When a light source projects light obliquely 
at a surface, that light is spread over a large area, and less of the light hits any specific point. For 
example, imagine pointing a flashlight directly at a wall ver sus in a direction nearly parallel: in 
the latter case, the light from the flashlight will spread over a g reater area, and individual points 
on the wall will not be as bright. 
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For color rendering, we would specify the reflectance in colo r (as (rd,R, rd,G, rd,B )), and 
specify the light source in color as well (IR, IG, IB ). The reflected color of the surface is then: 
 

Ld,R(p¯)  = rd,R IR  max(0, ~s · ~n) (35) 

Ld,G(p¯)  = rd,G IG  max(0, ~s · ~n) (36) 

Ld,B (p¯)  = rd,B IB  max(0, ~s · ~n) (37) 
 
8.1.2 Perfect Specular Reflection 

~ 
For pure specular (mirror) surfaces, the incident light from each incident direction di  is reflected 

~            
toward a unique emittant direction de. The emittant direction lies in the same plane as the incident 

~        ~ is equal to that between ~n and direction di and the surface normal ~n, and the angle between ~n and de 

~    ~ ~ ~ 

di. One can show that the emittant direction is given by de = 2(~n · di)~n − di. (The derivation was 
     n        

 d i     
d

e  

              
 

~ 
covered in class). In perfect specular reflection, the light  emitted in direction de can be computed 

~ ~ ~ 

by reflecting de across the normal (as 2(~n · de)~n − de), and determining the incoming light in 
this direction. (Again, all vectors are required to be normalized in these equations). 

 

8.1.3 General Specular Reflection 
 
Many materials exhibit a significant specular component in t heir reflectance. But few are perfect 
mirrors. First, most specular surfaces do not reflect all lig ht, and that is easily handled by intro-
ducing a scalar constant to attenuate intensity. Second, most specular surfaces exhibit some form 
of off-axis specular reflection . That is, many polished and shiny surfaces (like plastics and 
metals) emit light in the perfect mirror direction and in some nearby directions as well. These 
off-axis specularities look a little blurred. Good examples are highlights on plastics and metals. 
 
More precisely, the light from a distant point source in the direction of ~s is reflected into a 
range of directions about the perfect mirror directions m~ = 2(~n · ~s)~n − ~s. One common 
model for this is the following: 
 

~ ~ α 

, (38) Ls(de) = rsI max(0, m~ · de)  
where rs is called the specular reflection coefficient I is the incident power from the point source, 

and α ≥ 0 is a constant that determines the width of the specular highlights. As α increases, the 
effective width of the specular reflection decreases. In the limit as α increases, this becomes a 
mirror. 
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Figure 3: Plot of specular intensity as a function of viewing angle φ. 
 

The intensity of the specular region is proportional to max(0, cos φ)
α

, where φ is the angle between 
~ 

m~ and de. One way to understand the nature of specular reflection is to plot this function, see 
Figure 3. 
 

8.1.4 Ambient Illumination 
 
The diffuse and specular shading models are easy to compute, but often appear artificial. The 
biggest issue is the point light source assumption, the most obvious consequence of which is that 
any surface normal pointing away from the light source (i.e., for which ~s · ~n < 0) will have a 
radiance of zero. A better approximation to the light source is a uniform ambient term plus a 
point light source. This is a still a remarkably crude model, but it's much better than the point 
source by itself. Ambient illumintation is modeled simply by: 

 

La(p¯) = r a Ia (39) 
 

where ra is often called the ambient reflection coefficient, and Ia denotes the integral of the 
uniform illuminant. 

 

8.1.5 Phong Reflectance Model 
 
The Phong reflectance model is perhaps the simplest widely used shading model in computer 
graphics. It comprises a diffuse term (Eqn (81)), an ambient term (Eqn (82)), and a specular term 
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(Eqn (85)):     

~ ~ α 

, (40) L(p,¯ d e)  =  rd Id  max(0, ~s · ~n) + ra Ia + rsIs max(0, m~ · de)  
where 
 

• Ia, Id, and Ir are parameters that correspond to the power of the light sources for the 
ambient, diffuse, and specular terms; 

 
• ra, rd and rs are scalar constants, called reflection coefficients, that d etermine the relative 

magnitudes of the three reflection terms; 
 

• α determines the spread of the specurlar highlights; 
 

• ~n is the surface normal at p¯ ; 
 

• ~s is the direction of the distant point source; 
 

• m~ is the perfect mirror direction, given ~n and ~s ; and 
~ 

• and de is the emittant direction of interest (usually the direction of the camera). 
 

In effect, this is a model in which the diffuse and specular components of reflection are due to 
incident light from a point source. Extended light sources and the bouncing of light from one 
surface to another are not modeled except through the ambient term. Also, arguably this model 
has more parameters than the physics might suggest; for example, the model does not constrain 
the parameters to conserve energy. Nevertheless it is sometimes useful to give computer graphics 
practitioners more freedom in order to acheive the appearance they're after. 

 

8.2 Lighting in OpenGL 
 
OpenGL provides a slightly modified version of Phong lightin g. Lighting and any specific 
lights to use must be enabled to see its effects: 
 
glEnable(GL_LIGHTING); // enable Phong lighting 
glEnable(GL_LIGHT0); // enable the first light source 
glEnable(GL_LIGHT1); // enable the second light source 
...    
 
Lights can be directional (infinitely far away) or positiona l. Positional lights can be either point 
lights or spotlights. Directional lights have the w component set to 0, and positional lights have 
w set to 1. Light properties are specified with the glLight functions: 
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GLfloat direction[] = {1.0f, 1.0f, 1.0f, 0.0f};  
GLfloat position[] = {5.0f, 3.0f, 8.0f, 1.0f};  
Glfloat spotDirection[] = {0.0f, 3.0f, 3.0f};  
Glfloat diffuseRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f};  
Glfloat specularRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f}; 

 
// A directional light  
glLightfv(GL_LIGHT0, GL_POSITION, direction); 
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseRGBA); 
glLightfv(GL_LIGHT0, GL_SPECULAR, specularRGBA); 

 
// A spotlight  
glLightfv(GL_LIGHT1, GL_POSITION, position); 
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuseRGBA); 
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, 
spotDirection); glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 
45.0f); glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 30.0f); 
 
OpenGL requires you to specify both diffuse and specular components for the light source. This 
has no physical interpretation (real lights do not have ―dif fuse‖ or ―specular‖ properties), but 

may be useful for some effects. The glMaterial functions are used to specify material 
properties, for example: 
 
GLfloat diffuseRGBA = {1.0f, 0.0f, 0.0f, 1.0f}; 
GLfloat specularRGBA = {1.0f, 1.0f, 1.0f, 1.0f}; 
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseRGBA); 
glMaterialfv(GL_FRONT, GL_SPECULAR, specularRGBA); 
glMaterialf(GL_FRONT, GL_SHININESS, 3.0f); 
 
Note that both lights and materials have ambient terms. Additionally, there is a global ambient 
term: 
 
glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight); 
glMaterialfv(GL_FRONT, GL_AMBIENT, ambientMaterial); 
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientGlobal); 
 
The material has an emission term as well, that is meant to model objects that can give off their 
own light. However, no light is actually cast on other objects in the scene. 
 
glMaterialfv(GL_FRONT, GL_EMISSION, em); 
 
The global ambient term is multiplied by the current material ambient value and added to the 
material's emission value. The contribution from each light is then added to this value. 
 
When rendering an object, normals should be provided for each face or for each vertex so that 
lighting can be computed: 
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glNormal3f(nx, ny, nz);  
glVertex3f(x, y, z); 
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9 Shading 
 
Goal: To use the lighting and reflectance model to shade facets of a p olygonal mesh — that is, 
to assign intensities to pixels to give the impression of opaque surfaces rather than wireframes. 
 
Assume we're given the following: 
 

• e¯
w

 - center of projection in world coordinates 
 

¯ w 

• l  - point light source location 
 

• Ia, Id - intensities of ambient and directional light sources 
 

• ra, rd, rs - coefficients for ambient, diffuse, and specular reflection  s 
 

• α - exponent to control width of highlights 

 

9.1 Flat Shading 
 
With flat shading , each triangle of a mesh is filled with a single color. 
 

For a triangle with counterclockwise vertices p¯ 1, p¯ 2, and p¯ 3, as seen from the outside, let the 

midpoint be p¯ =  
1 

(p¯ 1 + p¯ 2  + p¯ 3) with normal ~n  =  ( p¯ 2−p¯ 1)×(p¯ 3−p¯ 1) 
.  Then we may find the 3 k(p¯ 2−p¯ 1)×(p¯ 3−p¯ 1)k 

intensity at p¯  using the Phong model and fill the polygon with that:   

      
E 

 ˜ ˜  ˜ α 

(41)       =   Iara + rdId max(0, ~n · ~s) + rsId max(0, ~r · ~c)  , 
¯       

w 
     

 l w −p¯           
      e¯   −p¯       

where ~s = 
 

, ~c = 
 

, and ~r = −~s + 2(~s · ~n)~n. 
    

k
¯

l
w

 −p¯k  ke¯
w

 −p¯k       
Flat shading is a simple approach to filling polygons with col or, but can be inaccurate for 
smooth surfaces, and shiny surfaces. For smooth surfaces—which ar e often tesselated and 
represented as polyhedra, using flat shading can lead to a very strong faceti ng effect. In other 
words, the surface looks very much like a polyhedron, rather than the smooth surface it's 
supposed to be. This is because our visual system is very sensitive to variations in shading, and 
so using flat shading makes faces really look flat. 

 

9.2 Interpolative Shading 
 
The idea of interpolative shading is to avoid computing the full lighting equation at each pixel 
by interpolating quantites at the vertices of the faces. 
 

Given vertices p¯ 1, p¯ 2, and p¯ 3, we need to compute the normals for each vertex, compute the 
radi-ances for each vertex, project onto the window in device coordinates, and fill the polygon 
using scan conversion. 
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There are two methods used for interpolative shading: 
 

Gouraud Shading The radiance values are computed at the vertices and then linearly interpo-
lated within each triangle. This is the form of shading implemented in OpenGL. 

 
Phong shading The normal values at each vertex are linearly interpolated within each 

triangle, and the radiance is computed at each pixel. 
 
Gouraud shading is more efficient, but Phong shading is more a ccurate. When will Gouraud 
shad-ing give worse results? 

 

9.3 Shading in OpenGL 
 
OpenGL only directly supports Gouraud shading or flat shadin g. Gouraud is enabled by default, 
computing vertex colors, and interpolating colors across triangle faces. Flat shading can be 
enabled with glShadeModel(GL FLAT). This renders an entire face with the color of a single 
vertex, giving a faceted appearance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Left: Flat shading of a triangle mesh in OpenGL. Right: Gouraud shading. Note that the mesh 

appears smooth, although the coarseness of the geometry is visible at the silhouettes of the mesh. 
 

 
With pixel shaders on programmable graphics hardware, it is possible to achieve Phong shading 
by using a small program to compute the illumination at each pixel with interpolated normals. It 
is even possible to use a normal map to assign arbitrary normals within faces, with a pixel shader 
using these normals to compute the illumination. 
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10 Texture Mapping 
 

10.1 Overview 
 
We would like to give objects a more varied and realistic appearance through complex variations 
in reflectance that convey textures. There are two main sourc es of natural texture: 
 

• Surface markings — variations in albedo (i.e. the total light reflected from ambient and 
diffuse components of reflection), and 

 
• Surface relief — variations in 3D shape which introduces loc  al variability in shading. 

 
We will focus only on surface markings.  
 
 
 
 
 
 
 
 
 
 
 
 

Examples of surface markings and surface relief 
 

 

These main issues will be covered: 
 

• Where textures come from, 
 

• How to map textures onto surfaces, 
 

• How texture changes reflectance and shading, 
 

• Scan conversion under perspective warping, and 
 

• Aliasing 

 

10.2 Texture Sources 
 
10.2.1 Texture Procedures 
 
Textures may be defined procedurally. As input, a procedure r equires a point on the surface of 
an object, and it outputs the surface albedo at that point. Examples of procedural textures include 
checkerboards, fractals, and noise. 
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A procedural checkerboard pattern applied to a teapot. The checkerboard texture comes from the 
OpenGL programming guide chapter on texture mapping. 

 

10.2.2 Digital Images 
 

To map an arbitrary digital image to a surface, we can define te xture coordinates (u, v) ∈ [0, 1]
2
. 

For each point [u0, v0] in texture space, we get a point in the corresponding image. 

 

(0, 1) (1, 1)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(0, 0) (1, 0) 
 

Texture coordinates of a digital image 

 

10.3 Mapping from Surfaces into Texture Space 
 

For each face of a mesh, specify a point (µi, νi) for vertex p¯ i. Then define a continuous 
mapping from the parametric form of the surface s¯(α, β) onto the texture, i.e. define m such 
that (µ, ν) = m(α, β).  
 

Example: 
~ 

For a planar patch s¯(α, β) = p¯ 0 + α~a + βb, where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. 
Then we could use µ = α and ν = β.  
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Example: 

For a surface of revolution, s¯(α, β) = (cx(α) cos(β), cx(α) sin(β), cz (α)). So let 
0 ≤ α ≤ 1 and 0 ≤ β ≤ 2π. 
Then µ = α and ν = β/2π.  

 
(1, 1)  

 
 
 
 
 
 
 
 
 
 

3D surface Texture space Image 
 
 

10.4 Textures and Phong Reflectance 
 
Scale texture values in the source image to be in the range 0 ≤ τ ≤ 1 and use them to scale the 
reflection coefficients rd and ra. That is, 
 
 

r˜d = τ rd, 

r˜a = τ ra. 
 
We could also multiply τ by the specular reflection, in which case we are simply scalin g E from 
the Phong model. 

