Contents

Conventions and Notation

1

Introduction to Graphics

11
1.2

Raster Displays
BasicLineDrawing.

Curves

2.1

2.2
2.3
2.4

Parametric CUrVeS. o o o e
211 TangentsandNormals
Ellipses
Polygons
Rendering CurvesinOpenGL i

Transformations

31
3.2
3.3
34
35
3.6

2D Transformations. e
Affine Transformations
HomogeneousCoordinates
Uses and Abuses of Homogeneous Coordinates
Hierarchical Transformations.
TransformationsinOpenGL

Coordinate Free Geometry

3D Objects

5.1
5.2
5.3

54

5.5
5.6

5.7

Surface Representations. oo
Planes e
Surface Tangentsand Normals,
531 CurvesonSurfaces e
5,32 ParametricForm

533 ImplicitForm.
Parametric Surfaces. e

541 BilinearPatch. e
542 Cylinder

543 Surfaceof Revolution
544 Quadric e
545 Polygona Mesh

3D AffineTransformations e e
Spherical Coordinates.
5.6.1 Rotationof aPoint Aboutaline.
Nonlinear Transformations o i i i e e e e e

10
10
11
13
14
15
16

18

21
21
21
22
22
22
23
24
24
25
26
26
27
27
29
29

5.8 Representing TriangleMeshes
59 Generating TriangleMeshes
6 CameraModels
6.1 ThinLensModd
6.2 PinholeCameraMode
6.3 CameraProjections e
6.4 Orthographic Projection.
6.5 CameraPositionand Orientation
6.6 PerspectiveProjection.
6.7 HomogeneousPerspective
6.8 Pseudodepth.
6.9 ProjectingaTriangle
6.10 CameraProjectionsinOpenGL
7 Visibility
7.1 TheViewVolumeandClipping. i
7.2 BackfaceRemoval
7.3 TheDepthBuffer e
7.4 Painter'sAlgorithm
75 BSPTrees.
7.6 VighilityinOpenGL e
8 Basic Lighting and Reflection
8.1 SmpleReflectionModels.
8.1.1 DiffuseReflection
8.1.2 Perfect Specular Reflection. L
8.1.3 General Specular Reflection
814 Ambientlllumination.
8.1.5 PhongReflectanceModel
8.2 LightinginOpenGL e
9 Shading
91 HatShading.
9.2 InterpolativeShading
9.3 ShadinginOpenGL e
10 Texture Mapping
101 OVEIVIBW . . . o o e o e e
10.2 TeXtureSOUICES o o e e e e e
10.2.1 TextureProcedures
1022 DigitaIlmages

57
57
57
58

59
59
59
59
60

10.3 Mapping from Surfacesinto TextureSpace
10.4 Texturesand Phong Reflectance
105Al0I@sINg
106 TexturinginOpenGL

11 Basic Ray Tracing
111BASICS .« v o o e e e e e e
112Ray Casting o e
11.3INtersections. e e
1131 Triangles o o
11.3.2 General Planar Polygons
11.33 Spheres e
11.3.4 Affinely DeformedObjects.
1135 CylindersandCones
114 TheSceneSignature i i
115Efficiency
11.6 Surface Normals at IntersectionPoints
11.6.1 Affinedly-deformedsurfaces.
117Shading o
11.7.1 Basic(Whitted) Ray Tracing.
1172 Texture o e
11.7.3 Transmission/Refraction
1174 Shadows

12 Radiometry and Reflection

121 Geometry of lighting

12.2 Elementsof Radiometry
12.2.1 Basic Radiometric Quantities
1222 Radiance

12.3 Bidirectional Reflectance Distribution Function

12.4 Computing Surface Radiance.,

125 Idedlized Lighting and ReflectanceModels
125.1 DiffuseReflection L.
1252 Ambient [llumination.
1253 Specular Reflection. L
1254 Phong ReflectanceModel

13 Distribution Ray Tracing
13.1Problemstatement
13.2 Numerical integration. e
13.3Simple Monte Carlointegration

134 Integrationat apixel L 95

135 Shadingintegration L 95
13.6 Stratified Sampling 96
13.7 Non-uniformly spaced points. 96
13.8Importancesampling L e 96
13.9Didtribution Ray Tracer e e e 98
14 Interpolation 99
141 Interpolation BasiCS. e 99
142Camull-Rom Splines 101
15 Parametric Curves And Surfaces 104
151 Parametric CUIVES o o e e e e e e e 104
I52BEZIE CUIVES . . . o o o o e e e e e e e e e 104
15.3 Control Point Coefficients 105
154 Bezier” CurveProperties. 106
15.5Rendering Parametric Curves. 108
15.6Bezier” Surfaces o 109
16 Animation 110
16.1OVEIVIEW . . o o o o o e e e 110
16.2Keyframing e 112
16.3KINeMatiCsS o e e e 113
16.3.1 ForwardKinematics 113
16.3.2 InverseKinematics 113
16 4AMotionCapture e e 114
16.5 Physicaly-Based Animation 115
16.5.1 Single1D Spring-MassSystem 116
16.5.2 3D Spring-MassSystems. 117
16.5.3 Simulation and Discretization 117
16.54 ParticleSystems 118
16.6 Behavioral Animation. 118

16.7 Data-Driven Animation. e e e e e e e e e 120

Conventions and Notation

Vectors have an arrow over their variable name: ~v. Points are denoted with abar instead: p .
Matrices are represented by an uppercase letter.

When written with parentheses and commas separating elements, consider a vector to be a column

X
vector. That is, (x, y) = . Row vectors are denoted with square braces and no commas:

Xy =y =

The set of real numbers is represented by R. The real Euclidean plane is RZ, and similarly Eu-

clidean three-dimensional spaceis R . The set of natural numbers (non-negative integers) is rep-
resented by N.

There are some notable differences between the conventions used in these notes and those found
in the course text. Here, coordinates of a point p are written as px, py , and so on, where the
book uses the notation Xxp, Yp, etc. The same istrue for vectors.

Aside:
Text in “aside” boxes provide extra background or informati on that you are not re-
quired to know for this course.

Acknowledgements

Thanks to Tina Nicholl for feedback on these notes. Alex Kolliopoulos assisted with electronic
preparation of the notes, with additional help from Patrick Coleman.

1 Introduction to Graphics

1.1 Raster Displays

The screen is represented by a 2D array of locations called pixels.

y

Zooming in on an image made up of pixels

The convention in these notes will follow that of OpenGL, placing the origin in the lower |eft
corner, with that pixel being at location (0, 0). Be aware that placing the origin in the upper left
is another common convention.

One of 2I\I intensities or colors are associated with each pixel, where N is the number of bits per

pixel. Greyscale typically has one byte per pixel, for 2~ = 256 intensities. Color often requires
one byte per channel, with three color channels per pixel: red, green, and blue.

Color datais stored in aframe buffer. Thisis sometimes called an image map or bitmap.
Primitive operations:

* setpixel(x, y, color)
Sets the pixel at position (X, y) to the given color.

* get pi xel (x, vy)
Gets the color at the pixel at position (X, y).

Scan conversion is the process of converting basic, low level objects into their corresponding
pixel map representations. This is often an approximation to the object, since the frame buffer is
adiscrete grid.

O..

Scan conversion of acircle

(7, 4)

(1, 2)<

1.2 BasicLineDrawing

Set the color of pixels to approximate the appearance of aline from (X, yo) to (X1,
y1). It should be

* “straight” and pass through the end points.
* independent of point order.

 uniformly bright, independent of slope.

The explicit equation for alineisy = mx + b.

Note:
Given two points (X, Yo) and (X1, y1) that lie on aline, we can solve for m and b

for the line. Consider yg = mxg + b andy1 = mx1 + b.

Subtract yo from y1 to solve for m = A0 and b = Yo — mXxo.
X1—X0

Substituting in the value for b, this equation can be written asy = m(x — Xg) + yo.

Consider this ssimple line drawing algorithm:

int x
float m vy
m= (yl - y0) / (x1 - x0)
for (x = x0; x <= x1; ++x) {
y =m+#* (x - x0) + y0
set pi xel (x, round(y), |inecolor)

}

Problems with this algorithm:

* If X3 < Xg nothing isdrawn.

Solution: Switch the order of the pointsif X1 < Xg.

» Consider thecaseswhenm <1 andm > 1:

(@m<1

(b)ym>1

A different number of pixels are on, which implies different brightness between the two. Solution: Whenm > 1, loop over y =yp . . . y1 instead of x, then x =

1
m (Y = Yo) + Xo.

* Inefficient because of the number of operations and the use of floating point numbers.
Solution: A more advanced algorithm, called Bresenham's Line Drawing Algorithm.

2 Curves

2.1 Parametric Curves
There are multiple ways to represent curvesin two dimensions:

» Explicit: y =f (x), given x, find y.

Example:
The explicit form of alineisy = mx + b. Thereis a problem with this
representation-what about vertical lines?

« Implicit: f (x, y) =0, or in vector form,f (p) =0.

Example:
The implicit equation of alinethroughp gandp 1is

(X = x0)(Y1 = Yo) = (Y — Yo)(X1 = X0) = O.

Intuition:)
— Thedirection of thelineisthevectord=p 1-p o.

So avector from p g to any point on the line must be parallel to d.
— Equivalently, any point on the line must have direction from p o perpendic-

ulartod =(dy, -dx) = ~n.

This can be checked withd - d = (dx, dy) - (dy , =dx) = 0.
— Soforany pointp ontheling, (p —p o) -~n=0.

Here ~n = (y1 — Yo, Xo — X1). Thisis called anormal.

—Finaly, (p -p 0)-~n=(X-Xo, Y~ Yo) - (Y1~ Yo, X0~ X1) = 0.
Hence, the line can also be written as:

(P -po)-~n=0

Example:
Theimplicit equation for acircle of radiusr and center p ¢ = (X¢, Yc)

. 2 2 2
iIS(Xx=Xc) +(y-ye) =1,

or in vector form,
- 2 2
kp -p ck =r.

2
« Parametric: p_ = f (A\) wheref: R — R, may bewrittenasp (A) or (x(A), y(A)).

Example:
A parametric linethroughp gandp 1is
P (AN)=p o+Ad,

whered P1-pP o
Note that bounds on A must be specified:

— Linesegment fromp gtop 1:0<A<1.
— Ray fromp ginthedirectionof p 1: 0 <A <,

— Linepassingthroughp gandp .= <A<

Example:
What's the perpendicular bisector of the line segment betweenp gandp 1?

P otp 1

— 1 R
— Themidpointisp (A) whereA =73, thatis p o +2d = :
— Theline perpendicular to p (A) has direction parallel to the normal of

p (), whichis~n = (y1 = Yo, =(X1 = X0))-

Hence, the perpendicular bisector isthelinef(a)= p o :2 d + Q~n.

Example:

Find the intersection of thelinesI(A\) =p o+ Ado andf(p)=(p -p 1)-~m =0.

Substitute I(A) into the implicit equation f(p) to see what value of A
satisfiesit:

IA) po+tAo-p1 -
Ao -~n1=(p 1-p 0)-~N1
=0

Therefore, if dg - ~n1 =6 0,
A=(@ 1-p o) ~n1

do - ~n1

and the intersection point |sl()\)1 do*~N1 = 0, then the two lines are parallel
with no intersection or they are the same line.

Example:
The parametric form of acirclewithradiusrforO<A<1is

p (A) = (r cos(2mA), r sin(21A)).

This is the polar coordinate representation of a circle. There are an infinite
number of parametric representations of most curves, such as circles. Can you
think of others?

An important property of parametric curvesisthat it is easy to generate points along a
curve by evaluating p (A) at a sequence of A values.

2.1.1 Tangentsand Normals

The tangent to a curve at a point is the instantaneous direction of the curve. The line containing
the tangent intersects the curve at a point. It is given by the derivative of the parametric form
p (N) withregardto A. That is,

The normal is perpendicular to the tangent direction. Often we normalize the normal to have
unit length. For closed curves we often talk about an inward-facing and an outward-facing
normal. When the type is unspecified, we are usually dealing with an out ward-facing normal.

T(A)

"W fangent
normal : ——
[PN
. curve

We can aso derive the normal from the implicit form. The normal at apointp = (x,y) ona
curvedefinedby f(p) = f(x,y) =0is:

~n(p)=Vi(P)lp—= o , oy
of (x,y) of (x,y)

Derivation:
For any curvein implicit form, there also exists a parametric representation p (A) =

(X(A), y(A)). All points on the curve must satisfy f (p) = 0. Therefore, for any
choice of A, we have:

0 =1 (x(A), yN))
We can differentiate both side with respect to A:

0 = d%f(xm, y(A)) @)

0 = of dx(A) +df dy(A) 2

0 =0x d\ dy dA gp ©)
o) _of dx(A) dy(A)

0 = Vi)l ~1\) (4)

This last line states that the gradient is perpendicular to the curve tangent, which is
the definition of the normal vector.

Example:
The implicit form of acircleat the originis: f (X, y) = x2 + y2 —R2 = 0. The normal
at apoint (X, y) onthecircleis. Vf = (2x, 2y).

Exercise: show that the normal computed for aline is the same, regardless of whether it is com-
puted using the parametric or implicit forms. Try it for another surface.

2.2 Ellipses

* Implicit: X—azz +—y|[,22 = 1. Thisisonly for the special case wherethe ellipse is centered at

the origin with the major and minor axes aligned withy = 0 and x = 0.