 

10.5 Aliasing 
 
A problem with high resolution texturing is aliasing, which occurs when adjacent pixels in a ren-
dered image are sampled from pixels that are far apart in a texture image. By down-sampling— 
reducing the size of a texture—aliasing can be reduced for fa r away or small objects, but then 
textured objects look blurry when close to the viewer. What we really want is a high resolution 
texture for nearby viewing, and down-sampled textures for distant viewing. A technique called 
mipmapping gives us this by prerendering a texture image at several different scales. For 
example, a 256x256 image might be down-sampled to 128x128, 64x64, 32x32, 16x16, and so 
on. Then it is up to the renderer to select the correct mipmap to reduce aliasing artifacts at the 
scale of the rendered texture. 
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An aliased high resolution texture image (left) and the same texture after mipmapping (right) 

 

10.6 Texturing in OpenGL 
 
To use texturing in OpenGL, a texturing mode must be enabled. For displaying a 2D texture on 
polygons, this is accomplished with 
 
glEnable(GL_TEXTURE_2D); 
 
The dimensions of texture in OpenGL must be powers of 2, and texture coordinates are 
normalized, so that (0, 0) is the lower left corner, and (1, 1) is always the upper right corner. 
OpenGL 2.0, however, does allow textures of arbitrary size, in which case texture coordinates 
are based on the original pixel positions of the texture. 
 
Since multiple textures can be present at any time, the texture to render with must be selected. 
Use glGenTextures to create texture handles and glBindTexture to select the texture with a 
given handle. A texture can then be loaded from main memory with glTexImage2D For example: 
 
GLuint handles[2];  
glGenTextures(2, handles); 

 
glBindTexture(GL_TEXTURE_2D, handles[0]);  
// Initialize texture parameters and load a texture with glTexImage2D 

 
glBindTexture(GL_TEXTURE_2D, handles[1]);  
// Initialize texture parameters and load another texture 
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There are a number of texture parameters that can be set to affect the behavior of a texture, using 
glTexParameteri. For example, texture wrap repeating can be enabled to allow a texture to be 
tiled at the borders, or the minifying and magnifying functions can be set to control the quality of 
textures as they get very close or far away from the camera. The texture environment can be set with 
glTexEnvi, which controls how a texture affects the rendering of the primitives it is attached to. An 
example of setting parameters and loading an image follows: 
 
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP) 
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, imageWidth, imageHeight, 

0, GL_RGB, GL_UNSIGNED_BYTE, imagePointer); 
 

Mipmaps can be generated automatically by using the GLU function gluBuild2DMipmaps in-
stead of glTexImage2D. 
 
Once a texture is bound and texturing is enabled, texture coordinates must be supplied for each 
vertex, by calling glTexCoord before glVertex: 
 
glTexCoord2f(u, v);  
glVertex3f(x, y, z); 
 
When textures are no longer needed, they can be removed from the graphics hardware memory 
with 
 
glDeleteTextures(2, handles); 
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11 Basic Ray Tracing 
 

11.1 Basics 
 

• So far, we have considered only local models of illumination; they only account for 
incident light coming directly from the light sources. 

 
• Global models include incident light that arrives from other surfaces, and lighting effects 

that account for global scene geometry. Such effects include: 
 

–  Shadows 
 

–  Secondary illumination (such as color bleeding) 
 

–  Reflections of other objects, in mirrors, for example 
 

• Ray Tracing was developed as one approach to modeling the properties of global illumina-
tion. 

 
• The basic idea is as 

follows: For each pixel: 
 

– Cast a ray from the eye of the camera through the pixel, and find t he first surface hit 
by the ray. 

 
– Determine the surface radiance at the surface intersection with a combination of local 

and global models. 
 

–  To estimate the global component, cast rays from the surface point to possible incident 
directions to determine how much light comes from each direction.  This leads to a 

recursive form for tracing paths of light backwards from the surface to the light sources.  
 

Aside:  
Basic Ray Tracing is also sometimes called Whitted Ray Tracing, after its inventor, 
Turner Whitted.  

 
Computational Issues 
 

• Form rays. 
 

• Find ray intersections with objects. 
 

• Find closest object intersections. 
 

• Find surface normals at object intersection. 
 

• Evaluate reflectance models at the intersection. 
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11.2 Ray Casting 
 
We want to find the ray from the eye through pixel  (i, j). 
 

• Camera Model  
e¯

W
  is the origin of the camera, in world space. 

~u, ~v, and w~ are the world space directions corresponding to the ~x, ~y, and ~z axes in eye space. 

The image plane is defined by (p¯  − r¯)  · w~ = 0, or r¯ +  a~u + b~v, where r¯ =  e¯
W

 + f w~. 

• Window  
A window in the view-plane is defined by its boundaries in came ra coordinates: wl, wr , wt, 
and wb. (In other words, the left-most edge is the line (wl, λ, f ).) 

 
• Viewport  

Let the viewport (i.e., output image) have columns 0...nc − 1 and rows 0...nr − 1. (0, 0) is 
the upper left entry.  
The camera coordinates of pixel (i, j) are as follows: 

 

p¯
C

i,j  = (wl + i u, wt + j v, f ) 
 

u = wr − wl 
nc − 1  

v = wb − wt 
nr − 1  

In world coordinates, this is: 
p¯ i,j  = ~u ~v w~ p¯ i,j + e¯  

W | | | CW 

 | | |   
• Ray: Finally, the ray is then defined in world coordinates as fo llows:  

W ~ 
r¯(λ) = p¯i,j + λdi,j  

~ W W  
where di,j = p¯ i,j − e¯  . For λ > 0, all points on the ray lie in front of the viewplane along a 
single line of sight. 

 

11.3 Intersections 
~ 

In this section, we denote a ray as r¯(λ) = a¯ +  λd, λ > 0. 
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11.3.1 Triangles 
 

Define a triangle with three points, p¯ 1, p¯ 2, and p¯ 3. Here are two ways to solve for the ray-
triangle intersection. 
 

• Intersect r¯(λ) with the plane (p¯  − p¯ 1) · ~n = 0 for ~n = (p¯ 2 − p¯ 1) × (p¯ 3 − p¯ 1) by 
substituting r¯(λ) for p¯ and solving for λ. Then test the half-planes for constraints. For example: 

 
    ~     

   (¯a + λd − p¯1) · ~n = 0    
   

λ∗ = (p¯ 1 − a¯) · ~n 
 

   
   ~    
         

     d · ~n    
 ~    ~   

What does it mean when d · ~n = 0? What does it mean when d · ~n = 0 and (p¯ 1 − a¯)  · ~n = 0? 
• Solve for α and β where p¯(α, β)p¯1  + α(p¯2  − p¯1) + β(p¯ 3  − p¯1), i.e. ~ 

r¯(λ)  =  a¯ + λd = 

p¯ 1 + α(p¯2 − p¯1) + β(p¯3 − p¯1). This leads to the 3x3 system    
 (p¯ 2 

| 
p¯ 1)  (p¯ 3 

| 
p¯ 1)   d~

|
β = (p¯ 1  a¯)  

− 

     α    

|−  − |− |λ  −   
Invert the matrix and solve for α, β, and λ. The intersection is in the triangle when the 
following conditions are all true:  

α ≥ 0  
β ≥ 0  

α + β ≤ 1 
 

11.3.2 General Planar Polygons 
 
For general planar polygons, solve for the intersection with the plane. Then form a ray s(t) in the 
plane, starting at the intersection p¯(λ∗). Measure the number of intersections with the polygon 
sides for t > 0. If there is an even number of intersections, the intersection is inside. If the 
number of intersection is odd, it is outside.  
 

 

Aside:  
This is a consequence of the Jordan Curve Theorem. As related to this problem, it 
states that two points are both inside or both outside when the number of 
intersections on a line between them is even.  
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11.3.3 Spheres 
 

Define the unit sphere centered at  c¯  by ||p¯  − c¯||
2
  = 1. 

Substitute a point on the ray r¯(λ) into this equation: 
~ ~ 

(¯a + λd − c¯) · (¯a + λd − c¯) − 1 = 0 
 
Expand this equation and write it in terms of the quadratic form: 
 

Aλ
2
 + 2Bλ + C = 0 

~ ~ 

A = d · d 
~ 

B = (¯a − c¯) · d  
C = (¯a − c¯) · (¯a − c¯) − 1 

 
The solution is then: 

−2B ± 
√      

√ 

    
     

 

    

λ = 
4B

2
 − 4AC 

= 
 B D 

, D = B
2  

AC 
2A −A ± A −      

If D < 0, there are no intersections. If D = 0, there is one intersection; the ray grazes the sphere. 
If D > 0, there are two intersections with two values for λ, λ1 and λ2. 
 
When D > 0, three cases of interest exist: 
 

• λ1  < 0 and λ2  < 0. Both intersections are behind the view-plane, and are not visible. 
 

• λ1  > 0 and λ2  < 0. The p¯(λ1) is a visible intersection, but p¯(λ1) is not. 
 

• λ1 > λ2 and λ2 > 0. Both intersections are in front of the view-plane. p¯(λ2) is the closest 
intersection. 

 

11.3.4 Affinely Deformed Objects 
 
Proposition: Given an intersection method for an object, it is easy to intersect rays with affinely 
deformed versions of the object. We assume here that the affin e transformation is invertible. 
 

• Let F (y¯) = 0  be the deformed version of 

i.e. F (y¯) =  f (A
−1

(y¯  − 
~

t)) = 0, so F (y¯)  

 

f (¯x) = 0 , where y¯ = Ax¯ + 
~

t. 
= 0 iff f (¯x) = 0 . 

~ 

• Given an intersection method for f (¯x) = 0 , find the intersection of r¯(λ) = a¯ + λd and F 
(y¯) = 0 , where λ > 0. 

 
• Solution:  Substitute r¯(λ) into the implicit equation f = F (y¯) : 

 
=(  −1   ~ 

A  (  ̄+     

F (¯r(λ))   =   f   r¯ (λ) − t 

 f −1 a  ~  ~ 
 A   λd 

− t)) 

= 
   ′  ~′  
 f (¯a  + λd )  

=   f (¯r
′
(λ))   
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where 

a¯  
′ = −1  ~    

 A (¯a − t)    
  ~′  −1 ~    

  d = A d    
     ′ ′ ~′ 

where λ > 0. i.e. intersecting F (y¯)  with r¯(λ) is like intersecting f (x) with r¯ (λ) = a¯   + λd 
The value of λ found is the same in both cases. 

 

• Exercise: Verify that, at the solution λ∗, with an affine deformation y¯ =  Ax¯ +  
~

t, that 

r¯(λ∗) = Ar¯
′
(λ∗) + 

~
t. 

 
11.3.5 Cylinders and Cones 
 

A right-circular cylinder may be defined by x
2
 + y

2
  = 1 for |z| ≤ 1. A cone may be defined by 

x
2
 + y

2
 − 

1
4 (1 − z

2
) = 0 for 0 ≤ z ≤ 1. 

 

• Find intersection with ‖quadratic wall,‖ ignoring constra ints on z, e.g. using x
2
 + y

2
 = 1 

or x
2
 + y

2
 − 

1
4 (1 − z

2
) = 0. Then test the z component of p¯(λ∗) against the constraint 

on z, e.g. z ≤ 1 or z < 1.  
• Intersect the ray with the planes containing the base or cap (e.g. z = 1 for the cylinder). 

Then test the x and y components of p¯(λ∗) to see if they satisfy interior constraints (e.g. 
x

2
 + y

2
 < 1 for the cylinder). 

 
• If there are multiple intersections, then take the intersection with the smallest positive λ 

(i.e., closest to the start of the ray). 
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11.4 The Scene Signature 
 
The scene signature is a simple way to test geometry intersection methods. 
 

• Create an image in which pixel (i, j) has intensity k if object k is first object hit from ray 
through (i, j). 

 
• Each object gets one unique color.  

 
Note:  
Pseudo-Code: Scene Signature 

 

< Construct scene model = { obj, (A, 
~

t), objID } > sig: 
array[nc, nr] of objID  
for j = 0 to nr-1 (loop over rows)  

for i = 0 to nc-1 (loop over columns) 
< Construct ray ~rij (λ) = p¯ ij + λ(p¯ij − e¯)  through pixel p¯ ij > 
λi,j  ← ∞ 
loop over all objects in scene, with object identifiers objID k 

< find  λ∗ for the closest intersection of the ray ~rij (λ) and the object > 
if λ∗ > 0  and λ∗ < λi,j  then 

λi,j ← λ∗ 

sig[i,j].objID  ← objIDk 
end if  

end loop  
end for  

end for  

 

11.5 Efficiency 
 
Intersection tests are expensive when there are large numbers of objects, and when the objects 
are quite complex! Fortunately, data structures can be used to avoid testing intersections with 
objects that are not likely to be significant. 
 
Example: We could bound a 3D mesh or object with a simple bounding volume (e.g. sphere or 
cube). Then we would only test intersections with objects if there exists a positive intersection 
with the bounding volume. 
 
Example: We could project the extent onto the image plane so you don't need to cast rays to 
determine potential for intersections. 
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11.6 Surface Normals at Intersection Points 
 
Once we find intersections of rays and scene surfaces, and we s elect the first surface hit by the 
ray, we want to compute the shading of the surface as seen from the ray. That is, we cast a ray 
out from a pixel and find the first surface hit, and then we want to know ho w much light leave 
the surface along the same ray but in the reverse direction, back to the camera.  
Toward this end, one critical property of the surface geometry that we need to compute is the 
surface normal at the hit point. 
 

• For mesh surfaces, we might interpolate smoothly from face normals (like we did to get 
normals at a vertex). This assumes the underlying surface is smooth. 

 
• Otherwise we can just use the face normal. 

 
• For smooth surfaces (e.g. with implicit forms f (p¯) = 0  or parametric forms s(α, β)), 

either take  
  ~n =  ∇f (p¯)     

or 
||∇f (p¯)||  

 

    
    

∂s 
× 

∂s 
   

    

 

   

 ~n =  ∂α ∂β  .  
   

∂s 

× 
∂s 

|| 

 

 

|| 
  

 ∂α ∂β   

11.6.1   Affinely-deformed surfaces.             

Let f (p¯) = 0  be an implicit surface, and let Q(p¯) =      ~  
Ap¯ + t be an affine transformation, where  A 

is invertible. The affinely-deformed surface is          

−1       −1  ~ 

(42) F (q¯) = f (Q  (p¯)) = f (A  (p¯ − t)) = 0 
A normal of F at a point q¯  is given by             
  A

−T
 ~n       (43)  

||A
−T

 ~n|| 
   

     
where A

−T
  = (A

−1
)
T

  and ~n is the normal of f at p¯ =  Q
−1

(q¯) .   
 

Derivation:  
Let s¯ =  r¯(λ∗) be the intersection point, and let (p¯  − s¯)  · ~n = 0 be the tangent 
plane at the intersection point. We can also write this as: 

 

  (p¯ − s¯)
T
 ~n = 0   (44) 

~       
Substituting in q¯ =  Ap¯ +  t and solving gives:    

T 

~n 

−1 ~ T 

~n (45) (p¯ − s¯) =   (A (q¯ − t) − s¯) 
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= (q¯ − (As¯ + 
~

t))
T
 A

−T
 ~n 

 
In other words, the tangent plane at the transformed point has normal 
passes through point (As¯ +  

~
t). 

preserved so the tangent plane on the deformed surface is given by (A
−1 

D . 
 

This is the equation of a plane with unit normal A −T ~n .  

||A −T ~n|| 
    

 

 

(46) 
 

A
−T

 ~n and 

 

11.7 Shading 
~ 

Once we have cast a ray through pixel p¯ i,j  in the direction di,j , and we've found the closest hit 
point p¯  with surface normal ~n, we wish to determine how much light leaves the surface at p¯  into 

~ 

the direction −di,j (i.e., back towards the camera pixel). Further we want reflec t both the light 
from light sources that directly illuminate the surface as well as secondary illumination, where 
light from other surfaces shines on the surface at p¯ . This is a complex task since it involves all 
of the ways in which light could illuminate the surface from all different directions, and the 
myriad ways such light interacts with the surface and it then emitted or reflected by the surface. 
Here we will deal first with the simplest case, known widely as Whitted Ray Tracing.  
 

Aside:  
First, note that if we were to ignore all secondary reflection , then we could just com-
pute the Phong reflectance model at p¯  and then color the pixel with that value. Such 
scenes would look similar to those that we have rendered using shading techniques 
seen earlier in the course. The main differences from earlier rendering techniques are 
the way in which hidden surfaces are handled and the lack of interpolation. 

 

 

11.7.1 Basic (Whitted) Ray Tracing 
 

In basic ray tracing we assume that that the light reflected fr om the surface is a combination of the 
reflection computed by the Phong model, along with one com ponent due to specular secondary 
reflection. That is, the only reflection we consider is that du e to perfect mirror reflection. We only 
consider perfect specular reflection for computationa l efficiency; i.e., rather than consider secondary 
illumination at p¯  from all different directions, with perfect specular reflec tion we know 

~ 

that the only incoming light at p¯  that will be reflected in the direction  −di,j will be that coming from 
~ ~ 

the corresponding mirror direction (i.e., m~s  = −2(di,j · ~n))~n + di,j ). We can find out how much 

light is incoming from direction m~s be casting another ray into that direction from p¯  and calculating 
the light reflected from the first surface hit. Note that we hav e just described a recursive ray tracer; i.e., in 
order to calculate the reflectance at a hit point we ne ed to cast more rays and compute the reflectance at 
the new hit points so we can calculate the incom ing light at the original hit point. 
 

In summary, for basic (Whitted) ray tracing, the reflectance m odel calculation comprises: 
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(q¯−
~

t))T ~n = 



 
 

 
  
 

 

• A local model (e.g., Phong) to account for diffuse and off-axis specular reflection 
(highlights) due to light sources. 

 
• An ambient term to approximate the global diffuse components. 

 

• 
~ ~ 

Cast rays from p¯  into direction m~s = −2(di,j ·~n))~n + di,j to estimate ideal mirror reflections 
due to light coming from other ojects (i.e., secondary reflec tion). 

~  
For a ray r(λ) = a¯ +  λd which hits a surface point point p¯  with normal ~n, the reflectance is 
given by  

E = raIa + rdId max(0, ~n · ~s) + rsIs max(0, ~c · m~)
α
 + rg Ispec 

 
where ra, rd, and rs are the reflection coefficients of the Phong model, Ia, Id, and Is are the light 
source intensities for the ambient, diffuse and specular terms of the Phong model, ~s is the light 

~ 

source direction from p¯ , the emittant direction of interest is ~c = −di,j , and m~ = 2(~s · 
~n))~n − ~s is the perfect mirror direction for the local specular reflecti on. Finally, Ispec is the 
light obtained from the recursive ray cast into the direction m~s to find secondary illumination, 
and rg is the reflection coefficient that determines the fraction of secondary illum ination that is 
reflected by the surface at p¯  
 

11.7.2 Texture 
 

• Texture can be used to modulate diffuse and a mbient reflectio n coefficients, as with 
Gouraud shading. 

 
• We simply need a way to map each point on the surface to a point in texture space, as 

above, e.g. given an intersection point p¯(λ∗), convert into parametric form s(α, β) and use 
(α, β) to find texture coordinates (µ, ν). 

 
• Unlike Gouraud shading, we don't need to interpolate (µ, ν) over polygons. We get a new 

(µ, ν) for each intersection point. 
 

• Anti-aliasing and super-sampling are covered in the Distribution Ray Tracing notes. 

 

11.7.3 Transmission/Refraction 
 

• Light that penetrates a (partially or wholly) transparent surface/material is refracted (bent), 
owing to a change in the speed of light in different media. 

 
• Snell's Law governs refraction: 

sin θ1 

= 

 c1 

sin θ2 c2  
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• The index of refraction is the ratio of light speeds c1/c2. For example, the index of refraction 
 

 
for pass ing fro m air to wate r is = 1.3 3, and fo r pass ing from ai r to glass , it is = 

 

1.8. 
 

Note: There is also a wavelength dependence. We ignore this here. 
 

• Example: 
 

– If c2 < c1, light bends towards the normal (e.g. air to water). If c2 < c1, light 
bends away from the normal (e.g. water to air).  

– The critical angle θc, when c2 > c1, is when θ1 → θc and θ2 → 90. Beyond θc, θ1 > 
θc, and total internal reflection occurs. No light enters the mat erial. 

 
• Remarks: 

 
– The outgoing direction is in the plane of the incoming direction and ~n. This is 

similar to the perfect specular direction.  
–  When θ1  = 0, then θ2  = 0, i.e. there is no bending. 

 
• For ray tracing: 

 
–  Treat global transmission like global specular, i.e. cast one ray. 

 
–  Need to keep track of the speed of light in the current medium. 

 

11.7.4 Shadows 
 

• A simple way to include some global effects with minimal work is to turn off local 
reflection when the surface point p¯  cannot see light sources, i.e. when p¯  is in shadow. 

 
• When computing E at p¯ , cast a ray toward the light source, i.e. in the direction s = (l − p¯) . 

 

p¯
W

 (λ) = p¯
W

  + λ(l
W

  − p¯
W

 ) 
 

• Find the first intersection with a surface in the scene. If λ∗ at the first intersection point is 

0 ≤ λ ≤ 1, then there exists a surface that occludes the light source from p¯ .  
–  We should omit diffuse and specular terms from the local Phong model. 

 
–  The surface radiance at p¯  becomes 

 

E = raIa + rg Ispec 
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Note:  
Pseudo-Code: Recursive Ray Tracer 

 

for each pixel (i,j)    

<  ~ ~ > compute ray ~rij (λ) = p¯ ij + λdij where dij  = p¯ ij − ~e 

I ~    
= rayTrace( p¯ ij , dij , 1);   

setpixel(i, j, I)    
end for    
 ~    
rayTrace( a¯ , b, depth)    

 ~    
findFirstHit(  a¯ , b, output var obj, λ, p¯ , ~n)  

if λ > 0  then    
 

I = rtShade(obj, p¯  
~   

 , ~n, −b, depth)   
else  

I = background;  
end if  
return(I)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



npba 
findFirstHit ( ¯ , 

~
 , output var OBJ, λh, ¯ h, ~ h) 

λh = −1; 
loop over all objects in scene, with object identifiers objID k 

< find  λ∗ for the closest legitimate intersection of ray ~rij (λ) and object > 
if ( λh < 0  or λ∗ < λh)  and  λ∗ > 0  then 

λh = λ∗ 
¯ ¯ + λ∗

~ 

ph = a b;  
< determine normal at hit point ~nh 
> OBJ = objIDk 

end if  
end loop 
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Note: 
 

¯  ~  
~

 
rtShade(OBJ, p, n, de, depth) 

/* Local Component */ 
¯ ~w − ¯ λ 

findFirstHit(  p, l p, output var temp, h); 

if 0 < λh < 1  then 
Il = ambientTerm; 

else 
I ¯   ~ ~ 

l = phongModel(p, n, de, OBJ.localparams) 
end if  
/* Global Component */  
if depth < maxDepth  then  

if OBJ has specular reflection  then 
< ~ = −

~ + 2~ · ~  ~ > 

calculate mirror direction ms de n den 
Ispec = rayTrace( p¯ , m~s, depth+1) 
< scale Ispec by OBJ.specularReflCoef  >  

end if  
if OBJ is refractive  then   
 ~ > < calculate refractive direction t 

if not total internal reflection  then  

Iref r = rayTrace( p¯  ~  
, t, depth+1) 

< scale Iref r by OBJ.refractiveReflCoef  > 
end if  

end if  
Ig  = Ispec + Iref r 

else 
Ig  = 0 

end if 
return(Il + Ig )  
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12 Radiometry and Reflection 
 
Until now, we have considered highly simplified models and al gorithms for computing lighting and 
reflection. These algorithms are easy to understand and can b e implemented very efficiently; how-
ever, they also lack realism and cannot achieve many important visual effects. In this chapter, we 
introduce the fundamentals of radiometry and surface reflec tance that underly more sophisticated 
models. In the following chapter, we will describe more advanced ray tracing algorithms that take 
advantage of these models to produce very realistic and simulate many real-world phenomena. 

 

12.1 Geometry of lighting 
 
In our discussion of lighting and reflectance we will make sev eral simplifying assumptions. First, we 
will ignore time delays in light propagation from one place to another. Second, we will assume that 
light is not scattered nor absorbed by the median through which it travels, i.e., we will ignore light 
scattering due to fog. These assumptions allow us to focus on the geometry of lighting; i.e., we can 
assume that light travels along straight lines, and is conserved as it travels (e.g., see Fig. 1).  
 
 

Light Tube 

 
B 

 
A 

 
 
Figure 4: Given a set of rays within a tube, passing through A and B but not the sides of the tube, 
the flux (radiant power) at A along these rays is equal to that at B along the same set of rays. 
 
 
Before getting into the details of lighting, it will be useful to introduce three key geometric con-
cepts, namely, differential areas, solid angle and foreshortening. Each of these geometric 
concepts is related to the dependence of light on the distance and orientation between surfaces in 
a scene that receive or emit light. 

 

Area differentials: We will need to be able describe the amount of lighting that hitting an area 
on a surface or passing through a region of space. Integrating functions over a surface requires 
that we introduce an area differential over the surface, denoted dA. Just as a 1D differential (dx) 
represents an infinitesimal region of the real line, an area d ifferential represents an infinitesimal 
region on a 2D surface.  
 

Example:  

Consider a rectangular patch S in the x − y plane. We can specify points in the patch in 

terms of an x coordinate and a y coordinate, with x ∈ [x0, x1], y ∈ [y0, y1]. We can 
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divide the plane into N M rectangular subpatches, the ij-th subpatch bounded by 

xi ≤ x ≤ xi + x (47) 

yj  ≤ y ≤ yj + y (48) 

where i ∈ [0...N − 1], j ∈ [0...M − 1], x = (x1 − x0)/N and y = (y1 − y0)/M . 

The area of each subpatch is Ai,j  =   x y. In the limit as N → ∞ and M → ∞, 

dA = dxdy  (49)  
 

To compute the area of a smooth surface S, we can break the surface into many 
tiny patches (i, j), each with area Ai,j , and add up these individual areas:  
 X 

(50) Area(S) = Ai,j 

 i,j  

In the planar patch above, the area of the patch is:  

Area(S) =Ai,j  = N M x  y = (x1 − x0)(y1 − y0) (51) 
i,j   

X   
Computing these individual patch areas for other surfaces is difficult. However, 
tak-ing the infinite limit we get the general formula: 

 
Z 

Area(S) = dA (52)  
S 

 
For the planar patch, this becomes: Z Z

 y1 
Z

 x1

 

dA = dxdy = (x1 − x0)(y1 − y0) (53) 
S y0x0  

 
 
 
 
We can create area differentials for any smooth surface. Fortunately, in most radiometry applica-
tions, we do not actually need to be able to do so for anything other than a plane. We will use 
area differentials when we integrate light on the image sensor, which, happily, is planar. 
However, area differentials are essential to many key definitions and conc epts in radiometry. 

 

Solid angle: We need to have a measure of angular extent in 3D. For example, we need to be 
able to talk about what we mean by the field of view of a camera, a nd we need a way to 
quantitfy the width of a directional light (e.g., a spot light). 
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Let's consider the situation in 2D first. In 2D, angular extent is just the angle between two direc-
tions, and we normally specify angular extent in radians. In particular, the angular extent between 
two rays emanating from a point q¯  can be measured using a circle centered at q¯ ; that is, the 
angular extent (in radians) is just the circular arc length l of the circle between the two directions, 
divided by radius r of the circle, l/r (see Fig. 5). For example, the angular extent of an entire circle 
having circumference 2πr is just 2π radians. A half-circle has arclength πr and spans π radians.  
 

l 
r 

 
q  

 
 
 

Figure 5: Angular extent in 2D is given by l/r (radians). 
 