Y

» Parametric: x(\) = a cos(211A), y(A) = b sin(21A), or in vector form

a cos(21A)

p (N = _ .
b sin(21TA)

The implicit form of ellipses and circles is common because there is no explicit functional form.
Thisisbecausey isamultifunction of x.

2.3 Polygons

A polygon is a continuous, piecewise linear, closed planar curve.
» A simple polygon is hon self-intersecting.
* A regular polygonissimple, equilateral, and equiangular.
* Ann-gon isaregular polygon with n sides.

* A polygonis convex if, for any two points selected inside the polygon, the line segment
between them is completely contained within the polygon.

Example:
To find the vertices of an n-gon, find n equally spaced points on acircle.

In polar coordinates, each vertex (x;, yi) = (r cos(8;), r sin(6;)), where 6; =i zn"—for
i=0...n-1.
* Totrandate: Add (X¢, Yc) to each point.
* Toscale: Changer.
* Torotate: Add 6 to each 6;.

2.4 Rendering Curvesin OpenGL

OpenGL does not directly support rendering any curves other that lines and polylines. However,
you can sample acurve and draw it asaline strip, e.g.,:

float x, v;
gl Begi n(G._LI NE_STRI P) ;
for (int t=0; t <=1 ; t +=.01)

computeCurve(t, &, &y);
gl Vertex2f (x, y);

}
gl End() ;

Y ou can adjust the step-size to determine how many line segments to draw. Adding line
segments will increase the accuracy of the curve, but slow down the rendering.

The GLU does have some specialized libraries to assist with generating and rendering curves. For
example, the following code renders a disk with ahole in its center, centered about the z-axis.

GLUguadric g = gl uNewQuadric();
gl ubi sk(qg, innerRadius, outerRadius, sliceCount,
1); gl uDel eteQuadric(q);

See the OpenGL Reference Manual for more information on these routines.

3 Transformations

3.1 2D Transformations

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for
Several purposes:

1. Change coordinate frames (world, window, viewport, device, €tc).

2. Compose objects of simple parts with local scal e/position/orientation of one part defined
with regard to other parts. For example, for articulated objects.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:
1. Rigid body - Preserves distance and angles.
» Examples: trandation and rotation.
2. Conformal - Preserves angles.
» Examples: trand ation, rotation, and uniform scaling.
3. Affine - Preserves paralelism. Linesremain lines.

» Examples: trandation, rotation, scaling, shear, and refle ction.

Examples of transformations:

-~ -~

» Trandation by vector t:p 1 =p o+ t.

. ~ sin®) cos(®)
Rotation counterclockwiseby 8:p 1 = cos(B) - sin(®) p o.

10

4

* Uniform scalingby scalara:p 1 = 0 a py

A

a o

* Nonuniform scalingbyaandb:p 1 =0 b p o.

A

a o0

Y

A

3

v

v

*Shear byscdarh:p 1 = 01 p o

0 1

Reflection aboutthey-axisp 1 = -1 0 py

L~

v

3.2 Affine Transformations

_~

An affinetransformation takesapointp toq accordingtoq = F(p)= Ap + t, alinear transfor-
mation followed by atrandation. Y ou should understand the following proofs.
11

q (N

* Theinverse of an affine transformation is also affine, assumi ng it exists.

Proof:
Letq = Ap + tand a;‘sumeA i exists, i.e. det(A) 6= 0. N
ThenApg g A-lg A- st <54 1.

-1 -1 -

wheaeB=A andd=-A t.

Note:
Theinverse of a2D linear transformation is
ab 1 1 d b
A1= cd =ad-bc -c —a .

* Lines and parallelism are preserved under affine transformations.

AIT(A) + ~t

Proof: -
To prove lines are preserved, we must show that g (A) =F (I(A)) isaline, where
F(P)=Ap +t andI(A)=p o+ Ad.

A(p o+ Ad) +t
(Ap o +t)+AAd

Thisis aparametric form of aline through Ap ¢ + t with direction Ad.

+ Given aclosed region, the area under an affinetransformation Ap + tisscaled by

det(A). Note:

— Rotations and trandations have det(A) = 1.

[N
o

ao
O b

— Singularities have det(A) = 0.

— Scaling A = has det(A) = ab.

Example:

The matrix A = mapsall pointsto the x-axis, <o the area of any dlosed

region will become zero. We have det(A) = 0, which verifies that any closed
region's areawill be scaled by zero.

12

» A composition of affine transformationsis still affine.

Proof: _ _

LetFi(p)=Ap + trandFo(p)= Ap + to.
Then,

F()= FaFi(p)) _

= AxAp + tp+ D

-~

_ T AApp +(A2 it o).

LettingA=AxAjand t=A t1+ ty,wehaveF(p)= Ap + t,andthisis
an affine transformation.

~

3.3 Homogeneous Coordinates

Homogeneous coor dinates are another way to represent points to simplify the way in which we
express affine transformations. Normally, bookkeeping wou Id become tedious when affine

trans-formations of the form Ap + t are composed. With homogeneous coordinates, affine

transfo rma-tions become matrices, and composition of transformations is as simple as matrix
multiplication. In future sections of the course we exploit thisin much more powerful ways.

p
With homogeneous coordinates, apoint p isaugmented withal, toformp™= 1
All points (ap, @) represent the same point p_ for real a 6= 0.

Given p~ in homogeneous coordinates, to get p , wedivide p~ by itslast component and discard
the last component.

Example:
The homogeneous points (2, 4, 2) and (1, 2, 1) both represent the Cartesian point
(1, 2). It'sthe orientation of p” that matters, not its length.

Many transformations become linear in homogeneous coordinates, including affine transforma-
tions:

Qy =cd Py Tty
Ox ab Px tx
= cdty py
a b tX pX
=A -tp

13

To produce q” rather than g, we can add arow to the matrix:
T or1 p=cdty p.
~ a b t
At a Pt

Thisislinear! Bookkeeping becomes simple under composition.

Example:
Fa(F2(Fy(p))), whereFi(p) = Aj(p) +t; becomes MsM,M;p~, where M;
Ai

~nT
v}

1
ES

With homogeneous coordinates, the following properties of affine transformations become
appar-ent:

» Affine transformations are associative. For
affine transformations F1, F2, and F3,

(F3°F2)°F1 =F3°(F2°Fy).

» Affine transformations are not commutative.
For affine transformations F1 and F»,

FooF1 =6 F1°Fo.

3.4 Usesand Abuses of Homogeneous Coordinates

Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot be
treated in quite the same way. For example, consider the midpoint between two points p 1 = (1, 1)
and p 2 = (5, 5). The midpoint is (p 1 + p 2)/2 = (3, 3). We can represent these points in
homogeneous coordinatesasp™y = (1, 1, 1) and p”2 = (5, 5, 1). Directly applying the same
computation as above gives the same resulting point: (3, 3, 1). However, we can also represent these
pointsasp™1=(2,2,2)and p"2 = (5, 5, 1). We then have (p"1 + p”"2)/2 = (7/2, 712, 3/2), which
cooresponds to the Cartesian point (7/3, 7/3). Thisisadifferent point, and illustrates that

we cannot blindly apply geometric operations to homogeneous coordinates. The simplest
solution is to always convert homogeneous coor dinates to Cartesian coordinates. That said,
there are several important operations that can be performed correctly in terms of homogeneous
coordinates, as follows.

14

Affine transformations. An important case in the previous section is applying an affin e trans-
formation to a point in homogeneous coordinates:

0§ =FE@)=Ap +t ; (%)
Qg =Ap =(x,y .1 ©)

It is easy to see that this operation is correct, since rescaling p” does not change the result:
X . ' @)

A(ap”) = a(Ap”) = aq” = (ax, ay, a)
which is the same geometric pointasq” = (X, Y, 1)T
Vectors. We can represent a vector ~v = (X, y) in homogeneous coordinates by setting the last

element of the vector to be zero: v© = (X, y, 0). However, when adding a vector to a point, the
point must have the third component be 1.

~

g =tV (8
Ky, 1) = (X, Yp, 1)+ (XY, 0))

Theresult isclearly incorrect if the third component of the vector is not 0.

Aside:
Homogeneous coordinates are a representation of pointsin projective geometry.

3.5 Hierarchical Transfor mations

It is often convenient to model objects as hierarchically connected parts. For example, a robot
arm might be made up of an upper arm, forearm, palm, and fingers. Rot ating at the shoulder on
the upper arm would affect all of the rest of the arm, but rotating the forearm at the elbow would
affect the palm and fingers, but not the upper arm. A reasonable hiera rchy, then, would have the
upper arm at the root, with the forearm as its only child, which in turn connects only to the palm,
and the palm would be the parent to all of the fingers.

Each part in the hierarchy can be modeled in its own loca coordinates, independent of the other
parts. For arobot, a simple square might be used to model each of the upper arm, forearm, and so
on. Rigid body transformations are then applied to each part relative to its parent to achieve the
proper aignment and pose of the object. For example, the fingers are positioned to be in the
appropriate places in the palm coordinates, the fingers and p am together are positioned in
forearm coordinates, and the process continues up the hierarchy. Then a transformation applied
to upper arm coordinates is also applied to al parts down the hierarchy.

15

3.6 Transformationsin OpenGL

OpenGL manages two 4 x 4 transformation matrices. the modelview matrix, and the projection
matrix. Whenever you specify geometry (using gl Ver t ex), the vertices are transformed by the
current modelview matrix and then the current projection matrix. Hence, you don't have to
perform these transformations yourself. Y ou can modify the entries of these matrices at any time.
OpenGL provides severa tilities for modifying these matrices. The modelview matrix is
normally used to represent geometric transformations of objects, the projection matrix is
normally used to store the camera transformation. For now, we'll focus just on the modelview
matrix, and discuss the camera transformation later.

To modify the current matrix, first specify which matrix is go ing to be manipulated: use gl Mat ri xMode(GL
MODE to modify the modelview matrix. The modelview matrix can then be initialized to the identity with

gl Loadl denti ty() . The matrix can be manipulated by directly filling its values, multiplying it

by an arbitrary matrix, or using the functions OpenGL provides to multiply the matrix by specific
transformation matrices (gl Rot at e, gl Transl at e, and gl Scal e). Note that these transforma-

tions right-multiply the current matrix; this can be confusing since it means that you specify
transformations in the reverse of the obvious order. Exercise: why does OpenGL right-multiply

the current matrix?

OpenGL provides a stacks to assist with hierarchical transformations. There is one stack for the
modelview matrix and one for the projection matrix. OpenGL provides routines for pushing and
popping matrices on the stack.

The following example draws an upper arm and forearm with shoulder and elbow joints. The
current modelview matrix is pushed onto the stack and popped at the end of the rendering, so, for
example, another arm could be rendered without the transformations from rendering this arm
affecting its modelview matrix. Since each OpenGL transformation is applied by multiplying a
matrix on the right-hand side of the modelview matrix, the transformations occur in reverse
order. Here, the upper arm is translated so that its shoulder position is at the origin, then it is
rotated, and finally it is translated so that the shoulder isin its appr opriate world-space position.
Similarly, the forearm is trandlated to rotate about its elbow position, then it is trandated so that
the elbow matches its position in upper arm coordinates.

gl PushMat ri x();

gl Transl at ef (wor | dShoul der X, wor | dShoul derY, 0.0f);

dr awShoul der Joi nt () ;

gl Rot at ef (shoul der Rot ati on, 0.0f, 0.0f, 1.0f);

gl Transl at ef (- upper Ar nShoul der X, -upper Ar nShoul derY, 0.0f);
dr awUpper Ar nShape() ;

gl Transl at ef (upper Ar nEl bowX, upper Ar nEl bowY, 0. 0f);

16

dr awkl bowdoi nt () ;

gl Rot at ef (el bowRot ati on, 0.0f, 0.0f, 1.0f);

gl Transl at ef (- f or ear nEl bowX,
0. 0f); drawFor ear nShape();

gl PopMatri x();

- f or ear nEl bowy,

17

4 Coordinate Free Geometry

Coordinate free geometry (CFG) is a style of expressing geometric objects and relations that
avoids unnecessary reliance on any specific coordinate syst em. Representing geometric
guantities in terms of coordinates can frequently lead to confusion, and to derivations that rely on
irrelevant coordinate systems.

We first define the basic quantities:

1. A scalar isjust area number.
2. A point isalocation in space. It does not have any intrinsic coordinates.

3. A vector isadirection and amagnitude. It does not have any intrinsic coordinates.

A point is not a vector: we cannot add two points together. We cannot compute the magnitude of
apoint, or the location of avector.

Coordinate free geometry defines a restricted class of operat ions on points and vectors, even
though both are represented as vectors in matrix algebra. The following operations are the only
operations allowed in CFG.

1. k~vk: magnitude of avector.
2.p 1+~V] =p 2,0r~vy =p 2—p 1..point-vector addition.
3. ~v1 + ~vo = ~v3.: vector addition

4. a~v1 = ~Vo: vector scaling. If a > 0, then ~v, isanew vector with the same direction as
~V1, but magnitude ak~v1k. If a < 0, then the direction of the vector is reversed.
5. ~vq - ~v2: dot product = k~v1kk~vok cos(8), where 8 is the angle between the vectors.

6. ~v1 X ~Vvp: cross product, where ~v1 and ~vo are 3D vectors. Produces a new vector

perpedicular to ~v1 and to ~v»p, with magnitude k~v1kk~vok sin(8). The orientation of the
vector is determined by the right-hand rule (see textbook).

P

i aj~Vj = ~V: Linear combination of vectors

= =

8. jaip i=p ,if jaj=1:afinecombination of points.