 
In 3D, the corresponding quantity to 2D angular extent is called solid angle. Analogous to the 2D 
case, solid angle is measured as the area a of a patch on a sphere, divided by the squared radius 
of the sphere (Figure 6); i.e., 

ω  = a (54) 
r2   

The unit of measure for solid angle is the steradian (sr). A solid angle of 2π steradians 
corresponds to a hemisphere of directions. The entire sphere has a solid angle of 4π sr. As 
depicted in Figure 2, to find the solid angle of a surface S with respect to a point q¯ , one projects 
S onto a sphere of radius r, centered at q¯ , along lines through q¯ . This gives us a, so we then 
divide by r

2
 to find the solid angle subtended by the surface. Note that the solid angle of a patch 

does not depend on the radius r, since the projected area a is proportional to r
2
. 

 
 
 
 
 
 

q  

 

S  
a 

 

r 
 
Figure 6: The solid angle of a patch S is given by the area a of its projection onto a sphere of radius  

r , divided by the squared radius, r
2
.  

 
 

Note:  
At a surface point with normal ~n, we express the hemisphere of incident and emittant 

~ 

directions in spherical coordinates. That is, directions in the hemisphere d are 
 

~ T 
(55) d = (sin θ cos φ, sin θ sin φ, cos θ)  
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~  
where θ ∈ [0, π/2] denotes the angle between d and the normal, and φ ∈ [−π, π) 
measures the direction projected onto the surface. 

 
With direction expressed in this way one can write the infinit esimal solid angle as 

 
dω = sin θ dθ dφ (56) 

 
The infinitesimal solid angle is an area differential for the  unit sphere. 

 
To see this, note that for θ held fixed, if we vary φ we trace out a circle of radius sin θ 
that is perpendicular to ~n. For a small change dφ, the circular arc has length sin θ 

dφ, and therefore the area of a small ribbon of angular width dθ is just sin θ dθ dφ.  
 

 dθ 
sin θ  

 sin θ dϕ 

θ  

1 dϕ 
 

 
This also allows us to compute the finite solid angle for a a ran ge of visual direction, 

such as θ0 ≤ θ ≤ θ1 and φ0 ≤ φ ≤ φ1. That is, to compute the solid angle we just 
integrate the differential solid angle over this region on a unit sphere (r = 1): 

Z φ1 
Z

 θ1

 

ω = sin θ dθ dφ (57)  
φ0 θ0 

Z φ1
 

  θ1  

(58) = φ0 − cos θ|θ0 dφ 

= (φ1 − φ0)(cos θ0 − cos θ1) (59) 
 

(Assuming we are in the quadrant where this quantity is positive)  
 

Foreshortening: Another important geometric property is foreshortening, the reduction in the 
(projected) area of a surface patch as seen from a particular point or viewer. When the surface 
normal points directly at the viewer its effective size (solid angle) is maximal. As the surface 
normal rotates away from the viewer it appears smaller (Figure 7). Eventually when the normal 
is pointing perpendicular to the viewing direction you see the patch ―edge on‖; so its projection 

is just a line (with zero area). 

 

Putting it all together: Not surprisingly, the solid angle of a small surface patch, with respect to 
a specific viewing location, depends on both on the distanc e from the viewing location to the 
patch, and on the orientation of the patch with respect to the viewing direction. 
 

 79 



 
 

  
    
         

A θ   dA θ    
  q  q   

 
~ A cos θ 

 
dA cos θ 

r 
      
 
Figure 7: Foreshortening in 2D. Left: For a patch with area A, seen from a point q¯ , the patch's 
foreshortened area is approximately A cos θ. This is an approximation, since the distance r 
varies over the patch. The angle θ is the angle between the patch normal and the direction to q¯ . 
Right: For an infinitesimal patch with area dA, the foreshortened area is exactly dA cos θ. 
 
 
 
Let q¯  be the point (such as a light source or a viewer) about which we want to compute solid angle. 
Let p¯  be the location of a small planar surface patch S with area A at distance r = ||q¯  − p¯||  from 
q¯ . Additionally, suppose the surface normal points directly at q¯ (Figure 8). In this case, we can 
imagine drawing a hemisphere about q¯  with radius r, and the projected area a of this patch will be 

approximately A. Hence, the solid angle ω ≈ A/r
2
. In other words, the solid angle is inversely 

proportional to distance squared; a more distant object obscures less of q¯ 's ―field of view.‖ This is 

an approximation, however, since the distance r varies over the patch. Nevertheless, if we consider 

the limit of an infinitesimal patch with area dA, then the solid angle is exactly dω = dA/r
2
. 

 
When the surface normal does not point directly at q¯ , foreshortening plays a significant role. As 
the surface normal rotates away from the direction of q¯  − p¯ , the surface, as viewed from point 
q¯ , becomes smaller; it projects onto a smaller area on a sphere centered at q¯ . sphere. So, we 
say that the area of the patch, as seen from q¯ , is foreshortened. More formally, let θ be the 
angle between the normal ~n and direction, q¯  − p¯ . Then, for our infinitesimal surface with 
area dA, the solid angle subtended by the tilted patch is 

dω = dA cos θ , (60) 
r
2 

   
The cosine term should look familiar; this is the same cosine term used in Lambertian shading 
within the Phong model.  
 
 
 
 
 
 

 

q                                              q  
 
 

¯  
Figure 8: Solid angle of a patch. Left: A patch with normal pointing at l. Right: A patch with 
arbitrary orientation. 
 
 
 
 
 80 



 
 

 
  
 
 

12.2 Elements of Radiometry 
 
The field of radiometry concerns the measurement of light (el ectromagnetic radiation), usually 
restricted to the visible wavelengths, in the range 400-700 nm. Light is often measured in discrete 
units called photons. It is difficult to talk about the number of photons that illuminate a point on a 
surface at a particular time (as it is almost always zero). Instead, we talk about the average number of 
photons in small (infinitesimal) intervals of spac e or time, that is, we talk about photon density, and 
thereby treat light as a continuous quantity rather than a photon count. In effect, we are assuming that 
there is enough light in the scene so that we can treat light as a continuous function of space-time. 
For example, we will talk about the light hitting a specific surface patch as a continuous function 
over the patch, rather than discuss the discrete photons of light. 

 

12.2.1 Basic Radiometric Quantities 
 
Formally, we describe light in terms of radiant energy. You can think of radiant energy as the 
totality of the photons emitted from a body over its entire surface and over the entire period of 
time it emits light. Radiant energy is denoted by Q(t) and measured in Joules (J). You can think 
of radiant energy as describing how much light has been emitted from (or received by) a surface 

up to a time t, starting from some initial time 0. 
2 

 
The main quantity of interest in radiometry is power, that is, the rate at which light energy is 
emitted or absorbed by an object. This time-varying quantity, usually called flux , is measured in 

Joules per second (J · s
−1

). Here we denote flux by Φ(t): 

Φ(t) = dQ(t) (61) 
dt   

 
We can compute the total light that hits a surface up to time t as: 

Z t  
Q(t) = Φ(τ ) dτ (62)  

0 
 
Flux is sufficiently important that we define a special unit of measure for it, namely, watts (W). 
One watt is one Joule per second; so a 50 watt light bulb draws 50J of energy per second. Most 
of this radiant energy is emitted as visible light. The rest is converted to thermal energy (heat). 
Higher wattage means a brighter light bulb. 
 
Not surprisingly, the light received or emitted by an object varies over the surface of the object. 
This is important since the appearance of an object is often based on how the light reflected from  
 

2
Of course, radiant energy depends on wavelength λ, so it is common to express energy as a function of wavelength; 

the resulting density function, Q(λ), is called spectral energy. This is important since different wavelengths are seen as 
different colours. Nevertheless, our next major simplifi cation will be to ignore the dependence of radiant energy on 
wavelength. In computer graphics, colours are controlled by the relative amounts of power in three separate spectral bands, 
namely, Red, Green, and Blue. What we describe in this chapter can be applied to each colour channel. 
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its surface depends on surface position. Formally, light received at the surface of an object, as a 
function of image position is called irradiance. The light emitted from a surface, as a function of 
surface position, is often called radiant exitance (or radiosity). 
 
Irradiance, the incident flux, as a function of surface posit ion p¯ , is denoted by H(p¯) . 
Remember, we cannot talk about the amount of light received at a single point on a surface 
because the number of photons received at a single point is generally zero. Instead, irradiance is 
the spatial density of flux, i.e., the amount of light per unit surface area. The inte gral of 
irradiance over the surface of an object gives us the total incident flux (i.e., received by) th e 
object. Accordingly, irradiance is the spatial derivative of flux. For smooth surfaces we write 
 

H(p¯) =  dΦ  (63) 
dA   

 

where dA refers to differential surface area. Irradiance is just power per unit surface area (W·m
−2

).  
 

Example:   
For a planar patch in the x − y plane, we can write irradiance as a function of (x, y) 
position on the patch. Also, we have dA = dxdy. In this case: 

 d2 Φ 
H(x, y) =   (64) 

  

dxdy  
 
 
 
These terms are all functions of time t, since lighting Φ may change over time t. However, we 
will leave the dependence on time t implicit in the equations that follow for notational simplicity.  
 

Example:  
What is the irradiance, owing to a point light source, on an infinitesimal patch 

¯  

S with area dA? Let's say we have a point light source at l emitting I 
steradian into all directions:  

dΦ = I dω 

 
watts per 
 

(65) 
 

In other words, the amount of light from this source is proportional to solid angle, 
and independent of direction. Our goal is to compute the irradiance H on the patch, 
which can be done by subtitution of formulas from this chapter: 

 

H  = dΦ  = I dω = I dA cos θ =  I cos θ (66) 
dA dA dAr

2  

r
2 

      
¯  

where p¯  is the position of S, r = ||l − p¯|| , and θ is the angle between the surface 
¯  

normal and the vector l − p¯ . This formula illustrates the importance of solid angle: 
the amount of light hitting a surface is proportional to its solid angle with respect to 
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the light source. A distant patch (with large r) receives less light than a nearby patch, 
and a foreshortened patch receives less light than a frontal patch. Furthermore, the 
amount of light hitting the patch is proportional to the intensity I of the light source.  

 

12.2.2 Radiance 
 
Of course the light emitted or received by an object depends on visual direction as well as surface 
position. For example, objects are often illuminated more from above (the sky) than below (the 
ground). As a consequence, when the direction of light propagation is important, we will express flux 
as a function of visual direction. This leads to the centr al quantity in radiometry, namely, radiance. 
Radiance is a measure of the rate at which light energy is emitted from a surface in a particular 
direction. It is a function of position and direction, and it is often denoted by L (or 

~  −1 −2 ), where the L(p,¯ d) ). Formally, it is defined as power per steradian per surface a rea (W · sr  · m 

surface area is defined with respect to a surface patch at 
   ~ 

p¯ that is perpendicular to the direction d. 
 
Normally, one might think of radiance as a measure of the light emitted from a particular surface 
location into a particular direction. The definition above i s more general however. It allows us to 
talk about the light travelling in a particular direction through an arbitrary point in space. In this 
case we are measuring surface area with respect to a virtual surface, but we can talk about 
surface area nonetheless. 
 
When we talk about the light (radiance) emitted from a particular surface into a particular emittant 

~ 

direction de we have to be a little more careful because radiance is defined with respect to a 
surface perpendicular to the emittant direction, which is usually not the same orientation as the 
actual real surface in question. Accordingly, often radiance is defined as power per unit 
foreshortened surface area per solid angle to make explicit the fact that we are using a virtual 
surface and not the real surface to measure area. That is, we are measuring surface area as seen 
by someone looking at the surface from somewhere along a ray in the emittant direction.  
 

de 
     

dA  =  cos θ dAs n   
   

dω 
      

   de  
 
 

θ 

dAs  
dAs  

 

 

Note:  
Computing radiant exitance (radiosity): As mentioned above, radiant exitance is 
the total amount of flux leaving a surface into the entire hemi sphere of emittant di- 
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rections, as a function of surface position. Intuitively, it is the integral of surface 
radiance, but we have to be careful; radiance is defined with r espect to unit area on a 
surface perpendicular to the emittant direction rather than unit area on the real sur-face 
of interest. Before we can integrate radiance we need to specify all radiance quantities 
in terms of unit surface area on the real surface. To do this one needs to  

~ 

multiply radiance for emittant direction de  by the ratio of the surface area normal 
~ 

to de (i.e., dA), to the real surface area, denoted dAs. As discussed above, for an 
infinitesimal patch the ratio of these areas is just the fores hortening factor, i.e., 

 
~ 

(67) dA = cos θ dAs  = ~n · de dAs , 
~ 

where θ is the angle between the unit vectors ~n and de. 
 

Taking this foreshortening factor into account, the relation between radiant exitance 
~ 

E(p¯) and radiance L(p,¯ d) is given by  
Z 

~ ~ 

E(p¯) =  L(p,¯ d) ~n · d dω (68)  
~ 

d∈Ωe  

The domain of integration, Ωe, is the hemisphere of possible emittant directions.  
 

Note:  
Computing Irradiance: Above we showed that the irradiance on an infinitesimal 
surface patch S at point p¯  owing to a point light source at q¯  with radiant 
intensity I is given by 

 

H  = I cos θ (69)  

r
2 

   
 

where r = ||q¯  − p¯||  is the distance between the light source and the surface patch, 
and θ is the angle between the surface normal and the direction of the light source  
from the surface patch, q¯  − p¯ . ~ 
In this case, the radiance at p¯  from the point light source direction d = p¯  − q/r¯ , i.e., 

~ 2 . The factor cos θ is the foreshortening factor to convert from L(p,¯ d) , is simply I /r  
~ 

area perpendicular to the direction d to area on the surface S.  
Accordingly, if we consider radiance at p¯  from the entire hemisphere of possible 
incident directions, then the total irradiance at p¯  is given by  

Z 
~ ~ 

H(p¯) =  L(p,¯ −d) ~n · d dω (70) 
~ 

d∈Ωi 
 

(Note that incident directions here are outward facing from p¯ .)  
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Note:  
Radiance vs. Irradiance. Radiance and irradiance are very similar concepts — both 
describe an amount of light transmitted in space — but it is im portant to recognize the 
distinctions between them. There are several ways of thinking about the difference:  

• Radiance is a function of direction; it is power per foreshortened surface area 
per steradian in a specific direction. Irradiance is inciden t power per surface 
area (not foreshortened); it is not a directional quantity. 

 
• Radiance (W · sr

−1
 · m

−2
) and irradiance (W · m

−2
) have different units.  

• Radiance describes light emitted from a surface. Irradiance describes light in-
cident on a surface. Indeed, from the radiance emitted from one surface we 
can compute the incident irradiance at a nearby surface.  

 
 

 

12.3 Bidirectional Reflectance Distribution Function 
 
We are now ready to explore how to model the reflectance proper ties of different materials. Dif-
ferent objects will interact with light in different ways. Some surfaces are mirror-like, while 
others scatter light in a wide variety of directions. Surfaces that scatter light often look matte, and 
appear similar from different viewing directions. Some objects absorb a significant amount of 
light; the colour of an object is largely a result of which wavelengths it absorbs and which 
wavelengths it reflects. 
 
One simple model of surface reflectance is refered to as the bi directional reflectance distribution 
function (BRDF). The BRDF describes how light interacts with a surface for a relatively wide range 
of common materials. In intuitive terms, it specifies w hat fraction of the incoming light from a given 
incident direction will be reflected toward a given em ittant direction. When multiplied by the 
incident power (i.e., the irradiance), one obtains the desired emittant (i.e., reflected) power. 
 
 ~ ~ 
More precisely, the BRDF is a function of emittant and incident directions de and di. It is defined 

to be the ratio of radiance to irradiance:     

~  ~  L  
(71) ρ(de, di) = H 

 
For most common materials the only way to determine the BRDF is with measurements. That is, 
for a wide range of incident and emittant directions, a material is illuminated from one direction 
while the reflected light is measured from another direction . This is often a tedious procedure. In 
computer graphics it is more common to design (i.e., make up) parametric BRDF formulae, and 
then vary the parameters of such models to achieve the desired appearance. Most parametric 
models are based on analytic models of certain idealized materials, as discussed below. 
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12.4 Computing Surface Radiance 
 
When rendering an image of an object or scene, one wants to know how much light is incident at 
each pixel of the image plane. (In effect, one wants to compute the image irradiance.) 
Fortunately it can be shown that this quantity is linearly related to the scene radiance. In 
particular, for a point on an opaque object in a given visual direction, one simply needs to 
compute the radiance from that point on the surface in the direction of the camera. Based on the 
BRDF model of reflectance, the surface radiance depends on the incident illumination 
(irradiance) at the surface, and the BRDF of course. 
 

 

Point Light Sources 
 
For example, consider a single point source with radiant intensity I. To compute the irradiance at a 
small surface patch we can compute the total flux arriving at the surface, and then divide by the area 
of the surface to find flux per unit area. More precisel y, radiant intensity for the source is given by I 
= dΦ/dω. We multiply by the solid angle subtended by the patch dω to obtain the flux on the surface 
dΦ, and then we divide by the surface area dA to obtain dΦ/dA, that is, irradiance as in Eqn (63). 
For a point light source this was shown above (see Eqn. (66)) to be given by  

~ 

H  =  I ~n · di (72)  
r2 

~ 
where ~n is the unit surface normal, di is the unit vector in the direction of hte light source from 
the surface patch, and r is the distance from the patch to the light source. 
 
We now want to compute the radiance from the surface (e.g., toward the camera). Toward this end, 

~   ~    
we multiply the irradiance H by the BRDF, ρ(de, di), in order to find radiance as a function of the 

emittant direction: 
~ 

 
  

L(p,¯ d
~

e) = ρ(d
~

e, d
~

i) I  
~n · di 

(73) 
r
2 

    
 
This perspective generalizes naturally to multiple light sources. That is, the radiance from a point  
p on a surface in the direction of the camera is the sum of radiances due to individual light 
sources. For J point light sources, at locations lj , with intensities Ij , the radiance is given by 

    L(p,¯ d
~

e) = J ρ(d
~

e, d
~

j ) Ij ~   (74) 
     X         

          r
2 

    
     j=1    j     
             

th  ¯  || th  ~ ¯    j 
= ||  j  −  source, and d j  = (l j  − p¯)/r  where rj l p¯  is the distance to the j      is the incident direction 

of the j source.             
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Extended Light Sources 
 
Many light sources are not infinitesimal point sources. Rathe r, in the general case we need to be 
able to work with extended light sources for which the incident light is a continuous function of 
incident direction. One way to think of this is to let the number of discrete light sources go to 
infinity so that the sum in Eqn (74) becomes an integral. 
 
Here we take a slightly different, but equivalent approach. As discussed above, radiance can be used 
to express the light energy transport through any point in space, in any direction of interest. Thus, 
given a point p¯  on a surface with unit normal ~n, we can express the radiance through p¯  along 

~ ~ 

the hemisphere of possible incident directions as L(p,¯  di) for di ∈ Ωi where Ωi denotes the 
domain of plausible incident directions at p¯ .  
 

Note: 
As above, we can erect a spherical coordinate system at p¯ . Toward this end, let θi 
denote an angle measured from the surface normal, and let φi be an angle in the 
surface tangent plane about the normal relative to some Cartesian x − y coordinate 
system in the plane. Then all directions 

 
~ T 

(75) di ≡ (sin θi cos φi, sin θi sin φi, cos θi)  

contained in Ωi satisfy θi ∈ [0, π/2] and φi ∈ [−π, π).  
 
 
One problem with radiance is the fact that it expresses the light flux in terms of power per unit area 
on a surface perpendicular to the direction of interest. Thus, for each incident direction we are using a 
different plane orientation. In our case we want to express the power per unit area on our 

~ 

surface S, and therefore we need to rescale the radiance in direction di by the ratio of foreshortened 
~ 

surface area to surface area.  One can show that this is accomplished by multiplying L(p,¯  di) by 
~ 

cos θi = di · ~n, for normal ~n. The result is now the incident power per unit surface area (not 
foreshortened) per solid angle. We multiply this by solid angle dω to obtain irradiance: 
 

~ 

(76) H = L(p,¯ −di) cos θi dωi 
Therefore, the resulting surface radiance in the direction of the camera due to this irradiance is just  

~ ~ ~ 

ρ(de, di) L(p,¯ −di) cos θi dωi 
 
If we then accumulate the total radiance from the incident illumination over the entire 
hemisphere of possible incident directions we obtain  

Z 
~ ~ ~ ~ 

L(de) = ρ(de, di) L(p,¯ −di) cos θi dωi (77) 
~ 

di ∈Ωi 
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where, as above, the infinitesimal solid angle is  dωi = sin θi dθi dφi. 
 
Light sources vary greatly from scene to scene. In effect, when you take a photograph you are 
measuring irradiance at the image plane of the camera for a limited field of view (angular 
extent). This shows how complex illumination sources can be.  
 

Note:  
The ideal point light source can also be cast in the framework of a continuous, ex-
tended source. To do this we assume that the distribution of incident light can be 
modeled by a scaled Dirac delta function. A Dirac delta function δ(x) is defined by: 

 
Z 

δ(x) = 0 for  x =6 0 , and δ(x) f (x) dx = f (0) (78) 
x 

 
With the light source defined as a delta function, Eqn (77) red uces to Eqn (73).  

 

12.5 Idealized Lighting and Reflectance Models 
 
We now consider several important special instances of BRDF models. In particular, we are in-
terested in combinations of lighting and BRDF models that facilitate efficient shading 
algorithms. We discuss how diffuse and specular surfaces can be represented as BRDFs. 

 

12.5.1 Diffuse Reflection 
 
A diffuse (or matte) surface is one for which the pattern of shading over the surface appears the same 
from different viewpoints. The ideal diffusely reflect ing surface is known as a perfect Lam-bertian 
surface. Its radiance is independent of the emittant direction, its BRDF is a constant, and it reflects all 
of the incident light (i.e., it absorbs zero po wer). The only factor that determines the appearance 
(radiance) of a Lambertian surface is therefore the irradiance (the incident light). In 

~   ~  

, the (constant) radiance Le has the form: 
 

this case, with the BRDF constant, ρ(de, di) = ρ0  

Ld(p,¯ d
~

e) = ρ0 
Z

d~i ∈Ωi L(p,¯ −d
~

i) cos θi dωi (79)   
Note:  
A perfect Lambertian surface reflects all incident light, ab sorbing none. Therefore, 
the total irradiance over the hemisphere of incident directions must equal the 
radiant exitance. Setting these quantities to be equal, one can show that ρ0 = 1/π. 
The BRDF for any diffuse surface must therefore have a value between 0 and 1/π.  

 
 
Despite the simplicity of the BRDF, it is not that simple to compute the radiance because we still 
have an integral over the hemisphere of incident directions. So let's simplify the model further. 
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    ¯  
Let's assume a single point light source with intensity I at location l. This gives us 
 ~   

Ld(p,¯ d
~

e) = ρ0 I  
~n · di  

(80) 
r2 

 

    
¯    ~ ¯   

where r = ||l − p¯||  is the distance to the light source from p¯ , and di = (l − p¯)/r  is the direction 
of the source from p¯ . Of course, the surface normal ~n also changes with p¯ . 
 
Eqn (80) is much easier to compute, but we can actually make the computation even easier. Let's 

~ 

assume that the point source is sufficiently far away that r and di do not change much with points 
p¯ on the object surface. That is, let's treat them as constant. Then we can simplify Eqn (80) to 
 

Ld(p¯) = r d I ~s · ~n (81) 
 

where rd is often called the diffuse reflection coefficient, and ~s is the direction of the source. 
Then the only quantity that depends on surface position p¯  is the surface normal ~n.  
 

Note:  
The value ~s · ~n should actually be max(0, ~s · ~n). Why? Consider the 
relationship of the light source and surface when this dot product is negative.  

 

12.5.2 Ambient Illumination 
 
The diffuse shading model in Eqn (80) is easy to compute, but often appears artificial. The biggest 
issue is the point light source assumption, the most obvious consequence of which is that any surface 
normal pointing away from the light source (i.e., for which ~s · ~n < 0) will have a radiance of zero. 
A better approximation to the light source is a uniform ambient term plus a point light source. This is 
a still a remarkably crude model, but it's much better than the point source by itself. 
 
With a uniform illuminant and a constant BRDF, it is easy to see that the integral in Eqn (79) 
becomes a constant. That is, the radiance does not depend on the orientation of the surface 
because the illumination is invariant to surface orientation. As a result we can write the radiance 
under a uniform illuminant as 
 

La(p¯) = r a Ia (82) 
 

where ra is often called the ambient reflection coefficient, and Ia denotes the integral of the 
uniform illuminant.  
 

Note:  
If the illuminant is the sum of a point source and a uniform source, then the 
resulting radiance is the sum of the radiances to the individual sources, that is, the 
sum of Eqns (82) and (81).  
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12.5.3 Specular Reflection 
~ 

For specular (mirror) surfaces, the incident light from each incident direction di is reflected toward 
~ 

a unique emittant direction de. The emittant direction lies in the same plane as the incident direction 
~ ~ ~ 

di and the surface normal ~n, and the angle between ~n and de is equal to that between ~n and di. One   
n   

d i de 
 
 
 

 

~ ~ ~ ~ 

can show that the emittant direction is given by de  = 2(~n · di)~n − di.  For all power from di  be 
reflected into a single emittant direction the BRDF for a perfec t mirror must be proportional to a 

~ ~ ~ ~ ~ 

delta function, ρ(de, di) ∝ δ(di − (2(~n · de)~n − de)). 
 
In particular, if we choose the constant of proportionality so that the radiant emittance is equal to 
the total incident power, then the BRDF becomes: 
 

~  ~  1 ~ ~ ~ 
ρ(de, di) = ~ δ(di − (2(~n · de)~n − de)) 

 ~n · di    
In this case, Eqn (77) reduces to 

~ ~ ~ 

Ls(p,¯ d e) = L(p,¯ −(2(~n · de)~n − de)) 
 
This equation plays a major role in ray tracing. 

 

(83) 
 
 
 
 
(84) 

 
Off-Axis Specularity: Many materials exhibit a significant specular component in t heir re-
flectance. But few are perfect mirrors. First, most specular s urfaces do not reflect all light, and 
that is easily handled by introducing a scalar constant in Eqn (84) to attenuate surface radiance 

Ls. Second, most specular surfaces exhibit some form of off-axis specular reflection . That is, 
many polished and shiny surfaces (like plastics and metals) emit light in the perfect mirror 
direction and in some nearby directions as well. These off-axis specularities look a little blurred. 
Good examples are highlights on plastics and metals. 
 
The problem with off-axis specularities is that the BRDF is no longer a simple delta function. 
The radiance into a particular emittant direction will now be affected from the incident power 
over a range of incident directions about the perfect specular direction. This means that, unlike 
the simple radiance function in Eqn (84) for perfect measures, we need to return to the integral in 
Eqn (77). Therefore it is not easy to compute radiance in this case. 
 