~N

9. jaip i=~v,if jai=0

18

Example:

*p1+(P2-p3=p 1+t~vV=p a4

*ap 2-0p 1 =0~V] =~Vo.

1 i, 1 _
* 2(Prtp2)=p1+2(P2-p1)=p1+T2-V=p 3.

Note:

In order to understand these formulas, try drawing some pictures to illustrate
different cases (like the ones that were drawn in class).

Note that operations that are not in the list are undefined.

These operations have a number of basic properties, e.g., commuitivity of dot product: ~v, - ~vo =

~Vvo - ~Vv1, digtributivity of dot product: ~v1 - (~v2 + ~v3) = ~Vq - ~Vo + ~V1 - ~V3.
CFG helps us reason about geometry in several ways:

1. When reasoning about geometric objects, we only care about the intrinsic geometric prop-

erties of the objects, not their coordinates. CFG prevents us from introducing irrelevant
concepts into our reasoning.

. CFG derivations usually provide much more geometric intuition for the steps and for the
results. It is often easy to interpret the meaning of a CFG formula, whereas a coordinate-
based formulais usually quite opagque.

. CFG derivations are usually ssmpler than using coordinates, since introducing coordinates
often creates many more variables.

. CFG provides a sort of “type-checking” for geometric reaso ning. For example, if you derive a
formulathat includesaterm p - ~v, that is, a “point dot vector,” then there may be a bug in
your reasoning. In thisway, CFG is analogous to type-checking in compilers. Although you
could do all programming in assembly language — which doe s not do type-checking and will
happily led you add, say, afloating point value to a fu nction pointer — most people would
prefer to use a compiler which performs type-checking and can thus find many bugs.

In order to implement geometric algorithms we need to use coordinates. These coordinates are part of
the representation of geometry — they are not fundamental to reasoning about geometry itself.

Example:

CFG says that we cannot add two points; there is no meaning to this operation. But
what happensif we try to do so anyway, using coordinates?

Suppose we have two points: p g = (0,0)andp 1 =(1, 1), and we add them together
coordinate-wiseep 2=p o+p 1=(1,1). Thisisnot avalid CFG operation, but
we have done it anyway just to tempt fate and see what happens. We see that the

19

resulting point is the same as one of the original points:p 2 =p 1.

Now, on the other hand, suppose the two points were represented in a different
coor-dinate frame: g o= (1, 1) andq 1 = (2, 2). The pointsq g and q 1 arethe
same pointsasp o and p 1, with the same vector between them, but we have just
represented them in a different coordinate frame, i.e.,, with a different origin.
Adding together the pointsweget g 2 =q o+ q 1 = (3, 3). Thisis a different
point fromq o and q 1, whereas before we got the same point.

The geometric relationship of the result of adding two points depends on the coordi-
nate system. There isno clear geometric interpretation for adding two points.

Aside:

It is actually possible to define CFG with far fewer axioms than the ones listed
above. For example, the linear combination of vectors is simply addition and
scaling of vectors.

20

5 3D Objects

5.1 Surface Representations

Aswith 2D objects, we can represent 3D objectsin parametric and implicit forms. (There are
also explicit formsfor 3D surfaces — sometimes called “heig ht fields” — but we will not cover
them here).

5.2 Planes

e Implicit: (p - p o) - ~n=0,wherep gisapointin R3 on the plane, and ~n isanormal
vector perpendicular to the plane.

A plane can be defined uniquely by three non-colinear points P 1.p 2, p__3. Let~a=p 2-p 1and
b=p 3-p 1,50 ~a and b arevectorsin the plane. Then ~n = ~a x b. Since the points
are not colinear, k~nk =6 0.

* Parametric: s (a,B)=p o+ a~a+Bb,fora, B eR.

Note: .
Thisis similar to the parametric form of aline: I(a) = p o + a~a.

A planar patch is aparallelogram defined by boundson a and 3.

Example:
LetO<a<land0<B=<1:

21

5.3 Surface Tangentsand Normals

Thetangent toacurveat p istheinstantaneous direction of the curveat p .

Thetangent planeto asurfaceat p isanaogous. It is defined as the plane containing tangent
vectorsto all curves on the surface that go through p .

A surfacenormal at apoint p isavector perpendicular to atangent plane.

5.3.1 Curveson Surfaces

The parametric form p (a, B) of a surface defines a mappi ng from 2D pointsto 3D points: ever y

2D pOI nt (a B) n R 2 corresponds to a3D point p |nR . Moreover, consider acurve l(A) = _
(a(h), B(N)) in 2D — thereis a corresponding curve in 3D contained within t hesrtace) (N) =
p (I(A)).

5.3.2 Parametric Form

For acurvec (M) = (x(A), y(A), z()\))T in 3D, thetangent is
dc (A) dx(A) dy(A) dz(A)

d\ = d\ , dA , dA . (10)

For asurface point s (a, B), two tangent vectors can be computed:

% andds (12)
oa op

Derivation:
Consider apoint (ag, Bg) in 2D which correspondsto a3D points (ag, Bo).

Define two straight linesin 2D: -

d(A1) = (A1, Bo) (12
e (\)= (a0 M) (13)

These lines correspond to curvesin 3D:

(14)
(15)

o
—_
>
[y
~
1

s (d(A1)
s (d(A2))

(0]
—_~
>

N
—

1

22

Using the chain rule for vector functions, the tangents of these curves are:

a5 s+ oo = OS (16
o\ dad\; 9B I da
b i Ky iy - O ar

o\y daodhy OB IA oB

Thenormal of s ata=ag, B =Bois

~n(ag, Bo) = 2@ ap,Bo I'x P a0 I,
S

(18)

The tangent plane is a plane containing the surface at s (ag, Bo) with normal vector equal to the
surface normal. The equation for the tangent planeis:

~n(ao, Bo) - (P —'s (ap, Bp)) = O.

(19)

What if we used different curvesin 2D to define the tangent plan €? It can be shown that we get
the same tangent plane; in other words, tangent vectors of all 2D curves through a given surface
point are contained within a single tangent plane. (Try this as an exercise).

5.3.3

In the implicit form, a surfaceis defined as the set of pointsp that satisfy f (p) = 0 for some

Note:

The normal vector is not unique. If ~n is a normal vector, then any vector a~n is
also normal to the surface, for a € R. What this means is that the normal can be
scaled, and the direction can be reversed.

Implicit Form

function f. A normal is given by the gradient of f,

~n(p) = Vi(P)lp-

of(p) of(p) of(p)

where Vf = x_, oy , oz

¥

Derivation: _
Consider a3D curvec (A) that is contained within the 3D surface, and that passes
through p~ g at Ag. In other words, ¢ (Ag) =p o and

f(ch) = 0 (21)

23

for al A. Differentiating both sides gives:

of
=0 (22)
oA
Expanding the |eft-hand side, we see:
i = i@i +iac__y +@C__Z (23)
o\ OXoN 9yoN 0z o\
dc
= Vi(p)lp-dA =0 (24)

This last line states that the gradient is perpendicular to the curve tangent, which is
the definition of the normal vector.

Example:
The implicit form of asphereis. f(p) = kp -ck 2_R? = 0. Thenormal a apoint
p isVf=2(p -c).

5.4 Parametric Surfaces
5.4.1 Bilinear Patch

A bilinear patch is defined by four points, no three of which are colinear.

P

oilg(@ a4y

Givenp 00, P 01,P 10, P 11, define

(@) = (1-a)p oo +ap 10,

li(@) = (1-a)p o1 +ap 11.

Exercise: show that the normal computed for a plane is the same, regardless of whether it is
computed using the parametric or implicit forms. (This was done in class). Try it for another
surface.

24

Then connect Ig(a) and |1 (a) with aline:

p (a, B) = (1 - B)lg(a) * Pla(@),
forO<a<landOs<B<1.

Question: when is abilinear patch not equivalent to a planar patch? Hint: a planar patch is
defined by 3 points, but a bilinear patch is defined by 4.

54.2 Cylinder

A cylinder is constructed by moving apoint on aline | along a planar curve pg(a) such that the
direction of the lineis held constant.

If the direction of thelinel isd, the cylinder is defined as

p (o, B) = po(a) + Bd.

~

A right cylinder hasd perpendicular to the plane containing po(a).

A circular cylinder isacylinder where pp(a) isacircle.

Example:

A right circular cylinder can be defined by po(a) = (r cos(a), r sin(a), 0), for 0 <
a<2mandd=(0,0,1).

So po(a, B) = (r cos(a), rsin(a), B), for0<B < 1.

To find the normal a a point on this cylinder, we can use the imp licit form
f(x,y,2)= x2 + y2 - r2 =0tofind Vf=2(x,y, 0).

Using the parametric form directly to find the normal, we have

o op
da = r(- sin(a), cos(a), 0), and 9B = (0, 0, 1), so
o op
EE X£ = (r cos(a)r sin(a), 0).
Note:
The cross product of two vectors ~a = (a1, az, as) and b = (b1 - b2, b3) can

25

be found by taking the determinant of the matrix,

ajazaz.bp
bo b3

5.4.3 Surface of Revolution

To form a surface of revolution, we revolve a curve in the x-z plane, ¢ (B) = (x(B), 0, z(B)),
about the z-axis.

Hence, each point on ¢ traces out a circle paralel to the x-y plane with radius [x(B)|. Circles
then have the form (r cos(a), r sin(a)), where a is the parameter of revolution. So the rotated
surface has the parametric form

s (a, B) = (x(B) cos(a), x(B) sin(a), z(B)).

Example:
If ¢ (B) isaline perpendicular to the x-axis, we have aright circular cylinder.

A torusis asurface of revolution:

¢ (B) =(d +rcos(B), 0, r sin(B)).

54.4 Quadric

A quadric is a generdization of a conic section to 3D. The implicit form of a quadric in the
standard position is

ax2+by2+czz+d:O,
2 2
ax +by +ez=0,

fora, b, c, d, e € R. There are six basic types of quadric surfaces, which depend on the signs of
the parameters.

They are the élipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic
paraboloid, and hyperbolic paraboloid (saddle). All but the hyperbolic paraboloid may be ex-
pressed as a surface of revolution.

26

Example:
An dlipsoid has the implicit form

In parametric form, thisis

s (a, B) = (a sin(B) cos(a), b sin(B) sin(a), ¢
—cos(B)), fore[0, mlanda e (-0, @)

5.4.5 Polygonal Mesh

A polygonal mesh isacollection of polygons (vertices, edges, and faces). As polygons may be

used to approximate curves, a polygonal mesh may be used to approximate a surface.

edge .
2 |

1

face
S~y

vertex ’
A polyhedron is aclosed, connected polygona mesh. Each edge must be shared by two faces.
A facerefersto aplanar polygonal patch within a mesh.

A mesh issimple when its topology is equivaent to that of asphere. That is, it has no holes.

Given a parametric surface, s (a,), we can sample values of a and 3 to generate a polygonal
mesh approximating s .
5.5 3D Affine Transformations

Three dimensional transformations are used for many different purposes, such as coordinate
trans-forms, shape modeling, animation, and camera modeling.

27

~ R3x3 ~ R3

An gffine transform in 3D looksthe sameasin2D: F(p)= Ap + tforAe p, te LA
homogeneous affine transformation is

)) 1M = ~0r~ |
F(p") =Mp,” wherep™ = A t

Trandation: A=1, t=(ty, ty,tz).
Scaling: A = diag(sx, Sy, Sz), t=0.

Rotation: A=R, t=0, and det(R) = 1.

3D rotations are much more complex than 2D rotations, so we will consider only elementary
rotations about the X, y, and z axes.

For arotation about the z-axis, the z coordinate remains unchanged, and the rotation occurs in
thex-y plane. Soif ¢ = Rp ,thenqg; =p; . Thatis,
Qv sin(B)cos(6) Py
Ox = cos(0) - sin(B) Px

Including the z coordinate, this becomes
Rz (8) = sin(0) cos(8) O

cos(6) -sin(@) O

0 0 1
Similarly, rotation about the x-axisis
Ry(8) = 0 cos(B8) - sin(B)
1 0 0

0 sin(B) cos(0)
For rotation about the y-axis,
Ry (0) = 0 1 0 .
cos(B) 0 sin(B)

- sin(0) 0 cos(0)

28

5.6 Spherical Coordinates

Any three dimensional vector ~u = (uy, Uy , Uz) may be represented in spherical coordinates.
By computing a polar angle ¢ counterclockwise about the y-axis from the z-axis and an
azimuthal angle 6 counterclockwise about the z-axis from the x-axis, we can define a vector in

the S\pproprlate direction. Then it is only a matter of scaling this vector to the correct length (u
+Uy+Uz) — tomatch~u.

Given angles @ and 8, we can find a unit vector as ~u = (cos(8) sin(¢g), sin(B) sin(®), cos(y)).
2 212
(ux +uy)

Given avector ~u, itsazimuthal angleisgivenby 6 = arctan .+ anditspolar angleis ¢ =

arctan u; . Thisformuladoes not require that ~u be a unit vector.
5.6.1 Rotation of a Point About aLine

Spherical coordinates are useful in finding the rotation of a point about an arbitrary line. Let
[(A) = A~u with k~uk = 1, and ~u having azimuthal angle 8 and polar angle ¢. We may compose

elementary rotations to get the effect of rotating a point p about I(A) by a counterclockwise
angle p:

1. Align ~u with the z-axis.
 Rotate by —6 about the z-axis so ~u goes to the xz-plane.
* Rotate up to the z-axis by rotating by —¢ about the y-axis.
Hence, g = Ry (-@)Rz (-6)p
2. Apply arotation by p about the z-axis: Rz (p).