Like the diffuse case above, one way to simplify the model with off-axis specularities is to assume a 
point light source. With a point light source we can do away with the integral. In that case the 
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light from a distant point source in the direction of ~s is reflected into a range of directions about 

the perfect mirror directions m~ = 2(~n · ~s)~n − ~s. One common model for this is the following: 

~ ~ α 

, (85) Ls(de) = rsI max(0, m~ · de)  
where rs is called the specular reflection coefficient (often equal to 1 − rd), I is the incident power 

from the point source, and α ≥ 0 is a constant that determines the width of the specular 
highlights. As α increases, the effective width of the specular reflection de creases. In the limit as 
α increases, this becomes a mirror. 

 

12.5.4 Phong Reflectance Model 
 
The above components, taken together, give us the well-known Phong reflectance model that 
was introduced earlier: 
 

~ ~ α 

, (86) L(p,¯ d e)  =  rd Id  max(0, ~s · ~n) + ra Ia + rsIs max(0, m~ · de)  
where 
 

• Ia, Id, and Ir are parameters that correspond to the power of the light sources for the 
ambient, diffuse, and specular terms; 

 
• ra, rd and rs are scalar constants, called reflection coefficients, that d etermine the relative 

magnitudes of the three reflection terms; 
 

• α determines the spread of the specurlar highlights; 
 

• ~n is the surface normal at p¯ ; 
 

• ~s is the direction of the distant point source; 
 

• m~ is the perfect mirror direction, given ~n and ~s ; and 
~ 

• and de is the emittant direction of interest (usually the direction of the camera). 
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13 Distribution Ray Tracing 
 
In Distribution Ray Tracing (hereafter abbreviated as ―DRT‖ ), our goal is to render a scene as 

ac-curately as possible. Whereas Basic Ray Tracing computed a very crude approximation to 
radiance at a point, in DRT we will attempt to compute the integral as accurately as possible. 
Additionally, the intensity at each pixel will be properly modeled as an integral as well. Since 
these integrals cannot be computed exactly, we must resort to numerical integration techniques to 
get approximate solutions.  
 

Aside:  
When originally introduced, DRT was known as ―Distributed Ray Tracing.‖ We 

will avoid this name to avoid confusion with distributed computing, especially 
because some ray-tracers are implemented as parallel algorithms.  

 

13.1 Problem statement 
 
Recall that, shading at a surface point is given by:  

Z 
~ ~ ~ ~ ~ 

L(de) = ρ(de, di(φ, θ)) L(−di(φ, θ)) (~n · di) dω (87) 
Ω 

~ 
This equation says that the radiance emitted in direction de is given by integrating over the hemi- 

~ 

sphere Ω the BRDF ρ times the incoming radiance L(−di(φ, θ)). Directions on the hemisphere 
are parameterized as 

~ 

di = (sin θ sin φ, sin θ cos φ, cos θ) 
 
The differential solid angle dω is given by: 
 
 dω = sin θdθdφ 

and so:  

L(d
~

e) = 
Z

φ∈[0,2π] 
Z

θ∈[0,π/2] ρ(d
~

e, d
~

i(φ, θ)) L(−d
~

i(φ, θ)) (~n · d
~

i) sin θdθdφ 

 
(88) 
 
 
 
(89) 
 

 

(90) 

This is an integral over all incoming light directions, and we cannot compute these integrals in 
closed-form. Hence, we need to develop numerical techniques to compute approximations. 
 

 

Intensity of a pixel. Up to now, we've been engaged in a fiction, namely, that the int ensity of a 
pixel is the light passing through a single point on an image plane. However, real sensors  
— including cameras and the human eye — cannot gather light at an infinitesimal point, due 
both to the nature of light and the physical properties of the sensors. The actual amount of light 
passing through any infinitesimal region (a point) is infinit esimal (approaching zero) and cannot 
be measured. Instead light must be measured within a region. Specifically, the image plane (or 
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retina) is divided up into an array of tiny sensors, each of which measures the total light incident 
on the area of the sensor. 
 

As derived previously, the image plane can be parameterized as p¯(α, β) = p¯ 0 + α~u + β~v. In camera 

coordinates, p¯
c

0 = (0, 0, f ), and the axes correspond to the x and y axes: ~u
c
 = (1, 0, 0) and  

~v
c
 = (0, 1, 0). Then, we placed pixel coordinates on a grid: p¯

c
i,j = (L + i i, T + j j, f ) = p¯ 0 + 

α, where i = (R − L)/nc and j = (B − T )/nr , and L, T , B, R are the boundaries of the image 
plane. 
 
We will now view each pixel as an area on the screen, rather than a single point. In other words,  
pixel (i, j) is all values p¯(α, β) for αmin ≤ α < αmax , βmin ≤ β < βmax . The bounds of each 
pixel are: αmin = L + i i, αmax = L + (i + 1)Δi, βmin = T + j j, and βmax = T + (j + 1)Δj. (In 
general, we will set things up so that this rectangle is a square in world-space.) For each point  
on the image plane, we can write the ray passing through this pixel as 
 

d
~

(α, β) = p¯(α, β) − e¯ 
(91) 

||p¯(α, β) − e¯||     
To compute the color of a pixel, we should compute the total light energy passing through this 
rectangle, i.e., the flux at that pixel: 
 

Z Z 
Φi,j  = H(α, β)dαdβ (92) 

αmin ≤α<αmax βmin ≤β<βmax 

 
where H(α, β) is the incoming light (irradiance) on the image at position α, β. For color images, this 
integration is computed for each color channel. Again, we cannot compute this integral exactly.  
 

Aside:  
An even more accurate model of a pixel intensity is to weight rays according to 
how close they are to the center of the pixel, using a Gaussian weighting function.  

 

13.2 Numerical integration 
 
We begin by considering the general problem of computing an integral in 1D. Suppose we wish 
to integrate a function f (x) from 0 to D: 
 

Z D 
S = f (x)dx (93)  

0 
 
Visually, this corresponds to computing the area under a curve. Recall the definition of the integral. 
We can break the real line into a set of intervals centered at uniformly-spaced points x1, ..., xN . We 
can then define one rectangle on each interval, each width D/N and height f (xi). The total area 
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of these rectangles will be approximately the same as the area under the curve. The area of each 
rectangle is f (xi)D/N , and thus the total area of all rectangles together is:  

SN  = 
 D X 

(94) 
 

f (xi) N 
 i  

     

Hence, we can use SN as an approximation to S. Moreover, we will get more accuracy as we 
increase the number of points: 

lim  SN  = S (95) 
N →∞  

There are two problems with using uniformly-spaced samples for numerical integration: 
 

• Some parts of the function may be much more ―important‖ than o thers. For example, we 
don't want to have to evaluate f (x) in areas where it is almost zero. Hence, you need to 
generate many, many xi values, which can be extremely slow. 

 
• Uniformly-spaced samples can lead to aliasing artifacts. These are especially noticable 

when the scene or textures contain repeated (periodic) patterns. 
 
In ray-tracing, each evaluation of f (x) requires performing a ray-casting operation and a 
recursive call to the shading procedure, and is thus very, very expensive. Hence, we would like 
to design integration procedures that use as few evaluations of f (x) as possible. 
 
To address these problems, randomized techniques known as Monte Carlo integration can be 
used. 

 

13.3 Simple Monte Carlo integration 
 
Simple Monte Carlo addresses the problem of aliasing, and works as follows. We randomly sample 
N values xi in the interval [0, D], and then evaluate the same sum just as before:  

SN  = 
 D X 

(96) 
 

f (xi) N 
 i  

     
It turns out that, if we have enough samples, we will get just as accurate a result as before; more-
over, aliasing problems will be reduced.  
 

Aside: 
Formally, it can be shown that the expected value of SN is S. Moreover, the variance 
of SN is proportional to N , i.e., more samples leads to better estimates of the integral. 

In the C programming language, the random sampling can be computed as rand() * D.  
 

Aside:  
Monte Carlo is a city near France and Italy famous for a big casino. Hence, the 
name of the Monte Carlo algorithm, since you randomly sample some points and 
gamble that they are representative of the function.  
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13.4 Integration at a pixel 
 
To compute the intensity of an individual pixel, we need to evaluate Equation 92). This is a 2D 
integral, so we need to determine K 2D points (αi, βi), and compute: 
 

Φ  (αmax  − αmin )(βmax  − βmin ) K H(α , β ) (97) 
 

i,j  ≈ 
   X 

ii 

 

  K 
i=1 

 
       

 
In other words, we pick N points withnin the pixel, cast a ray through each point, and then 
average the intensities of the rays (scaled by the pixel's area (αmax − αmin )(βmax − βmin ). 
These samples can be chosen randomly, or uniformly-spaced.  
 

Example: 
The simplest way to compute this is by uniformly-spaced samples (αm, βn): 

 

αm =   (m − 1)Δα, α = (αmax  − αmin )/M (98) 

βn =   (n − 1)Δβ, β = (βmax  − βmin )/N (99) 

and then sum:  
MN 

 
   
 

Φi,j  ≈α  β 
X X 

(100)  H(αm, βn) 
m=1 n=1  

However, Monte Carlo sampling — in which the samples are rando mly-spaced 
— will usually give better results.  

 

13.5 Shading integration 
 
Our goal in shading a point is to compute the integral: 
 

L(d
~

e)  = 
Z

φ∈[0,2π] 
Z

θ∈[0,π/2] ρ(d
~

e, d
~

i(φ, θ)) L(−d
~

i(φ, θ)) (~n · d
~

i) sin θ dθdφ (101) 

We can choose uniformly-spaced values of φ and θ values as follows:  

 θm = (m − 1)Δθ, θ = (π/2)/M (102) 

 φn = (n − 1)Δφ, φ = 2π/N (103)  
This divides up the unit hemisphere into M N solid angles, each with area approximately equal to 
sin θ θ φ. Applying 2D numerical integration gives: 
 

~ M N ~  ~ ~ ~  

X X (104) L(de)  ≈ ρ(de, di(φ, θ)) L(−di(φ, θ)) (~n · di) sin θ   θ   φ   

m=1 n=1 
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Once you have all the elements in place (e.g., the ray-tracer, the BRDF model, etc.), evaluating 
this equation is actually quite simple, and doesn't require all the treatment of special cases 
required for basic ray-tracing (such as specular, diffuse, mirror, etc.). However, it is potentially 
much slower to compute. 

 

13.6 Stratified Sampling 
 
A problem with Simple Monte Carlo is that, if you use a small number of samples, these samples 
will be spaced very irregularly. For example, you might be very unlucky and get samples that 
don't place any samples in some parts of the space. This can be addressed by a technique called 
stratified sampling: divide the domain into K-uniformly sized regions, and randomly sample J 

points xi within each region; then sum N
D

 
P

i f (xi) as before. 

13.7 Non-uniformly spaced points 
 
Quite often, most of the radiance will come from a small part of the integral. For example, if the 
scene is lit by a bright point light source, then most of the energy comes from the direction to this 
source. If the surface is very shiny and not very diffuse, then most of the energy comes from the 
reflected direction. In general, it is desirable to sample mo re densely in regions where the 
function changes faster and where the function values are large. The general equation for this is:  

X 
(105) SN  =f (xi)di 

i 
 

where di is the size of the region around point xi. Alternatively, we can use stratified sampling, 
and randomly sample J values within each region. How we choose to define the region s izes and 
spaces depends on the specific integration problem. Doin g so can be very difficult, and, as a 
consequence, deterministic non-uniform spacing is normally used in graphics; instead, 
importance sampling (below) is used instead. 

 

13.8 Importance sampling 
 
The method of importance sampling is a more sophisticated form of Monte Carlo that allows 

non-uniform sample spacing. Instead of sampling the points xi uniformly, we sample them from 
another probability distribution function (PDF) p(x). We need to design this PDF so that it gives 
us more samples in regions of x that are more ―important,‖ e.g., values of f (x) are larger. We can 
then approximate the integral S as: 

SN  =  
1 

X 
f (xi) (106) 

     

 N i p(xi)  
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If we use a uniform distribution: p(x) = 1/D for x ∈ [0, D], then it is easy to see that this 
procedure reduces to Simple Monte Carlo. However, we can also use something more sophisti-
cated, such as a Gaussian distribution centered around the point we expect to provide the greatest 
contribution to the intensity. 
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13.9   Distribution Ray Tracer    

for each pixel (i,j)      

<  choose N points x¯ k  within the pixel's area >  
for each sample k      

    ~ where ~ > <  compute ray ~rk (λ) = ~pk + λdk dk  = ~pk − ~e 

Ik  = rayTrace( ~pk , ~     
dk , 1)     

end for i  j 
P

k Ik /N     
end for  

) 
   

setpixel(i, j,      
 
 

 

The rayTrace and findFirstHit procedures are the same as for Ba sic Ray Tracing. However, the 
new shading procedure uses numerical integration: 

~ ~ 
~ 

distRtShade(OBJ, p, n, de, depth) 

< choose N directions (φk , θk ) on the hemisphere  >  
for each direction k 

I ~ ~ 

k  = rayTrace(p, dk , depth+1)  
end for 

P ~ ~ 

return θ φ k ρ(de, di(φk , θk ))Ik sin θk 
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 olation 
 

14.1 Interpolation Basics 
 
Goal: We would like to be able to define curves in a way that meets the f ollowing criteria: 
 

1. Interaction should be natural and intuitive. 
 

2. Smoothness should be controllable. 
 

3. Analytic derivatives should exist and be easy to compute. 
 

4. Representation should be compact. 
 
Interpolation is when a curve passes through a set of ―control points.‖  
 
 
 
 
 

 

Figure 9: *  
Interpolation 

 
 

 

Approximation is when a curve approximates but doesn't necessarily contain its control points.  
 
 
 
 
 

 

Figure 10: *  
Approximation 

 
 

 

Extrapolation is extending a curve beyond the domain of its control points. 
 

Continuity - A curve is is C
n

 when it is continuous in up to its n
th

-order derivatives. For 
example, a curve is in C

1
 if it is continuous and its first derivative is also continuou s. 