29

3. Invert thefirst step to move the z-axis back to ~u: Rz (0)Ry (@) = (Ry (-9)Rz (-6))
Finally, our formulaisq = R-u(p)p =Rz (B)Ry (®)Rz (P)Ry (-9)Rz (-6)p .

5.7 Nonlinear Transformations

Example:
To create anonlinear taper, instead of constantly scalingin x andy for all z, asin
a0 o0
q 0 b 0 p
=0 0 1

let a and b be functions of z, so.

q = (O_Z b(p z)
ap) 0 0O
0 0 1

A linear taper lookslike a(z) = ag + a1 z.

A gquadratic taper would bea(z) = ag + a1z + czzz.

-1

Affine transformations are a first-order model of shape defor mation. With affine
transformations, scaling and shear are the simplest nonrigid deformations. Common higher-
deformations include tapering, twisting, and bending.

order

(c) Linear taper (d) Nonlinear taper

5.8 Representing Triangle Meshes

A triangle mesh is often represented with alist of vertices and alist of triangle faces. Each vertex
consists of three floating point values for the X, y, and z positions, and a face consists of three

30

indices of vertices in the vertex list. Representing a mesh this way reduces memory use, since each
vertex needs to be stored once, rather than once for every face it is on; and this gives us connectivity
information, since it is possible to determine which faces share a common vertex. This can easily be
extended to represent polygons with an arbitrary number of vertices, but any polygon can be
decomposed into triangles. A tetrahedron can be represented with the following lists:

Vertexindex | X |y | z Faceindex | Vertices
0 0(0]|0 0 0,12
1 1(0]|0 1 0,31
2 0|10 2 1,32
3 0(o0]|1 3 2,30

Notice that vertices are specified in a counter-clockwise or der, so that the front of the face and
back can be distinguished. Thisis the default behavior for OpenGL, although it can also be set to
take face vertices in clockwise order. Lists of normas and texture coordinates can also be
specified, with each face then associated with alist of verti ces and corresponding normals and
texture coordinates.

5.9 Generating Triangle Meshes

As stated earlier, a parametric surface can be sampled to generate a polygonal mesh. Consider
the surface of revolution

S(a, B) = [x(a) cos B, x(a) sin 3, 2(0()]T
T

with the profile C(a) = [x(a), 0, z(a)] and < [0, 211].
To take a uniform sampling, we can use
a= 91700 and = 2W
m n
where m is the number of patchesto take along the z-axis, and n is the number of patchesto take
around the z-axis.

Each patch would consist of four vertices as follows:

Sij = =
i ~ Sij :
+ 1)AB) si+Lj+1 ie [0, m - 1]1
for
jel0,n-1]
i,j+1
To render this as atriangle mesh, we must tesselate the sampled quads into triangles. Thisis
accomplished by defining triangles Pjj and Qjj given S;j as follows:

and
Pij = (Sij, Si+1j, Si+1,j+1), Qij = (Sij, Si+ij+1, Sij+)

31

6 CameraModes

Goal: To model basic geometry of projection of 3D points, curves, and surfaces onto a 2D
surface, the view plane or image plane.

6.1 Thin LensMode

Most modern cameras use a lens to focus light onto the view plane (i.e., the sensory surface).
This is done so that one can capture enough light in a sufficiently s hort period of time that the
objects do not move appreciably, and the image is bright enough to show significant detail over a
wide range of intensities and contrasts.

Aside:

In a conventional camera, the view plane contains either photoreactive chemicals;
in adigital camera, the view plane contains a charge-coupled device (CCD) array.
(Some cameras use a CMOS-based sensor instead of a CCD). In the human eye,
the view planeis a curved surface called the retina, and and contains a dense array
of cells with photoreactive molecules.

Lens models can be quite complex, especialy for compound lens found in most cameras. Here
we consider perhaps the simplist case, known widely as the thin lens model. In the thin lens
model, rays of light emitted from a point travel aong paths through the lens, convering at a point
behind the lens. The key gquantity governing this behaviour is called the focal length of the lens.
Thefocal length,, |f |, can be defined as distance behind the lens to which rays from an infinitely
distant source convergein focus.

surface point -\ 3

view plane | \) —
lens | X~
.
— : —ets >
I-‘ — optical axis

PR V. |
<« 1

More generaly, for the thin lens model, if z1 is the distance from the center of the lens (i.e., the
nodal point) to a surface point on an object, then for afocal length |f |, the rays from that surface
point will bein focus at a distance zg behind the lens center, where z1 and zg satisfy the thin lens
eguation:

|-

=1 +1 (25)

| 20 171

—

32

6.2 Pinhole Camera Modd

A pinhole camerais an idealization of the thin lens as aperture shrinks to zero.

view plane
\

L-—----— ‘\ infini;%s\l 3

Light from a point travels along a single straight path through a pinhole onto the view plane. The
object isimaged upside-down on the image plane.

Note:

We use aright-handed coordinate system for the camera, with the x-axis as the hor-
izontal direction and the y-axis as the vertical direction. This means that the optical
axis (gaze direction) is the negative z-axis.

Hereis another way of thinking about the pinhole model. Suppose you view a scene with one eye
looking through a square window, and draw a picture of what you see through the window:

(Engraving by Albrecht Durer,” 1525).

33

The image you'd get corresponds to drawing a ray from the eye position and intersecting it with
the window. This is equivalent to the pinhole camera model, except that the view plane is in
front of the eye instead of behind it, and the image appears rightside-up, rather than upside down.
(The eye point here replaces the pinhole). To see this, consider tracing rays from scene points
through a view plane behind the eye point and one in front of it:

<5

& I

Ji
iy
/|

For the remainder of these notes, we will consider this camera model, as it is somewhat easier to
think about, and also consistent with the model used by OpenGL.

4

e

=
—
< TN

Aside:

The earliest cameras were room-sized pinhole cameras, called camera obscuras.
You would walk in the room and see an upside-down projection of the outside
world on the far wall. The word camera is Latin for “room;” camera obscura
means “dark room.”

18th-century camera obscuras. The camera on the right uses a mirror in the roof to
project images of the world onto the table, and viewers may rotate the mirror.

6.3 Camera Projections

Consider apoint p in 3D space oriented with the camera at the origin, which we want to project
onto the view plane. To project py toy, wecan usesimilar trianglestogety = _py Thisis

Pz
per spective projection.

Notethat f < 0, and the focal lengthis|f |.

In perspective projection, distant objects appear smaller than near objects:

34

f_/’_.‘,-f p
f- y

1

pinhole image

Figure1: *

Perspective projection

The man without the hat appears to be two different sizes, even though the two images of him
have identical sizes when measured in pixels. In 3D, the man without the hat on the left is about
18 feet behind the man with the hat. This shows how much you might expect size to change due
to perspective projection.

6.4 Orthographic Projection

For objects sufficiently far away, rays are nearly paralel, and variation in pz isinsignificant.

35

Here, the baseball players appear to be about the same height in pixels, even though the batter is
about 60 feet away from the pitcher. Although this is an example of perspective projection, the
camera is so far from the players (relative to the camera foca length) that they appear to be
roughly the same size.

In the limit, y = apy for some real scalar a. Thisis orthographic projection:

y
] + ;
Z‘ . »
« e
image

6.5 Camera Position and Orientation

Assume camera coordinates have their origin at the “eye” (pi nhole) of the camera, e .

Yy Vv

Figure 2:

Let ~g be the gaze direction, so avector perpendicular to the view plane (parale to the camera
Z-axis) is
w~=—"0 (26)
k~gk

36

We need two more orthogonal vectors ~u and ~Vv to specify a camera coordinate frame, with ~u
and ~v parallel to the view plane. It may be unclear how to choose them directly. However, we
can instead specify an “up” direction. Of course this up directi on will not be perpendicular to the
gaze direction.

~ ~

Let tbe the “up” direction (e.g., toward the sky so t= (0, 1, 0)). Then we want ~v to be the closest

vector in the viewplaneto t. Thisisreally just the projection of t onto the view plane. And of
course, ~u must be perpendicular to ~v and w~. In fact, with these definitionsit is easy to show that ~u

must also be perpendicular to t, so one way to compute ~u and ~v from t and ~g is as follows:

~y = txws ~VIWS (27)
kt x w~k
Of course, we could have use many different “up” directions, solongas txw~=60.

Using these three basis vectors, we can define a camer a coor dinate system, in which 3D points
are represented with respect to the cameras position and orientation. The camera coordinate
system has its origin at the eye point e and has basis vectors ~u, ~v, and w~, corresponding to
the X, y, and z axes in the camera's local coordinate system. This explains why we chose w~ to
point away from the image plane: the right-handed coordinate system requires that z (and, hence,
w~) point away from the image plane.

Now that we know how to represent the camera coordinate frame within the world coordinate
frame we need to explicitly formulate the rigid transformation from world to camera coordinates.
With this transformation and its inverse we can easily express points either in world coordinates
or camera coordinates (both of which are necessary).

To get an understanding of the transformation, it might be helpful to remember the mapping from
points in camera coordinates to points in world coordinates. For example, we have the following
correspondences between world coordinates and camera coordinates. Using such correspondences

Camera coordinates (Xc, Y¢, Z¢) | World coordinates (X, y, z)
(0,0,0) ¢
0,0,f) e +fw~
0, 1,0 g +~v
0,1,1) e +~v+fw~

it is not hard to show that for a general point expressed in camera coordinates as p_C = (X¢, Ye,
Z¢), the corresponding point in world coordinates is given by

W

p = efj}- Xc~U+ Y~V + Zcw~ (28)
= ~u ~V W~ p—C +e (29)
M p’ (30)

37

where W~ = U2 Vo W2 (31)

uip vi wi
uz vz ws
Note: We can define the same transformation for points in homo geneous coordinates:
M’ew = -0' 1
Mew €

Now, we aso need to find the inverse transformation, i.e., fr om world to camera coordinates.
Toward this end, note that the matrix Mcy, is orthonormal. To see this, note that vectors ~u, ~v
and, w~ are al of unit length, and they are perpendicular to one another. Y ou can also verify this
by computing Mcw Mcw . Because Mgy is orthonormal, we can express the inverse
transformation (from camera coordinates to world coordinates) as

_C T, _w
P = My (p -€)
W
| :_ IVIWCp_ - d ’
1 ~ul T —
Where MWC = MCW = ~V - (Why?)i and d = I\/ICW e .
T
W~ -
C W
In homogeneous coordinates, p~ = Mycp~ , where
Mwec M e
My = ~0T = Qwe
= Mwec O~ | -a

:
0 1-0r 1
This transformation takes a point from world to camera-centered coordinates.

6.6 Perspective Projection

Above we found the form of the perspective projection using the idea of similar triangles. Here
we consider a complementary algebraic formulation. To begin, we are given

* apoint p_C in camera coordinates (uvw space),

* center of projection (eye or pinhole) at the origin in camera coordinates,

* image plane perpendicular to the z-axis, through the point (0, O, f), withf <0, and

38

* line of sight isin the direction of the negative z-axis (in camera coordinates),

we can find the intersection of the ray from the pinhole to p_C with the view plane.

c

C
Theray from the pinnoletop™ isr (A\) =A(p - 0). _

The image plane has normal (0, 0, 1) = ~n and contains the point (0, 0, f) = f .Soapoint X ¢ ison
c c ¢ c ¢ c
~f).~n=0.1f
the plane when (' x X =(x ,y ,z), thentheplanesatisfies z - f=0.
To find the intersection of the plane z~ = f and ray ~r(A) = Ap__, substitute ~r into the plane equation.
Withp "= (p" ,p°,p°) wehaveAp® =f,soA* =f/p" , and theintersection is
X oy z z z
c ¢ c _
ST PR =
~f(N)= f f ,f =f , .1 X (32)

Thefirst two coordinates of thisintersection x * determine the image coordinates.

2D points in the image plane can therefore be written as

X*fpxC 100 f ¢

Vo= Pye = 010 pfyp.
The mapping from p_C to (X, y*, 1) iscalled per spective projection.

Note:
Two important properties of perspective projection are:

* Perspective projection preserves linearity. In other words, the projection of a
3D lineis alinein 2D. This means that we can render a 3D line segment by
projecting the endpoints to 2D, and then draw a line between these points in
2D.

* Perspective projection does not preserve paralelism: two parallel linesin 3D
do not necessarily project to paralel lines in 2D. When the projected lines
inter-sect, the intersection is called a vanishing point, since it corresponds to
apoint infinitely far away. Exercise: when do paralléel lines project to parallel
lines and when do they not?

Aside:

The discovery of linear perspective, including vanishing points, formed a corner-
stone of Western painting beginning at the Renaissance. On the other hand, defying
realistic perspective was a key feature of Modernist painting.

To see that linearity is preserved, consider that rays from points on aline in 3D through a pinhole all
lie on a plane, and the intersection of a plane and the image plane is a line. That means to draw
polygons, we need only to project the vertices to the image plane and draw lines between them.

39

6.7 Homogeneous Per spective

*

The mapping of p_C = (pcx, pcy , pcZ)Jtox =—pfc (IOCx, IOCy ; pcz) isjust aform of scaling transformation.

However, the magnitude of the scaling depends on the depth pcZ . Soit'snot linear.