Consider a cubic interpolant — a 2D curve, 
¯( ) =  (  2 3 

where c t x t) y(t) 

x(t) = a0 + a1t + a2t  + a3t , (107) 

y(t) = b0 + b1t + b2t
2
 + b3t

3
, (108) 
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Figure 11: *  
Extrapolation 

 
 
 
so 
 

  
a0 

3 

x(t) = 
X 

ait
i =   1   t  t2    t3 

a1 = ~t
T ~a. (109)  

  
a2 

i=0 

a3 

~ ¯(  ) = ~
T 

~a ~ i. h ~a ~ i 
a 4    2 matrix).  h b b 

Here, t is the basis and ~a is the coefficient vector. Hence, c t  t    (Note: T   is 
× 

 

There are eight unknowns, four ai values and four bi values. The constraints are the values of 
c¯(t)  at known values of t.  
 

Example: 
For t ∈ (0, 1), suppose we know c¯ j ≡ c¯(t j ) for tj = 0, 

1
3 , 

2
3 , 1 as j = 1, 2, 3, 4. 

That is, 
   c¯ 2 = x2 y2  

≡ 
x(1/3)   y(1 3) ,  

(110)    c¯ 1 =  x1 y1  x(0) y(0)   , ,  
   c¯ 3  =   x3 y3 ≡ x(2/3)   y(2/3)  (112) 

      

 

   

 

 

x(1) 

/  

 

 (111) 

   c¯ 4 = x4 y4 ≡ y(1)   .  (113) 

           ≡       
So we have the following linear system,   

 
   

x2 y2   =  1  1/3 (1/3)
2 

(1/3)
3 

~a  
~

b , (114) 
 x1 y1     1  0 0 0     

 
x3 y3 

 
  

 
1   2/3   (2/3)

2 
(2/3)

3 

 
h i  

x 
4 

y 
4 

  1  1 1 1    
                

                  

or more compactly, 
         i

. Then, 
h

 ~a  ~b 
i
 = C−1 

  

 ~x ~y = C
h

 ~a  ~b ~x ~y  . From 
~ 

this we can find ~a and b, to calculate the cubic curve that passes through the 
given points.  
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We can also place derivative constraints on interpolant curves. Let    

~τ(t) = 
dc¯(t)  

= 
 d 

 
1 t t

2 
t
3 

h ~a ~b i (115) 
    

dt dt 
   =   1 t t 2 h  ~b 

i
,  (116) 

   
0 

 
~a 

 

                
that is, a different basis with the same coefficients.  
 

Example: 
Suppose we are given three points, tj = 0, 

1
2 , 1, and the derivative at a point, ~τ2( 

1
2 ). So we can write this as 

x2 y2  =  1 1/2   (1/2)
2 

(1/2)
3 

 ~a ~
b  , (117) 

 x1 y1     1  0 0   0      

 x ′3 y3′    11 1   1 2  h i  
x 2 y 2  0  1 2(1/2) 3(1/2)     

                  

                    
and       

c¯ 1  

          

                 
       

 

c¯ 2 

 
= C

h
 ~a 

~
b i, 

    
(118)        c¯ 3     

       ~τ           
         

2 
           

        ~             
which we can use to find  ~a and b:     c¯ 2 .      
       ~a ~

b  = C−1     (119) 

              c¯ 1       

      h    i   
 

c¯ 3 
 

     
             ~τ      
              

2 
      

                      
Unfortunately, polynomial interpolation yields unintuitive results when interpolating large num-
bers of control points; you can easily get curves that pass through the control points, but oscillate 
in very unexpected ways. Hence, direct polynomial interpolation is rarely used except in combi-
nation with other techniques. 

 

14.2 Catmull-Rom Splines 
 

Catmull-Rom Splines interpolate degree-3 curves with C
1
 continuity and are made up of cubic 

curves. 
 

A user specifies only the points [p¯ 1, ...p¯ N ] for interpolation, and the tangent at each point is set to 

be parallel to the vector between adjacent points. So the tangent at p¯ j is κ(p¯j+1 − p¯ j−1) (for 
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endpoints, the tangent is instead parallel to the vector from the endpoint to its only neighbor). 
The value of κ is set by the user, determining the ―tension‖ of the curve. 
 

p
j 

 
 
 

p
j-1 

 
 
 
p

j+1 

 

 

Between two points, p¯ j and p¯ j+1, we draw a cubic curve using p¯ j , p¯ j+1, and two auxiliary 

points on the tangents, κ(p¯j+1 − p¯ j−1) and κ(p¯j+2 − p¯ j ). 

We want to find the coefficients aj  when x(t) = 1 t t
2
 t

3
 a0 a1 a2 a3 

T 
, where the  

  
curve is defined as c¯(t) =  c(t) y(t) (similarly for y(t) and bj ). For the curve between p¯ j and p¯ j+1, 
assume we know two end points, c¯(0) and c¯(1) and their tangents, ~c

′
(0) and ~c

′
(1). That is, 

 
x(0) = xj ,  

x(1) = xj+1, 

x
′
(0) = κ(xj+1 − xj−1), 

x
′
(1) = κ(xj+2 − xj ). 

 
(120) 
 
(121) 
 
(122) 
 
(123) 

 
To solve for ~a, set up the linear system, 

x′(1)  =  1 1 1 1 

 

x(0) 
 

 

 

1 0 0 0 
x

′
(1)  0 1 2 3 

 x (0)    0 1 0 0 

         

 
 
 

a0 
a1     . 

a2  
a3 

 
 
 
 

 

(124) 

Then ~x = M~a, so ~a = M 
−1

~x. Substituting ~a in x(t) yields 
x(t)   =1   t  t

2 
t
3 

 0 0 1 0   xj+1   

 
 

 
1 0 0 0 

 
  xj  

  2  2    1 1  κ(xj+2
−

 xj ) 
   

−3    3    −2   −1 
 

κ(xj+1     xj−1) 
 

  

   =1   t  t
2 

t3   − 0  κ   − . 
−κ   0  xj   

 
 

 
0  1  0 0  

 
xj−1 

 
 

  κ  2 
−

 κ   κ
−

 2κ  xj+2  
   

2κ   κ   3   3    2κ  −κ 
 

xj+1 
  

  

   

 

  −   −  −     

 
 
 

 

(125) 
 
 
 

 

(126) 
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For the first tangent in the curve, we cannot use the above form ula. Instead, we use: 
 

~τ1    =   κ(p¯2 − p¯1) (127) 
 
and, for the last tangent: 
 

~τN    =   κ(p¯N − p¯N −1) (128) 
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15 Parametric Curves And Surfaces 
 

15.1 Parametric Curves 
 
Designing Curves 
 

• We don't want only polygons. 
 

• Curves are used for design. Users require a simple set of controls to allow them to edit and 
design curves easily. 

 
• Curves should have infinite resolution, so we can zoom in and st ill see a smooth curve. 

 
• We want to have a compact representation. 

 
Parametric functions are of the form x(t) = f (t) and y(t) = g(t) in two dimensions. This can be 
extended for arbitrary dimensions. They can be used to model curves that are not functions of 
any axis in the plane. 
 

Curves can be defined as polynomials, for example x(t) = 5t
10

 + 4t
9
 + 3t

8
 + .... However, 

coefficients are not intuitive editing parameters, and thes e curves are difficult to control. Hence, 
we will consider more intuitive parameterizations. 

 

15.2 Bezier´ curves 
 
We can define a set of curves called B ezier´ curves by a procedure called the de Casteljau algorithm. 

Given a sequence of control points p¯ k , de Casteljau evaluation provides a construction of smooth 
parametric curves. Evaluation proceeds by repeatedly defin ing new, smaller point sequences until 
we have a single point at the value for t for which we are evaluating the curve. 
 

 p1   p1
1 

p 
  2 

  p
2 

  1 

 p
3 

p2
1 

 0  

1 p2  

p0 
0  

  

 p0 p3  
 

 

Figure 12: de Casteljau evaluation for t = 0.25. 
 
 

 

p¯ 0
1
(t)   =   (1 − t)p¯0 + tp¯ 1 (129) 
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p¯ 1
1
(t)   = (1 − t)p¯1 + tp¯ 2 (130) 

p¯ 2
1
(t)   = (1 − t)p¯2 + tp¯ 3 (131) 

p¯ 0
2
(t)   = (1 − t)p¯0

1
(t) + tp¯ 1

1
(t) (132) 

= (1 − t)
2
p¯ 0 + 2t(1 − t)p¯1 + t

2
p¯ 2 (133) 

p¯ 1
2
(t)   = (1 − t)p¯1

1
(t) + tp¯ 2

1
(t) (134) 

= (1 − t)
2
p¯ 1 + 2t(1 − t)p¯2 + t

2
p¯ 3 (135) 

p¯ 0
3
(t)   = (1 − t)p¯0

2
(t) + tp¯ 1

2
(t) (136) 

= (1 − t)
3
p¯ 0 + 3(1 − t)

2
tp¯ 1 + 3(1 − t)t

2
p¯ 2 + t

3
p¯ 3 (137)  

The resulting curve p¯
3
0 is the cubic Bezier´ defined by the four control points. The curves p¯

2
0 

and p¯
2
1 are quadratic Bezier´ curves, each defined by three control points. For all B ezier´ 

curves, we keep t in the range [0...1]. 

 

15.3 Control Point Coefficients 
 

Given a sequence of points p¯ 0, p¯ 1, ..., p¯ n, we can directly evaluate the coefficient of each point. For a 
class of curves known as Bezier´ curves, the coefficients are defined by the Bernstein pol ynomials: 

n i   n 
p¯

0
n(t) =

 i=0 (1 − t)
n−i

t
i
p¯ i = i=0  Bi

n
(t)p¯ i 

X 

n   

X    
where   i (1 − t)

n−i
t
i 

   n  
 
 
are called the Bernstein basis functions. 
 
For example, cubic Bezier´ curves have the following coefficients: 
 

B0
3
(t) = (1 − t)

3 

B1
3
(t) = 3(1 − t)

2
t 

B2
3
(t) = 3(1 − t)t

2 

B3
3
(t) = t

3 

 
Figure 13 is an illustration of the cubic Bernstein basis functions. 

 
 
(138) 
 
 
 
 
(139) 
 
 
 
 
 

 

(140) 
 
(141) 
 
(142) 
 
(143) 

 

 

Similarly, we define basis functions for a linear curve, whic h is equivalent to the interpolation 

p¯(t) = p¯ 0(1 − t) + p¯ 1t. These are shown in Figure 3. 
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Figure 13: Degree three basis functions for Bezier´ curves. B0
3
(t) (dark blue), B1

3
(t) (green), 

B2
3
(t) (red), and B3

3
(t) (light blue). 
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Figure 14: Degree one basis functions for Bezier´ curves. B0
1
(t) (green) and B1

1
(t) (blue). 

 

15.4 Bezier´ Curve Properties 
 

• Convexity of the basis functions. For all values of t ∈ [0...1], the basis functions sum to 1: 
 

n 
X 

Bi
n
(t) = 1 (144)  

i=0 
 

In the cubic case, this can be shown as follows: 
 

((1 − t) + t)
3
  = (1 − t)

3
 + 3(1 − t)

2
t + 3(1 − t)t

2
 + t

3
  = 1 (145) 

In the general case, we have:    

n i (1 − t)
n−i

t
i
 = 1 (146) 

((1 − t) + t)
n = i= 0 

X 

n   

   

Similarly, it is easy to show that the basis functions are always non-negative: Bi
n
(t) ≥ 0. 
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• Affine Invariance 
 

What happens if we apply an affine transformation to a B ezier´ curve? 
 

Let c¯(t) =  n n ~ 
j=0 p¯ j Bj (t), and let F (p¯) = Ap¯+ d be an affine transformation. Then we have 

the 

following:   

 P   

F (¯c(t))   =  
~  

Ac¯(t) + d   
  

= A  
X

 p¯ j Bj
n
(t)  + d

~ 

= 
X

 (Ap¯ j ) Bj
n
(t) + d

~ 

= 
X

  Ap¯ j + d~  Bj
n
(t) 

X 

= Bj
n
(t)q¯ j 

 
(147) 
 
(148) 
 
(149) 
 
(150) 
 
(151) 

 
~ 

q¯ j = Ap¯ j + d denotes the transformed points. This illustrates that the transformed curve 
we get is the same as what we get by transforming the control points. (The third statement 
follows from the fact that 

Pn Bn(t) = 1. ) 
j=0 j 

 
• Convex Hull Property 

 
Since Bi

N
 (t) ≥ 0, p¯(t)  is a convex combination of the control points. Thus, Bezier´ curves 

always lie within the convex hull of the control points. 
 

• Linear Precision 
 

When the control points lie on a straight line, then the corresponding Bezier´ curve will 
also be a straight line. This follows from the convex hull property. 

 
• Variation Diminishing 

 
No straight line can have more intersections with the Bezier´ curve than it has with the 
control polygon. (The control polygon is defined as the line segments pj pj+1.) 

 
 

• Derivative Evaluation   

Letting c¯(t) =  
P N                 

j=0 p¯ j Bj
N

 (t), we want to find the following:   
   c¯ ′ (t) =    dt =  dt  ,  dt (152)  

     dc¯(t)    dx(t) dy(t)    

~ 

                 

− p¯ j , it can be shown that: 
        

Letting dj  = p¯ j+1         
  d d  N  N N −1 ~  N −1  
   X  X 

(153) 
   

c¯(t) =  
        

 τ (t) =       p¯ j Bj  (t) = N  dBj     (t)   dt
 j=0 

 

  dt     j=0   
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Figure 15: The line (green) will always intersect the curve less often than or as many times as the 
control polygon. 
 

Thus, c¯(t)  is a convex sum of the points p¯ j and is a point itself. τ (t) 
vectors and is a vector. 

 

Example: What is τ (0) when N = 3, given (p¯ 0, p¯ 1, p¯ 2, p¯ 3)? 