Fortunately, the transformation can be expressed linearly (ie as a matrix) in homogeneous
coordi-nates. To see this, remember that p~ = (p, 1) = a(p, 1) in homogeneous coordinates.
Using this property of homogeneous coordinates we can write X * as

pe X
C Cc Cc zZ

:p X;py’p Z’f .
As usua with homogeneous coordinates, when you scale the homogeneous vector by the inverse

of the last element, when you get in the first three elements is precisely the perspective
projection. Accordingly, we can express x™ as alinear transformation of p“c:

x*= 0 10 Op* Mpp©
100 O
001 O =
00 1 0

Try multiplying this out to corc]vi nce yourself that thisall works. Finally, p iscalled the homogeneous N
perspective matrix, and since w
M o
NV =Mycp” ,wehavex” =
M"pM wep’w - weP

6.8 Pseudodepth

After dividing by itslast element, x™ hasits first two elements as image plane coordinates, and its

third element isf . We would like to be able to ater the homogeneous perspective matrix M, so

that the third element of e x™ encodes depth while keeping the transformation linear.
f
Idea: Letx™ = 0 0 a bp*,s0z .\
10 0
* 0 1 O 0 C * f Cc

What should a and b be? We would like to have the following two constraints:
z = 1 whenp,=F
1 when pzc =f

where f gives us the position of the near plane, and F gives us the z coordinate of the far plane.

40

So-l=af+bandl=af+bg Then2=bg =b=b - 1 ,adwecanfind
2F

b=f-F.

Substituting this value for b back in, we get -1 = af + f2—_F|: , and we can solve for a:
a= ~ff-p+1

12
= ff-F+f- F
1 2F f F
= -ff+ F
1 f F

These vgl uesof a and b give usafunction z*(pcZ) that increases monotonically as pcZ decreases
(since p 7 is negative for objects in front of the camera). Hence, z* can be used to sort points by
depth.

Why did we choose these values for a and b? Mathematically, the specific choices do not
matter, but they are convenient for implementation. These are also the values that OpenGL uses.

What is the meaning of the near and far planes? Again, for convenience of implementation, we will
say that only objects between the near and far planes are visible. Objectsin front of the near plane are
behind the camera, and objects behind the far plane are too far away to be visible. Of course, thisis
only a loose approximation to the real geometry of the world, but it is very convenient for
implementation. The range of values between the near and far plane has a number of subtle
implications for rendering in practice. For example, if you set the near and far plane to be very far
apart in OpenGL, then Z-buffering (discussed later in the course) will be very inaccurate due to
numerical precision problems. On the other hand, moving them too close will make distant objects
disappear. However, these issues will generally not affect rendering simple scenes. (For homework
assignments, we will usually provide some code that avoids these problems).

6.9 ProjectingaTriangle

Let's review the steps necessary to project atriangle from object space to the image plane.

1. A triangleisgiven asthree verticesin an object-based coordinate frame: p_0 1s p_oz, p_og.

41

z

A triangle in object coordinates.

2. Transform to world coordinates based on the object's transformation: p‘W , p‘W : p“W , Where

3
w (o]

P =Mow P’

: I

3

Y

y4

The triangle projected to world coordinates, with acameraat ¢ .

~

C w
3. Transform from world to camera coordinates: p°j = MwcpP’i -

42

Ic
1

Z

The triangle projected from world to camera coordinates.

~

* c

4. Homogeneous perspective transformation: X"j = Mpp”j, where

""100 o0 o’
0O 01f O pe
0 0 a b X" = cy
pfz
apz;+b
5. Divide by the last component:

X c

y = f _;LX

z _v

agcz +b

C

Pz
(1,1,1

(-1,-1,-1)

The triangle in normalized device coordinates after perspective division.

Now (X%, y") is an image plane coordinate, and z* is pseudodepth for each vertex of the
triangle.

6.10 CameraProjectionsin OpenGL

OpenGL's modelview matrix is used to transform a point from object or world space to camera
space. In addition to this, a projection matrix is provided to perform the homogeneous
perspective transformation from camera coordinates to clip coordinates before performing
perspective divi-sion. After selecting the projection matrix, the gl Fr ust um function is used to
specify aviewing volume, assuming the camerais at the origin:

gl Mat ri xMbde(GL_PRQIECTI ON) ;

gl Loadl dentity();

gl Frustum(l eft, right, bottom top, near, far);
For orthographic projection, gl Ot ho can be used instead:
glOtho(left, right, bottom top, near, far);

The GLU library provides a function to simplify specifying a perspective projection viewing
frus-tum:

gl uPerspective(fieldOFView, aspectRatio, near, far);

The field of view is specified in degrees about the x-axis, so it gives the vertical visible angle.
The aspect ratio should usually be the viewport width over its height, to determine the horizontal
field of view.

7 Visibility

We have seen so far how to determine how 3D points project to the camera's image plane. Ad-
ditionally, we can render atriangle by projecting each vertex to 2D, and then filling in the pixels
of the 2D triangle. However, what happens if two triangles project to the same pixels, or, more
generdly, if they overlap? Determining which polygon to render at each pixel is visibility. An
object is visible if there exists a direct line-of-sight to that point, unobstructed by any other ob-
jects. Moreover, some objects may be invisible because they are behind the camera, outside of
the field-of-view, or too far away.

7.1 TheView Volume and Clipping

The view volume is made up of the space between the near plane, f , and far plane, F . It is
bounded by B, T, L, and R on the bottom, top, left, and right, respectively.

The angular field of view isdetermined by f,B, T, L, and R:

T

From thisfigure, we can find that tan(a) = %%

Clipping is the process of removing points and parts of objects that are outside the view volume.

We would like to modify our homogeneous perspective transformation matrix to smplify
clipping. We have
10 0 0

Mp = 00-r /= =
1
Since thisis a homogeneous transformation, it may be multiplied by a constant without changing

45

its effect. Multiplying Mp by f gives us
f 0 0 0

X~ = 2f R+L D c,
R-L 0 R-L 0
2f T+B
0 -0 T f-F
0 0 1 0
f+F 2f F

then, after projection, the view volume becomes a cube with sidesat —1 and +1. Thisis called
the canonical view volume and has the advantage of being easy to clip against.

Note:

The OpenGL command glFrustum(l, r, b, t, n, f) takes the distance to the near and far
planes rather than the position on the z-axis of the planes. Hence, the n used by
glFrustum is our —f and the f used by glFrustum is —F . Substituting these values into
our matrix gives exactly the perspective transformation matrix used by OpenGL.

7.2 Backface Removal

Consider aclosed polyhedral object. Becauseit is closed, far side of the object will aways be invis-
ible, blocked by the near side. This observation can be used to accelerate rendering, by removing

back-faces.

Example:
For this simple view of a cube, we have three backfacing polygons, the left side,

back, and bottom: _ _

We can determine if aface is back-facing as follows. Suppose we compute a normals ~n for amesh
face, with the normal chosen so that it points outside the object For a surface point p on a planar

Only the near faces are visible.

46

patch and eye point e , if (p —e) - ~n > 0, then the angle between the view direction and

normal is less than 90, so the surface normal points away from e . The result will be the same
no matter which face point p we use.

Hence, if (p —e) - ~n >0, the patch is backfacing and should be removed. Otherwise, it might
be visible. This should be calculated in world coordinates so the patch can be removed as early
as possible.

Note:
To compute ~n, we heed three vertices on the patch, in counterclockwise order, as

seen from the outside of the object, p 1, p 1, and p 3. Then the unit normal is

P2-PX(P3-p 1.
kP 2-p)x(P 3-p 1k

Backface removal is a “quick reject” used to accelerate rende ring. It must still be used together
with another visibility method. The other methods are more expensive, and removing backfaces
just reduces the number of faces that must be considered by a more expensive method.

7.3 TheDepth Buffer

Normally when rendering, we compute an image buffer | (i,]) that stores the color of the
object that projects to pixel (i, J). The depth d of a pixd is the distance from the eye point to the
object. The depth buffer isan array zbuf (i, j) which stores, for each pixel (i, j), the depth
of the nearest point drawn so far. It is initialized by setting al depth buffer values to infinite
depth: zbuf (i,]j) = .
To draw color ¢ at pixel (i, j) with depth d:
if d < zbuf(i, j) then

put pi xel (i, j, c)

zbuf (i, j) =d
end

When drawing a pixel, if the new pixel's depth is greater than the current value of the depth
buffer at that pixel, then there must be some object blocking the new pixel, and it is not drawn.

Advantages
» Simple and accurate

* Independent of order of polygons drawn

47

Disadvantages
» Memory required for depth buffer

» Wasted computation on drawing distant points that are drawn over with closer points that
occupy the same pixel

To represent the depth at each pixel, we can use pseudodepth, which is available after the homo-

geneous perspective transformation.” Then the depth buffer should be initialized to 1, since the
pseudodepth values are between —1 and 1. Pseudodepth gives a number of numerical advantages
over true depth.

To scan convert a triangular polygon with vertices X 1, X 2, and x 3, pseudodepth values d1,

d2, and dz, and fill color ¢, we calculate the x values and pseudodepths for each edge at each
scanline. Then for each scanline, interpolate pseudodepth between edges and compare the value
at each pixd to the value stored in the depth buffer.

7.4 Painter's Algorithm

The painter's algorithm is an aternative to depth buffering to attempt to ensure that the closest
points to a viewer occlude points behind them. The ideais to draw the most distant patches of a
surfacefirst, allowing nearer surfaces to be drawn over them .

In the heedless painter's algorithm, we first sort faces acco rding to depth of the vertex furthest
from the viewer. Then faces are rendered from furthest to nearest.

There are problems with this approach, however. In some cases, a face that occludes part of another
face can still have its furthest vertex further from the viewer than any vertex of the face it occludes.
In this situation, the faces will be rendered out of order. Also, polygons cannot intersect at all as they
can when depth buffering is used instead. One solution is to split triangles, but doing this correctly is
very complex and slow. Painter's algorithm is rarely used directly in practice; however, a data-
structure called BSP trees can be used to make painter's algorithm much more appealing.

75 BSP Trees

The idea of binary space partitioning trees (BSP trees) is to extend the painter's algorithm to
make back-to-front ordering of polygons fast for any eye location and to divide polygons to
avoid overlaps.

Imagine two patches, T1 and T, with outward-facing normals ~n1 and ~no.

]'I'he OpenGL documentation is confusing in afew places — “dept h” is used to mean pseudodepth, in
commands like gl ReadPi xel s and gl uUnPr oj ect .

48

If the eye point, e , and T» are on the same side of T4, then we draw T1 before T». Otherwise,
T should be drawn before T1.

We know if two points are on the same side of a plane containing T1 by using the implicit
equation for T+,

fi(®) = (x-p 1) --n (33)

If X isontheplane, f1('x) = 0. Otherwise, if f1(X) >0, X is on the “outside” of T1, and if
f1(x) <0, x is “inside.”

Before any rendering can occur, the scene geometry must be processed to build a BSP tree to
represent the relative positions of all the facets with respect to their inside/outside half-planes.
The same BSP tree can be used for any eye position, so the tree only has to be constructed once
if everything other than the eye is static. For a single scene, there are many different BSP trees
that can be used to represent it — it's best to try to construct bala nced trees.

Thetreetraversa agorithm to draw atree with root F is asfollows:

if eyeis in the outside half-space of F
drawfaces on the inside subtree of F
drawF
drawfaces on the outside subtree of F

el se
drawfaces on the outside subtree of F
drawF (if backfaces are drawn)
drawfaces on the inside subtree of F

end

7.6 Visbility in OpenGL

OpenGL directly supports depth buffering, but it is often used in addition to other visibility tech-
niques in interactive applications. For example, many games use a BSP tree to prune the amount
of static map geometry that is processed that would otherwise not be visible anyway. Also, when

49

dealing with blended, translucent materials, these objects often must be drawn from back to front
without writing to the depth buffer to get the correct appearance. For simple scenes, however, the
depth buffer alone is sufficient.

To use depth buffering in OpenGL with GLUT, the OpenGL context must be initialized with
mem-ory allocated for a depth buffer, with a command such as

gl ut I nit Di spl ayMpde(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
Next, depth writing and testing must be enabled in OpenGL.:
gl Enabl e(G._DEPTH TEST) ;

OpenGL will automatically write pseudodepth values to the depth buffer when a primitive is ren-
dered as long as the depth test is enabled. The gl Dept hMask function can be used to disable depth
writes, so depth testing will occur without writing to the depth buffer when rendering a primitive.

When clearing the display to render a new frame, the depth buffer should also be cleared:

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

50

8 Basic Lighting and Reflection

Up to this point, we have considered only the geometry of how objects are transformed and pro-
jected to images. We now discuss the shading of objects. how the appearance of objects depends,
among other things, on the lighting that illuminates the scene, and on the interaction of light with
the objects in the scene. Some of the basic qualitative properties of lighting and object
reflectance that we need to be able to model include:

Light source - There are different types of sources of light, such as point sources (e.g., a small
light at a distance), extended sources (e.g., the sky on a cloudy day), and secondary reflections
(e.g., light that bounces from one surface to another).

Reflectance - Different objects reflect light in different ways. For exam ple, diffuse surfaces ap-
pear the same when viewed from different directions, whereas a mirror looks very different from
different points of view.

In this chapter, we will develop simplified model of lighting that is easy to implement and fast to
compute, and used in many rea-time systems such as OpenGL. This model will be an
approxima-tion and does not fully capture all of the effects we observe in the real world. In later
chapters, we will discuss more sophisticated and realistic models.

8.1 Simple Reflection Models
8.1.1 Diffuse Reflection

We begin with the diffuse reflectance model. A diffuse surfac e is one that appears similarly
bright from al viewing directions. That is, the emitted light appears independent of the viewing
location. Let p be a point on a diffuse surface with norma ~n, light by a point light source in
direction ~s from the surface. The reflected intensity of light is given by:

Lg(p) = rqglmax(0, ~s - ~n) (34)
where | isthe intensity of the light source, rq is the diffuse reflectance (or abedo) of the surface,
and ~s is the direction of the light source. This equation requires the vectors to be normalized,
e, [|~sl]| =1, []~n = 1]|.

The ~s - ~n term is called the foreshortening term. When a light source projects light obliquely
at asurface, that light is spread over alarge area, and less of the light hits any specific point. For
example, imagine pointing a flashlight directly at awall ver susin a direction nearly paralldl: in

the latter case, the light from the flashlight will spread over a g reater area, and individual points
on the wall will not be as bright.

51

For color rendering, we would specify the reflectance in colo r (as (rq,r, I'd,G, d,B)), and
specify the light sourcein color aswéll (IR, Ig, Ig). Thereflected color of the surfaceis then:

Lar(P) = rd,rIR max(0, ~s-~n) (35)
Li,c(P) = rd,Glc max(0, ~s - ~n) (36)
Lag(p) =rd,8 I max(0, ~s - ~n) (37)

8.1.2 Perfect Specular Reflection

For pure specular (mirror) surfaces, the incident light from each incident direction d; isreflected

toward a unique emittant direction de. The emittant direction liesin the same plane asthe incident

direction d; and the surface normal ~n, and the angle between ~n and de

~ isequal to that between ~n and

di. One can show that the emittant direction is given by de = 2(~n - dj)~n - d;. (The derivation was

_" - U

covered in class). In perfect specular reflection, thelight emitted in direction de can be computed

by reflecting de across the normal (as 2(~n - de)~n — de), and determining the incoming light in
thisdirection. (Again, al vectors are required to be normalized in these equations).

8.1.3 General Specular Reflection

Many materials exhibit a significant specular component int heir reflectance. But few are perfect
mirrors. First, most specular surfaces do not reflect al lig ht, and that is easily handled by intro-
ducing a scalar constant to attenuate intensity. Second, most specular surfaces exhibit some form
of off-axis specular reflection . That is, many polished and shiny surfaces (like plastics and
metals) emit light in the perfect mirror direction and in some nearby directions as well. These
off-axis specularities look alittle blurred. Good examples are highlights on plastics and metals.

More precisely, the light from a distant point source in the direction of ~s is reflected into a
range of directions about the perfect mirror directions m~ = 2(~n - ~s)~n — ~s. One common
model for thisisthe following:

~a
Ls(de) = rsl max(0, m~ - dg) | (38)
where s is called the specular reflection coefficient | isthe incident power from the point source,
and a 2 0 is a constant that determines the width of the specular highlights. As a increases, the
effective width of the specular reflection decreases. In the limit as a increases, this becomes a
mirror.

52

1 Specularity as a function of a and ¢

13N

0.9

Qao0aQaQQQ
wonmnun
a N Ay
o

0.8

0.7

0.6

05

)a

04

0.3

0.2

0.1

o

-2 -15 -1 -0.5 0 0.5 1 15 2
®

Figure 3: Plot of specular intensity as afunction of viewing angle @.

Thei ntgnsity of the specular region is proportional to max(0, cos cp)a, where @ is the angle between

m~ and de. One way to understand the nature of specular reflection isto plot this function, see
Figure 3.

8.1.4 Ambient Illumination

The diffuse and specular shading models are easy to compute, but often appear artificial. The
biggest issue is the point light source assumption, the most obvious consequence of which is that
any surface normal pointing away from the light source (i.e., for which ~s - ~n < 0) will have a
radiance of zero. A better approximation to the light source is a uniform ambient term plus a
point light source. This is a still a remarkably crude model, but it's much better than the point
source by itself. Ambient illumintation is modeled simply by:

La(p)=rala (39)

where ry is often called the ambient reflection coefficient, and |5 denotes the integral of the
uniform illuminant.

8.1.5 Phong Reflectance M odel

The Phong reflectance model is perhaps the simplest widely used shading model in computer
graphics. It comprises a diffuse term (Eqgn (81)), an ambient term (Eqn (82)), and a specular term

53

(Ean (85)):

~ ~a

L(p, de) = rg lg max(0, ~s - ~n) + rg lg + rsls max(0, m~ - dg) (40)
where

* I, lg, and |, are parameters that correspond to the power of the light sources for the
ambient, diffuse, and specular terms;

* Iy, Ig and rg are scalar constants, called reflection coefficients, that d etermine the relative
magnitudes of the three reflection terms;

* a determines the spread of the specurlar highlights;
* ~nisthesurfacenormal a p ;
* ~sisthedirection of the distant point source;

* m~ isthe perfect mirror direction, given ~n and ~s ; and

* and de isthe emittant direction of interest (usually the direction of the camera).

In effect, thisis a model in which the diffuse and specular components of reflection are due to
incident light from a point source. Extended light sources and the bouncing of light from one
surface to another are not modeled except through the ambient term. Also, arguably this model
has more parameters than the physics might suggest; for example, the model does not constrain
the parameters to conserve energy. Nevertheless it is sometimes useful to give computer graphics
practitioners more freedom in order to acheive the appearance they're after.

8.2 Lightingin OpenGL

OpenGL provides aslightly modified version of Phong lightin g. Lighting and any specific
lights to use must be enabled to seeits effects:

gl Enabl e(GL_LIGHTING; [// enable Phong lighting
gl Enabl e(G__LI GHTO) ; /1l enable the first |ight source
gl Enabl e(GL_LI GHT1) ; /'l enabl e the second |ight source

Lights can be directional (infinitely far away) or positiona |l. Positional lights can be either point
lights or spotlights. Directiona lights have the w component set to 0, and positional lights have
w set to 1. Light properties are specified with the gl Li ght functions:

G.float direction[] = {1
GL.float position[] = {5. O,

G float spotDirection[] = {0.0f, 3.0f, 3.0f};
dfloat diffuseRGBA[] = {1 of, 1.0f, 1.0f, 1.0f};
Ad float specularRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f};

1.0f, 1.0f, 0.0f};
3.0f, 8.0f, 1.0f};

/1 A directional |ight

gl Lightfv(G._LIGHTO, G._PCSITION, direction);

gl Li ghtfv(G&_LI GHTO, G._DI FFUSE, diffuseRGBA);
gl Li ghtfv(G._LI GHTO, G._SPECULAR, specul ar RGBA);

/'l A spotlight

gl Lightfv(G._LICGHT1, G._POCSITION, position);

gl Lightfv(G _LICGHTLl, G._ DI FFUSE, diffuseRGBA);

gl Li ghtfv(G._LI GHT1, G._SPOT_DI RECTI ON,
spotDirection); glLightf(G _LIGHTl, G._SPOT_CUTCFF,
45.0f); gl Lightf(G._LIGHT1, G._SPOT_EXPONENT, 30.0f);

OpenGL requires you to specify both diffuse and specular components for the light source. This
has no physical interpretation (real lights do not have “dif fuse” or “specular” properties), but
may be useful for some effects. The gl Mat eri al functions are used to specify material
properties, for example:

GL.float diffuseRGBA = {1.0f, 0.0f, 0.0f, 1.0f};
GL.fl oat specularRGBA = {1.0f, 1.0f, 1.0f, 1.0f};
gl Material fv(G._FRONT, G._DI FFUSE, diffuseRGBA);
gl Material fv(G._FRONT, G._SPECULAR, specul ar RGBA);
gl Material f(GL_FRONT, G._SHI NI NESS, 3.0f);

Note that both lights and materials have ambient terms. Additionaly, there is a global ambient
term:

gl Li ghtfv(G__LI GHTO, G._AMBI ENT, anbi ent Li ght);
gl Material fv(G._FRONT, G._AMBI ENT, anbientMaterial);
gl Li ght Model fv(G._LI GHT_MODEL_AMBI ENT, anbi ent d obal) ;

The materia has an emission term as well, that is meant to model objects that can give off their
own light. However, no light is actually cast on other objects in the scene.

gl Material fv(GL._FRONT, G._EM SSI ON, en;

The global ambient term is multiplied by the current material ambient value and added to the
materia's emission value. The contribution from each light is then added to this value.

When rendering an object, normals should be provided for each face or for each vertex so that
lighting can be computed:

55

gl Nor mal 3f (nx,
gl Vertex3f (x,

ny, nz);

Y,

z),;

56

9 Shading

Goal: To usethe lighting and reflectance model to shade facets of ap olygonal mesh — that is,
to assign intensities to pixels to give the impression of opague surfaces rather than wireframes.

Assume we're given the following:

« e - center of projection in world coordinates

[- point light source location

* |a, I - intensities of ambient and directional light sources
* I, I'd, I's - Coefficients for ambient, diffuse, and specular reflection s

* a - exponent to control width of highlights

9.1 Flat Shading
With flat shading, each triangle of amesh isfilled with asingle color.

For atriangle with counterclockwise verticesp 1, p 2, and p_3, as seen from the outside, let the
midpointbep™= 31 +p 2 +p 3)withnorma ~n = EZELEIEL Then ywe may find the
intensity at p using the Phong model and fill the polygon with that:

a

E = lara +rglg max(O, ~n - ~s) + rglg max(0, ~r - ~c) , (41)

v -p 5

where ~s =k I"-p% ,~C = ke pk , @and ~r = =~ + 2(~s - ~n)~n.

Flat shading is a ssmple approach to filling polygons with col or, but can be inaccurate for
smooth surfaces, and shiny surfaces. For smooth surfaces—which ar e often tesselated and
represented as polyhedra, using flat shading can lead to a very strong faceti ng effect. In other
words, the surface looks very much like a polyhedron, rather than the smooth surface it's
supposed to be. This is because our visual system is very sensitive to variations in shading, and
so using flat shading makes faces really ook flat.

9.2 Interpolative Shading

The idea of inter polative shading is to avoid computing the full lighting equation at each pixel
by interpolating quantites at the vertices of the faces.

Given verticesp 1,p 2,and p 3, we need to compute the normals for each vertex, compute the

radi-ances for each vertex, project onto the window in device coordinates, and fill the polygon
using scan conversion.

57

There are two methods used for interpolative shading:

Gouraud Shading The radiance values are computed at the vertices and then linearly interpo-
lated within each triangle. Thisisthe form of shading implemented in OpenGL.

Phong shading The normal values at each vertex are linearly interpolated within each
triangle, and the radiance is computed at each pixel.

Gouraud shading is more efficient, but Phong shading is more a ccurate. When will Gouraud
shad-ing give worse results?

9.3 Shadingin OpenGL

OpenGL only directly supports Gouraud shading or flat shadin g. Gouraud is enabled by default,
computing vertex colors, and interpolating colors across triangle faces. Flat shading can be
enabled with gl ShadeMbdel (GL FLAT) . This renders an entire face with the color of a single
vertex, giving afaceted appearance.

Left: Flat shading of atriangle mesh in OpenGL. Right: Gouraud shading. Note that the mesh
appears smooth, although the coarseness of the geometry isvisible at the silhouettes of the mesh.

With pixel shaders on programmable graphics hardware, it is possible to achieve Phong shading
by using a small program to compute the illumination at each pixel with interpolated normals. It
is even possible to use a normal map to assign arbitrary normals within faces, with a pixel shader
using these normals to compute the illumination.

58

10 Texture Mapping

10.1 Overview

We would like to give objects a more varied and realistic appearance through complex variations
in reflectance that convey textures. There are two main sourc es of natural texture:

 Surface markings — variations in albedo (i.e. the total light reflected from ambient and
diffuse components of reflection), and

» Surface relief — variations in 3D shape which introduces loc al variability in shading.

We will focus only on surface markings.

Examples of surface markings and surface relief

These main issues will be covered:
* Where textures come from,
» How to map textures onto surfaces,
» How texture changes reflectance and shading,
 Scan conversion under perspective warping, and

» Aliasing

10.2 Texture Sources
10.2.1 TextureProcedures

Textures may be defined procedurally. As input, a procedure r equires a point on the surface of
an object, and it outputs the surface albedo at that point. Examples of procedural textures include
checkerboards, fractals, and noise.

59

LA

l l "-l

l'l, .
w2

i

A procedural checkerboard pattern applied to ateapot. The checkerboard texture comes from the
OpenGL programming guide chapter on texture mapping.

10.2.2 Digital Images

To map an arbitrary digital image to a surface, we can define te xture coordinates (u, v) € [0, 1]2.
For each point [ug, Vo] in texture space, we get apoint in the corresponding image.

0,1 (1,1)

0o @o

Texture coordinates of adigital image

10.3 Mapping from Surfacesinto Texture Space

For each face of a mesh, specify a point (i, vi) for vertex p i. Then define a continuous
mapping from the parametric form of the surface s (a, B) onto the texture, i.e. define m such

that (, v) = m(a, B).

Example: F
For aplanar patchs (a, B)=p o+a~a+Bb,where0<a<land0<B<1.
Thenwecouldusepu =a and v = .

60

Example:

For asurface of revolution, s (a, B) = (cx(a) cos(B), cx(a) sin(B), ¢z (a)). So let
O<a<1and0=<p=<2m.
Thenu=aandv = /2.

> 1 a

3D surface Texture space Image

10.4 Texturesand Phong Reflectance

Scale texture values in the source image to be in therange O < 1 < 1 and use them to scale the
reflection coefficientsrq and rg. That is,

rd
r~a = Tra.