 

Since Bj
3
(0) = 0 for all j 6= 0 and B0

3
(0) = 1, 

X
 ~ N −1 ~ 

τ (0) = N dj Bj (t) = 3dj  = 3 (p¯ 1 − p¯0) 

 

is a convex sum of 
 
 
 
 
 
 
 
 
 

(154) 

 
Therefore, the tangent vector at the endpoint is parallel to the vector from the endpoint to 
the adjacent point. 

 
• Global vs. Local Control 

 
Bezier´ curves that approximate a long sequence of points produce high-degree 
polynomials. They have global basis functions; that is, modifying any point changes the 
entire curve. This results in curves that can be hard to control. 

 

15.5 Rendering Parametric Curves 
 
Given a parameter range t ∈ [0, 1], sample t by some partition t, and draw a line connecting each 
pair of adjacent samples. 
 

• This is an expensive algorithm. 
 

• This does not adapt to regions of a curve that do not require as many samples. 
 

• It's difficult to determine a sufficient number of samples to r ender the curve such that it 
appears smooth. 

 
There are faster algorithms based on adaptive refinement and  subdivision. 
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15.6 Bezier´ Surfaces 
 
Cubic Bezier´ patches are the most common parametric surfaces used for modeling. They are of 
the following form: 
 

3 3    
s(α, β) = Bj

3
(α)Bk

3
(β)p¯j,k = Bk

3
(β)p¯k (α) (155) 

k=0  j=0   k  

X X X  
where each p¯ k (α) is a Bezier´ curve:  

X 
  

    

 p¯ k (α) = Bj
3
(α)p¯j,k  (156)  

j 

 

Rather than considering only four points as in a cubic Bezier´ curve, consider 16 control points 
arranged as a 4 x 4 grid:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 16: Evaluation of any point can be done by evaluating curves along one direction (blue), 
and evaluating a curve among points on these curves with corresponding parameter values. 
 

For any given α, generate four points on curves and then approximate them with a Bezier´ curve 
along β. 

3   
X   

p¯ k (α) =B
3 

(α)p¯jk (157) 
j   

j=0 
 
To connect multiple patches, we align adjacent control points. to ensure C

1
 continuity, we also 

have to enforce colinearity of the neighboring points.  

The surface can also be written in terms of 2D basis functions Bj,k
3
 (α, β) = Bj

3
(α)Bk

3
(β): 

 
3 3  

X X  

s(α, β) = Bj,k
3
 (α, β)p¯j,k (158)  

k=0  j=0 
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16 Animation 
 

16.1 Overview 
 
Motion can bring the simplest of characters to life. Even simple polygonal shapes can convey a 
number of human qualities when animated: identity, character, gender, mood, intention, emotion, 
and so on.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Very simple characters (image by Ken Perlin) 
 
A movie is a sequence of frames of still images. For video, the frame rate is typically 24 frames 
per second. For film, this is 30 frames per second.  
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In general, animation may be achieved by specifying a model with n parameters that identify 
degrees of freedom that an animator may be interested in such as 
 

• polygon vertices, 
 

• spline control, 
 

• joint angles, 
 

• muscle contraction, 
 

• camera parameters, or 
 

• color. 
 
With n parameters, this results in a vector ~q in n-dimensional state space. Parameters may be 
varied to generate animation. A model's motion is a trajectory through its state space or a set of 
motion curves for each parameter over time, i.e. ~q(t), where t is the time of the current frame. 
Every animation technique reduces to specifying the state space trajectory. 
 

The basic animation algorithm is then: for t=t1 to tend: render(~q(t)). 
 
Modeling and animation are loosely coupled. Modeling describes control values and their 
actions. Animation describes how to vary the control values. There are a number of animation 
techniques, including the following: 
 

• User driven animation 
 

–  Keyframing 
 

–  Motion capture 
 

• Procedural animation 
 

–  Physical simulation 
 

–  Particle systems 
 

–  Crowd behaviors 
 

• Data-driven animation 
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16.2 Keyframing 
 
Keyframing is an animation technique where motion curves are interpolated through states at 
times, (~q1, ..., ~qT ), called keyframes, specified by a user.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Catmull-Rom splines are well suited for keyframe animation because they pass through their 
con-trol points. 
 

       2    
u = 0 

q    

      

t = 0   u = 1/3    
          

 

 

1 
  

      

q   t = 20    

         q 4 

   q 3    u = 1 
  u = 2/3    t = 50 
  t = 30        

 
 

 

• Pros: 
 

–  Very expressive 
 

–  Animator has complete control over all motion parameters 
 

• Cons: 
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–  Very labor intensive 
 

–  Difficult to create convincing physical realism 
 

• Uses: 
 

– Potentially everything except complex physical phenomena such as smoke, water, or 
fire 

 

16.3 Kinematics 
 
Kinematics describe the properties of shape and motion independent of physical forces that 
cause motion. Kinematic techniques are used often in keyframing, with an animator either setting 
joint parameters explicitly with forward kinematics or specifying a few key joint orientations 
and having the rest computed automatically with inverse kinematics. 

 

16.3.1 Forward Kinematics 
 
With forward kinematics, a point p¯  is positioned by p¯ =  f (Θ) where Θ is a state vector (θ1, 
θ2, ...θn) specifying the position, orientation, and rotation of all joints.  
 
 

 

l2  

l1  
p 

 
 

 

For the above example, p¯ = (l 1 cos(θ1) + l2 cos(θ1 + θ2), l1 sin(θ1) + l2 sin(θ1 + θ2)). 
 

16.3.2 Inverse Kinematics 
 
With inverse kinematics, a user specifies the position of the end effector, p¯ , and the algorithm 

has to evaluate the required Θ give p¯ . That is, Θ = f 
−1

(p¯).  
 
Usually, numerical methods are used to solve this problem, as it is often nonlinear and either 
underdetermined or overdetermined. A system is underdetermined when there is not a unique 
solution, such as when there are more equations than unknowns. A system is overdetermined 
when it is inconsistent and has no solutions. 
 
Extra constraints are necessary to obtain unique and stable solutions. For example, constraints 
may be placed on the range of joint motion and the solution may be required to minimize the 
kinetic energy of the system. 
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16.4 Motion Capture 
 
In motion capture, an actor has a number of small, round markers attached to his or her body that 
reflect light in frequency ranges that motion capture camera s are specifically designed to pick up.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(image from movement.nyu.edu) 
 
With enough cameras, it is possible to reconstruct the position of the markers accurately in 3D. 
In practice, this is a laborious process. Markers tend to be hidden from cameras and 3D recon-
structions fail, requiring a user to manually fix such drop ou ts. The resulting motion curves are 
often noisy, requiring yet more effort to clean up the motion data to more accurately match what 
an animator wants. 
 
Despite the labor involved, motion capture has become a popular technique in the movie and 
game industries, as it allows fairly accurate animations to be created from the motion of actors. 
However, this is limited by the density of markers that can be placed on a single actor. Faces, for 
example, are still very difficult to convincingly reconstruct.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 114 



 
 

  
 

 

• Pros: 
 

–  Captures specific style of real actors 
 

• Cons: 
 

–  Often not expressive enough 
 

–  Time consuming and expensive 
 

–  Difficult to edit 
 

• Uses: 
 

–  Character animation 
 

–  Medicine, such as kinesiology and biomechanics 

 

16.5 Physically-Based Animation 
 
It is possible to simulate the physics of the natural world to generate realistic motions, interactions, 
and deformations. Dynamics rely on the time evolution of a physical system in response to forces. 
 

 

Newton's second law of motion states f = ma, where f is force, m is mass, and a is acceleration. 

If x(t) is the path of an object or point mass, then v(t) = 
dx(t) 

is velocity and a(t) = 
dv(t) 

= 
d

2
x(t) 

dt dt dt
2 

is acceleration. Forces and mass combine to determine acceleration, i.e. any change in motion. 
 
In forward simulation or forward dynamics, we specify the initial values for position and ve- 
locity, x(0) and v(0), and the forces. Then we compute a(t), v(t), x(t) where a(t)  = f (t) 

,  
m  

v(t) = 
R

0
t
 a(t)dt + v(0), and x(t) = 

R
0
t
 v(t)dt + x(0). 

 
Forward simulation has the advantage of being reasonably easy to simulate. However, a 
simulation is often very sensitive to initial conditions, and it is often difficult to predict paths x(t) 
without running a simulation—in other words, control is hard. 
 
With inverse dynamics, constraints on a path x(t) are specified. Then we attempt to solve for the 
forces required to produce the desired path. This technique can be very difficult computationally. 
 
Physically-based animation has the advantages of: 
 

• Realism, 
 

• Long simulations are easy to create, 
 

• Natural secondary effects such as wiggles, bending, and so on—materials behave naturally, 
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• Interactions between objects are also natural. 
 
The main disadvantage of physically-based animation is the lack of control, which can be 
critical, for example, when a complicated series of events needs to be modeled or when an artist 
needs precise control over elements in a scene. 
 

 

• Pros: 
 

–  Very realistic motion 
 

• Cons: 
 

–  Very slow 
 

–  Very difficult to control 
 

–  Not expressive 
 

• Uses: 
 

–  Complex physical phenomena 

 

16.5.1 Single 1D Spring-Mass System 
 
Spring-mass systems are widely used to model basic physical systems. In a 1D spring, x(t) repre-
sents the position of mass, increasing downwards.  
 

 

 x spring 
 
 

 mass  
 
A spring has resting length l and stiffness k. Deformation force is linear in the difference from the 

resting length. Hence, a spring's internal force, according to Hooke's Law, is f 
s
(t) = k(l − x(t)). 

 

The external forces acting on a spring include gravity and the friction of the medium. That is, f 
g
 

= mg and f 
d
(t) = −ρv(t) = −ρ 

dx
dt

(t)
 , where ρ is the damping constant.  

Hence, the total force acting on a spring is f (t) = f 
s
(t) + f 

g
 + f 

d
(t). Then we may use a(t) = 

f
 
(t) 

 
m 

with initial conditions x(0) = x0 and v(0) = v0 to find the position, velocity, and acceleration of 
a spring at a given time t. 
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16.5.2 3D Spring-Mass Systems 
 
Mass-spring systems may be used to model approximations to more complicated physical systems. 
Rope or string may be modeled by placing a number of springs end-to-end, and cloth or rubber sheets 
may be modeled by placing masses on a grid and connecting adjacent masses by springs. 
 

 ...   
 
 
 
 
 
 
 
 
 
 
 
 
 

Let the ith mass, mi, be at location p¯ i(t), with elements xi(t), yi(t), zi(t). Let lij denote the resting 
length and kij the stiffness of the spring between masses i and j. 
 
The internal force for mass i is 

f s (t) =   k  e 
 

pi − pj ,  
ij
 kpi − pj k ij − ij  

where eij  = lij − kpi − pj k.      
Note: 

It is the case that fji
s
(t) = −fij

s
 (t).  

 
The net total internal force on a mass i is then 

X 

fi
s
(t) = fij

s
 (t), 

j∈Ni  

where Ni is the set of indices of neighbors of mass i. 
 

16.5.3 Simulation and Discretization 
 
A common approach to discretizing over time in a physical simulation is to use a numerical ordi-
nary differential equation solver, such as the Runge-Kutta method, with finite difference approxi-
mations to derivatives. 
 

To find an approximation to a(t), we choose a time increment t so the solution is computed at ti 
= i t. 
 
The simplest approach is the use Euler time integration with forward differences: 
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• Compute ~ai(t) = fi(t)/mi. 
 

• Update ~vi(t +   t) = ~vi(t) +   t~ai(t). 
 

• Update p¯ i(t +   t) = p¯ i(t) +   t~vi(t). 
 

16.5.4 Particle Systems 
 
A particle system fakes passive dynamics to quickly render complex systems such as fire, 
flowing water, and sparks. A particle is a point in space with some associated parameters such as 
velocity, time to live, color, or whatever else might be appropriate for the given application. 
During a simulation loop, particles are created by emitters that determine their initial properties, 
and existing particles are removed if their time to live has been exceeded. The physical rules of 
the system are then applied to each of the remaining particles, and they are rendered to the 
display. Particles are usually rendered as flat textures, but they may be rendered pr ocedurally or 
with a small mesh as well. 

 

16.6 Behavioral Animation  
 
 
 
 
 
 
 
 
 
 

Flocking behaviors 
 
Particle systems don't have to model physics, since rules may be arbitrarily specified. Individual 
particles can be assigned rules that depend on their relationship to the world and other particles, 
effectively giving them behaviors that model group interactions. To create particles that seem to 
flock together, only three rules are necessary to simulate se paration between particles, alignment 
of particle steering direction, and the cohesion of a group of particles. 
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Particles that flock and steer around obstacles 
 
More complicated rules of behavior can be designed to control large crowds of detailed 
characters that would be nearly impossible to manually animate by hand. However, it is difficult 
to program characters to handle all but simple tasks automatically. Such techniques are usually 
limited to animating background characters in large crowds and characters in games.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A crowd with rule-based behaviors 
 

• Pros: 
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–  Automatic animation 
 

–  Real-time generation 
 

• Cons: 
 

–  Human behavior is difficult to program 
 

• Uses: 
 

–  Crowds, flocks, game characters 

 

16.7 Data-Driven Animation 
 
Data-driven animation uses information captured from the real world, such as video or captured 
motion data, to generate animation. The technique of video textures finds points in a video se-
quence that are similar enough that a transition may be made without appearing unnatural to a 
viewer, allowing for arbitrarily long and varied animation from video. A similar approach may 
be taken to allow for arbitrary paths of motion for a 3D character by automatically finding 
frames in motion capture data or keyframed sequences that are similar to other frames. An 
animator can then trace out a path on the ground for a character to follow, and the animation is 
automatically generated from a database of motion. 
 

• Pros: 
 

–  Captures specific style of real actors 
 

–  Very flexible 
 

–  Can generate new motion in real-time 
 

• Cons: 
 

–  Requires good data, and possibly lots of it 
 

• Uses: 
 

–  Character animation 
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