Trd,

We could also multiply T by the specular reflection, in which case we are simply scalin g E from
the Phong model.

10.5 Aliasing

A problem with high resolution texturing is aliasing, which occurs when adjacent pixelsin aren-
dered image are sampled from pixels that are far apart in atexture image. By down-sampling—
reducing the size of atexture—aliasing can be reduced for far away or small objects, but then
textured objects ook blurry when close to the viewer. What we really want is a high resolution
texture for nearby viewing, and down-sampled textures for distant viewing. A technique called
mipmapping gives us this by prerendering atexture image at severa different scales. For
example, a 256x256 image might be down-sampled to 128x128, 64x64, 32x32, 16x16, and so
on. Then it is up to the renderer to select the correct mipmap to reduce aliasing artifacts at the
scale of the rendered texture.

61

An aliased high resolution texture image (left) and the same texture after mipmapping (right)

10.6 Texturingin OpenGL

To use texturing in OpenGL, a texturing mode must be enabled. For displaying a 2D texture on
polygons, thisis accomplished with

gl Enabl e(G._TEXTURE_2D) ;

The dimensions of texture in OpenGL must be powers of 2, and texture coordinates are
normalized, so that (0, 0) is the lower left corner, and (1, 1) is always the upper right corner.
OpenGL 2.0, however, does alow textures of arbitrary size, in which case texture coordinates
are based on the original pixel positions of the texture.

Since multiple textures can be present at any time, the texture to render with must be selected.
Use gl GenText ur es to create texture handles and gl Bi ndText ure to select the texture with a
given handle. A texture can then be loaded from main memory with gl Tex!l nage2D For example:

GLui nt handl es[2] ;
gl GenTextures(2, handles);

gl Bi ndText ure(G._TEXTURE 2D, handl es[0]);
/1 Initialize texture paraneters and |load a texture with gl Texl mage2D

gl Bi ndText ure(GL_TEXTURE_2D, handl es[1]);
/1l Initialize texture paraneters and | oad anot her texture

62

There are anumber of texture parameters that can be set to affect the behavior of atexture, using
gl TexPar anet eri . For example, texture wrap repeating can be enabled to allow a texture to be
tiled at the borders, or the minifying and magnifying functions can be set to control the quality of
textures as they get very close or far away from the camera. The texture environment can be set with
gl TexEnvi , which controls how atexture affects the rendering of the primitivesit is attached to. An
example of setting parameters and loading an image follows:

gl TexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

gl TexPar anet eri (GL_TEXTURE 2D, G._TEXTURE_M N _FILTER, GL_LI NEAR);

gl TexPar anet eri (GL_TEXTURE 2D, G._TEXTURE_WRAP_S, GL_REPEAT)

gl TexPar anet eri (GL_TEXTURE 2D, GL_TEXTURE_WRAP_T, G._CLAWP)

gl Texl mage2D(G._TEXTURE 2D, 0, G._RGB, imageWdth, inmageHei ght,
0, G._RGB, G._UNSI GNED BYTE, i magePointer);

Mipmaps can be generated automatically by using the GLU function gl uBui | d2DM pnaps in-
stead of gl Tex| mage2D

Once atexture is bound and texturing is enabled, texture coordinates must be supplied for each
vertex, by calling gl TexCoor d beforegl Vert ex:

gl TexCoor d2f (u, v);
gl Vertex3f(x, vy, z);

When textures are no longer needed, they can be removed from the graphics hardware memory
with

gl Del et eTextures(2, handl es);

63

11 BasicRay Tracing

11.1 Basics

+ So far, we have considered only local models of illumination; they only account for
incident light coming directly from the light sources.

» Global modelsinclude incident light that arrives from other surfaces, and lighting effects
that account for global scene geometry. Such effects include:
— Shadows
— Secondary illumination (such as color bleeding)
— Reflections of other objects, in mirrors, for example
» Ray Tracing was devel oped as one approach to modeling the properties of global illumina-
tion.
* Thebasicideaisas
follows: For each pixdl:
— Cast aray from the eye of the camerathrough the pixel, and find t he first surface hit
by theray.

— Determine the surface radiance at the surface intersection with a combination of local
and global models.

— To estimate the global component, cast rays from the surface point to possible incident
directions to determine how much light comes from each direction. Thisleadsto a
recursive form for tracing paths of light backwards from the surface to the light sources.

Aside:
Basic Ray Tracing is also sometimes called Whitted Ray Tracing, after itsinventor,
Turner Whitted.

Computational |ssues
* Form rays.
* Find ray intersections with objects.
* Find closest object intersections.
 Find surface normals at object intersection.

» Evaluate reflectance models at the intersection.

64

11.2 Ray Casting
We want to find the ray from the eye through pixel (i, j).

» CameraMode

W . . .
e isthe origin of the camera, in world space.
~u, ~V, and w~ are the world space directions corresponding to the ~x, ~y, and ~z axes in eye space.

Theimage planeisdefinedby (p —r) -w~=0,0rr + a~u+ b~v, wherer = eVt fw-,

* Window
A window in the view-plane is defined by its boundaries in came ra coordinates. w;, wy , Wz,
and wp. (In other words, the left-most edge istheline (wj, A, f).)

* Viewport

Let the viewport (i.e., output image) have columns O...n¢ — 1 and rows 0...ny — 1. (0, 0) is
the upper left entry.

The camera coordinates of pixe (i, j) are asfollows:

p_ci,j =(w +i uwe+j v, f)
u= Wr — Wi
nc _1
V= Wh—Wt
nr _1
In world coordinates, thisis: B _ _
Pij="U~Vwpijte
w |1 cw

* Ray: Finaly, theray isthen defined in world coordinates as fo llows:

_ W
r(N)=pij+Ad;
-~ w w
wheredjj=p jj—e .ForA>0,all pointsontheray liein front of the viewplane along a

single line of sight.

11.3 Intersections

In this section, we denote aray asr (A\) =a + Ad,A>0.

65

11.3.1 Triangles

Define atriangle with three points, p 1, p 2, and p 3. Here are two ways to solve for the ray-
triangle intersection.

* Intersectr (A)withtheplane(p —=p 1) -~n=0for~n=(p 2-p 1) x(P 3—-p 1) by
substituting r (A) for p— and solving for A. Then test the half-planes for constraints. For example:

(a+ AMd-p 1)-~n=0
)*:(Q_]-a_)wn
d-~n

What does it mean whend - ~n = 0? What doesit meanwhend - ~n=0and(p 1 —-a) - ~n=07?
» Solvefor aand B wherep (a,B)p 1 +a(P 2 =p 1) +B(P 3 - P 1).ie F) =a +Ad=
p1+aP 2-p 1) +B(p 3-p 1). Thisleadsto the 3x3 system

(P2 P 1) (P s b d'B =(p1 a)

a

- = - I A -
Invert the matrix and solve for a, B, and A. The intersection isin the triangle when the
following conditions are al true:

az=0
a+B<1

11.3.2 General Planar Polygons

For general planar polygons, solve for the intersection with the plane. Then form aray s(t) in the
plane, starting at the intersection p (A*). Measure the number of intersections with the polygon
sides for t > 0. If there is an even number of intersections, the intersection is inside. If the
number of intersection isodd, it isoutside.

Aside:

This is a consequence of the Jordan Curve Theorem. As related to this problem, it
states that two points are both inside or both outside when the number of
intersections on a line between them is even.

66

11.3.3 Spheres

Define the unit sphere centeredat ¢ by ||p —c'| 2 = 1.
Substitute apoint on theray r (A) into this equation:

(a+A-c)-(a+Ad-c)-1=0
Expand this equation and write it in terms of the quadratic form:
AN +2BA+C =0

A=d-d
B=(a-c)-d
C=(a-c)-(a-c)-1
The solution is then:
2B+ 4B" - 4AC B VD
A= = = = D=B" AC

2A “-A A -
If D <0, there are no intersections. If D = 0, there is one intersection; the ray grazes the sphere.
If D > 0, there are two intersections with two values for A, A1 and Ax.

When D > 0, three cases of interest exist:

* A <0and Ay <O0.Bothintersections are behind the view-plane, and are not visible.
« Ap >0andAy <0.Thep (A1) isavisibleintersection, but p (A1) isnot.

* A1 > Ap and A, > 0. Both intersections are in front of the view-plane. p (A2) is the closest
intersection.

11.3.4 Affinely Deformed Objects

Proposition: Given an intersection method for an object, it is easy to intersect rays with affinely
deformed versions of the object. We assume here that the affin e transformation isinvertible.

~

* Let F (y) = 0 be the deformed version of f (x) =0, wherey = AX + t.

. -1, _ =0ifff(x)=0.
e F(y)=f(A (y - t)=0,50F(y) (%)]
« Given an intersection method for f (X) = 0, find theintersectionof r (\)=a + Ad and F
(y)=0,whereA>0.
« Solution: Substitute r (A) into the implicit equation f = F (y') :
:(-1 ~
F(ra) = f A r(AN)-t

_1 _~
f A a M_ 1)
= f(a +Ad)

= FCr ()
67

where

=AY (a-9
—~ _1 ~
d=A d
i.e.intersecting F (y) withr (A)islikeintersectingf (x) withr (\)=a +Ad whereA > 0.
The value of A found is the same in both cases.

_~

* Exercise: Verify that, at the solution A", with an affine deformationy = Ax + t, that

FV) = AC (V) + t.
11.3.5 Cylindersand Cones

A right-circular cylinder may be defined by X + y2 =1 for |z| £ 1. A cone may be defined by
2 2 1 2
X +y —2(1-z)=0for0sz<1.

* Find intersection with ”quadratic wall,” ignoring constra ints on z, €.g. using X2 + y2 =1
or x2 + y2 - l4 1- 22) = 0. Then test the z component of p (A*) against the constraint
onz,eg.zslorz<1.

* Intersect the ray with the planes containing the base or cap (e.g. z = 1 for the cylinder).

T2hen tzeﬂ the x and y components of p (*) to see if they satisfy interior constraints (e.g.
X +y <1 forthecylinder).

« |If there are multiple intersections, then take the intersection with the smallest positive A
(i.e., closest to the start of the ray).

68

11.4 The Scene Signature

The scene signature is a simple way to test geometry intersection methods.

» Create animage in which pixel (i, j) hasintensity k if object k isfirst object hit from ray
through (i, j).

» Each object gets one unique color.

Note:
Pseudo-Code: Scene Signature

< Congtruct scene model ={ obj, (A, t),0bjID } > dg:
array[nc, nr] of objID
for j = 0tonr-1 (loop over rows)
for i = 0to nc-1 (loop over columns)
< Construct ray ~rij (\) =p ij + A(p ij — €) through pixel pjj >
Nij <
loop over dl objectsin scene, with object identifiers objID i
< find A" for the closest intersection of theray ~rjj (A) and the object >
if A">0 and A" < Ajj then
Nij <N
sig[i,j].objID « objIDg
end if
end loop
end for
end for

11.5 Efficiency

Intersection tests are expensive when there are large numbers of objects, and when the objects
are quite complex! Fortunately, data structures can be used to avoid testing intersections with
objects that are not likely to be significant.

Example: We could bound a 3D mesh or object with a simple bounding volume (e.g. sphere or
cube). Then we would only test intersections with objects if there exists a positive intersection
with the bounding volume.

Example: We could project the extent onto the image plane so you don't need to cast rays to
determine potential for intersections.

69

11.6 Surface Normals at I nter section Points

Once we find intersections of rays and scene surfaces, and we s elect the first surface hit by the
ray, we want to compute the shading of the surface as seen from the ray. That is, we cast a ray
out from a pixel and find the first surface hit, and then we want to know ho w much light leave
the surface along the same ray but in the reverse direction, back to the camera.

Toward this end, one critical property of the surface geometry that we need to compute is the
surface normal at the hit point.

 For mesh surfaces, we might interpolate smoothly from face normals (like we did to get
normals at avertex). This assumes the underlying surface is smooth.

» Otherwise we can just use the face normal.

+ For smooth surfaces (e.g. with implicit formsf (p) = 0 or parametric forms s(a, B)),

either take
~n =_Vf(p)
o IvF (o)
g s
~n=_da X 8 .
FEES
| 2a % opll
11.6.1 Affinely-deformed surfaces.
Let f (p_) = 0 be an ImpIICIt Surface, and let Q(p_) = - Ap +t bean affine transformation, where A
isinvertible. The affinely-deformed surfaceis
-1 -1 -
F@)=f@Q (@)=f(A (p -)=0 (42)
A normal of F at apoint q isgiven by
=1
A _T~n (43)
IA~ ~nl|

whereA”' =(A™)' and~nisthenorma of fatp = Q (q).

Derivation:
Lets = r (A*) betheintersection point, andlet (p~ = s) - ~n = 0 be the tangent
plane at the intersection point. We can also write this as:

(P -s) ~n=0 (44)

Substitutinging = Ap + tand solving gives:
T -1 ~ T

P-s) ~n= (A (q-t-s)~n (45)
70

_ _ - 46

= (-(As + D) A ~n (46)
In other words, the tangent plane at the transformed point has normal A" ~nand
passes through point (As™ + t).

preserved so the tangent plane on the deformed surface is given by (A
D.

-1 (-1 ~n=

Al
[IATT - *

Thisisthe equation of a plane with unit normal

11.7 Shading

~

Once we have cast aray through pixel p jj inthedirection d; j , and we've found the closest hit
point p- with surface normal ~n, we WISh to determine how much light leaves the surfaceat p into

the direction —dj (i.e., back towards the camera pixel). Further we want reflec t both the light
from light sources that directly illuminate the surface as well as secondary illumination, where
light from other surfaces shines on the surface at p . Thisis a complex task since it involves al
of the ways in which light could illuminate the surface from all different directions, and the
myriad ways such light interacts with the surface and it then emitted or reflected by the surface.
Here we will deal first with the ssimplest case, known widely as Whitted Ray Tracing.

Aside:

First, note that if we were to ignore all secondary reflection , then we could just com-
pute the Phong reflectance model at p and then color the pixel with that value. Such
scenes would look similar to those that we have rendered using shading techniques
seen earlier in the course. The main differences from earlier rendering techniques are
the way in which hidden surfaces are handled and the lack of interpolation.

11.7.1 Basic (Whitted) Ray Tracing

In basic ray tracing we assume that that the light reflected fr om the surface is a combination of the
reflection computed by the Phong model, along with one com ponent due to specular secondary
reflection. That is, the only reflection we consider isthat du e to perfect mirror reflection. We only
consider perfect specular reflection for computational efficiency; i.e., rather than consider secondary
illuminationat p from al different directions, with perfect specular reflec tion we know

that the only incoming light at p that will be reflected in the direction —d; j wi I be that coming from
the corresponding mirror direction (i.e., m~s = =2(d;j - ~n))~n + d ;). We can find out how much

light is incoming from direction m~g be casting another ray into that direction from p and calculating
the light reflected from the first surface hit. Note that we hav e just described arecursiveray tracer; i.e., in
order to calculate the reflectance at a hit point we ne ed to cast more rays and compute the reflectance at
the new hit points so we can calculate the incom ing light at the origina hit point.

In summary, for basic (Whitted) ray tracing, the reflectance m odel calculation comprises:

71

» A local model (e.g., Phong) to account for diffuse and off-axis specular reflection
(highlights) dueto light sources.

+ An ambient term to approximate the global diffuse components.

Cast raysfrom p into direction m~g = =2(d; j -~n))~n + d; ; to estimate ideal mirror reflections
due to light coming from other ojects (i.e., secondary reflec tion).

~

For aray r(\) =a + Ad which hits a surface point point p- with normal ~n, the reflectance is
given by

a
E = rala + rglg max(0, ~n - ~s) + rgls max(0, ~c - m~) " +rg Ispec

wherera, rq, and rg are the reflection coefficients of the Phong model, 15, 14, and Is are the light
source intensities for the ambient, diffuse and specular terms of the Phong model, ~s isthe light

source direction from p , the emittant direction of interest is ~c = —dj; , and m~ = 2(~s
~n))~n - ~s isthe perfect mirror direction for the local specular reflecti on. Finaly, Ispec isthe
Iight obtained from the recursive ray cast into the direction m~g to find secondary illumination,

rq is the reflection coefficient that determines the fraction of secondary illum ination that is
reflec%ed by the surfaceat p

11.7.2 Texture

» Texture can be used to modulate diffuse and a mbient reflectio n coefficients, as with
Gouraud shading.

* We simply need a way to map each point on the surface to a point in texture space, as
above, e.g. given an intersection point p (A*), convert into parametric form s(a, B) and use
(a, B) to find texture coordinates (u, V).

* Unlike Gouraud shading, we don't need to interpolate (u, v) over polygons. We get a new
(M, v) for each intersection point.

+ Anti-aliasing and super-sampling are covered in the Distribution Ray Tracing notes.

11.7.3 Transmission/Refraction

+ Light that penetrates a (partialy or wholly) transparent surface/material is refracted (bent),
owing to a change in the speed of light in different media

» Snell's Law governs refraction:
sinf; ¢

sinBy ¢

72

Theindex of refraction isthe ratio of light speeds c1/co. For example, the index of refraction

Cwater Lglass

1.8.
Note: Thereis aso awavelength dependence. We ignore this here.

Example:

—If c2 < c1, light bends towards the normal (e.g. air to water). If co < cq, light
bends away from the normal (e.g. water to air).

— The critical angle 6¢, when ¢y > ¢4, iswhen 67 — 8¢ and 62 — 90. Beyond 8¢, 61 >
B¢, and total internal reflection occurs. No light enters the mat erial.

Remarks:

— The outgoing direction isin the plane of the incoming direction and ~n. Thisis
similar to the perfect specular direction.

— When 81 =0, then8, =0, i.e thereisno bending.
For ray tracing:

— Treat global transmission like global specular, i.e. cast one ray.
— Need to keep track of the speed of light in the current medium.

11.7.4 Shadows

+ A simple way to include some global effects with minimal work is to turn off local
reflection when the surface point p cannot see light sources, i.e. when p isin shadow.

« When computing E at p , cast aray toward the light source, i.e. inthedirections=(I-p).
W W w W
P (N=p +M" -p)

+ Find thefirst intersection with a surface in the scene. If A* at the first intersection point is

0 < A =1, then there exists a surface that occludes the light source from p .
— We should omit diffuse and specular terms from the local Phong model.

— Thesurfaceradianceat p becomes

E =rala + rg Ispec

73

Note:
Pseudo-Code: Recursive Ray Tracer

for each pixe (i,j)

< computeray ~rij (\) = p_ji + Adjj

I - rayTrace(p ii , dii, 1);
setpixel(i, j, 1)
end for

~

rayTrace(a , b, depth)

findFirstHit(a, b, output var obj, A, p , ~n)

if A>0 then
| = rtShade(obj, p , ~n, -b, depth)
else
| = background,;
end if
return(l)

wheredij =p jj— ~e

>

npba

findFirstHit (~, , outputvar OBJ, An, h, ~ 1)
An = -1;
loop over all objects in scene, with object identifiers objID g
< find A+ for the closest legitimate intersection of ray ~rjj (A) and object >
if (Apn<0 orA*<Ap) and A*>0 then
A=A
ph=a b;
< determine normal at hit point ~np,
> OBJ = objIDg
end if
end loop

74

Note:

rtShade(OBJ, p, n, de, depth)
/* Local Component */

findFirstHit(p,1 p, output var temp,);
if 0 <Ay <1 then

[} = ambientTerm;
olse

| = phongModel (p, n‘, de, OBJ.localparams)

end if
/* Global Component */
if depth < maxDepth then

if OBJ has specular reflection then

calculate mirror direction mg de . den
lspec =rayTrace(p , m~s, depth+1)
< scalelspec by OBJ.specularRefICoef >
end if
if OBJisrefractive then

< calculate refractive direction t >

if not total internal reflection then

Iref r = rayTrace(p , t, depth+1)
< scaelref ¢ by OBJ.refractiveReflCoef >
end if
end if
lg = lspec + lrefr
else
|g =0
end if
return(l; + g)

12 Radiometry and Reflection

Until now, we have considered highly smplified models and a gorithms for computing lighting and
reflection. These algorithms are easy to understand and can b e implemented very efficiently; how-
ever, they also lack realism and cannot achieve many important visual effects. In this chapter, we
introduce the fundamentals of radiometry and surface reflec tance that underly more sophisticated
models. In the following chapter, we will describe more advanced ray tracing algorithms that take
advantage of these models to produce very realistic and simulate many real -world phenomena.

12.1 Geometry of lighting

In our discussion of lighting and reflectance we will make sev eral smplifying assumptions. First, we
will ignore time delays in light propagation from one place to another. Second, we will assume that
light is not scattered nor absorbed by the median through which it travels, i.e., we will ignore light
scattering due to fog. These assumptions allow us to focus on the geometry of lighting; i.e., we can
assume that light travels along straight lines, and is conserved asit travels (e.g., see Fig. 1).

Light Tube % 3\

-~
-

o \} N

Figure 4: Given a set of rays within atube, passing through A and B but not the sides of the tube,
the flux (radiant power) at A along theseraysis equa to that at B along the same set of rays.

Before getting into the details of lighting, it will be useful to introduce three key geometric con-
cepts, namely, differential areas, solid angle and foreshortening. Each of these geometric
conceptsis related to the dependence of light on the distance and orientation between surfacesin
ascene that receive or emit light.

Area differentials. We will need to be able describe the amount of lighting that hitting an area
on a surface or passing through a region of space. Integrating functions over a surface requires
that we introduce an area differential over the surface, denoted dA. Just as a 1D differential (dx)
represents an infinitesimal region of the rea line, an area d ifferential represents an infinitesimal
region on a 2D surface.

Example:
Consider arectangular patch S in the x — y plane. We can specify pointsin the patch in
terms of an x coordinate and ay coordinate, with x € [Xg, X1], ¥ € [Yo, Y1]. We can

76

divide the plane into N M rectangular subpatches, the ij-th subpatch bounded by

XiSX<S X+ X (47

Y Sysyj+ y (48

wherei e [0...N - 1], j€[0...M - 1], X = (X1 — Xg)/N and y=(y1-Yyo)/M|
Thearea of each subpatchisAjj = X y. InthelimitasN — « and M — o,

dA = dxdy (49

To compute the area of a smooth surface S, we can bresk the surface into many
tiny patches (i, j), each with area A; j , and add up these individual areas:

X
Area(S) = Aij (50)
i

In the planar patch above, the area of the patchis:
Area(S) =Ajj =NM x y=(x1 = x0)(y1 ~ Yo) (51)

X
Computing these individual patch areas for other surfacesis difficult. However,
tak-ing the infinite limit we get the general formula:

Z
Area(S)= dA (52)
S

For the planar pat% this be?m?

y1r X1

dA = dxdy = (x1 = X0)(Y1 ~ Yo) (53)

S YOX0

We can create area differentials for any smooth surface. Fortunately, in most radiometry applica-
tions, we do not actually need to be able to do so for anything other than a plane. We will use
area differentials when we integrate light on the image sensor, which, happily, is planar.
However, area differentials are essential to many key definitions and conc epts in radiometry.

Solid angle: We need to have a measure of angular extent in 3D. For example, we need to be
able to talk about what we mean by the field of view of a camera, a nd we need a way to
quantitfy the width of adirectiona light (e.g., aspot light).

77

Let's consider the situation in 2D first. In 2D, angular extent is just the angle between two direc-
tions, and we normally specify angular extent in radians. In particular, the angular extent between
two rays emanating from a point g can be measured using a circle centered at q ; that is, the
angular extent (in radians) is just the circular arc length | of the circle between the two directions,
divided by radius r of the circle, I/r (see Fig. 5). For example, the angular extent of an entire circle
having circumference 21r isjust 217 radians. A half-circle has arclength 1rr and spans 1t radians.

N
/ . /\
A
&~ |

| q:'

Figure 5: Angular extent in 2D is given by I/r (radians).

In 3D, the corresponding quantity to 2D angular extent is called solid angle. Analogous to the 2D
case, solid angle is measured as the area a of a patch on a sphere, divided by the squared radius
of the sphere (Figure 6); i.e.,

w=2 (54)

r2
The unit of measure for solid angle is the steradian (sr). A solid angle of 21T steradians
corresponds to a hemisphere of directions. The entire sphere has a solid angle of 41 sr. As
depicted in Figure 2, to find the solid angle of a surface S with respect to apoint q , one projects
S onto a sphere of radiusr, centered at g , along lines through q . This gives us a, so we then

divide by r2 to find the solid angle subtended by the surface. Note that the solid angle of a patch
does not depend on the radiusr, since the projected area a is proportional to r2.

Figure 6: The solid angle of apatch S is given by the area a of its projection onto a sphere of radius
r, divided by the squared radius, r°.

Note:
At asurface point with normal ~n, we express the hemisphere of incident and emittant
directionsin spherical coordinates. That is, directionsin the hemisphered are

.
d = (sin B cos @, sin 6 sin @, cos B) (55)

78

~

where 0 € [0, 11/2] denotes the angle between d and the normal, and ¢ € [T,)
measures the direction projected onto the surface.

With direction expressed in this way one can write the infinit essmal solid angle as
dw =sin 6 d6 do (56)
Theinfinitesimal solid angleis an areadifferential for the unit sphere.

To seethis, note that for 8 held fixed, if we vary @ we trace out a circle of radius sin 6
that is perpendicular to ~n. For a small change do, the circular arc has length sin 6
do, and therefore the area of a small ribbon of angular width dO isjust sin 6 d@ de.

This also allows us to compute the finite solid angle for a aran ge of visual direction,

such asBg < 6 <01 and ¢g < @ < @1. That is, to compute the solid angle we just
integrate the differential solid angf ov%this region on a unit sphere (r = 1):

¢1 61
w = sin 6 d6 do (57)
@ 6o
z
P1
01
= o ~COS Blgo do (58)
= (91 — @o)(cos Bp - cos 01) (59)

(Assuming we are in the quadrant where this quantity is positive)

Foreshortening: Another important geometric property is foreshortening, the reduction in the
(projected) area of a surface patch as seen from a particular point or viewer. When the surface
normal points directly at the viewer its effective size (solid angle) is maximal. As the surface
normal rotates away from the viewer it appears smaller (Figure 7). Eventually when the normal
is pointing perpendicular to the viewing direction you see the patch “edge on”; so its projection
isjust aline (with zero areq).

Putting it all together: Not surprisingly, the solid angle of a small surface patch, with respect to
a specific viewing location, depends on both on the distanc e from the viewing location to the
patch, and on the orientation of the patch with respect to the viewing direction.

79

N‘\ -7 dN'\ .7

~Acos6 dA cos B

Figure 7: Foreshortening in 2D. Left: For a patch with area A, seen from a point q , the patch's
foreshortened area is approximately A cos 0. This is an approximation, since the distance r
varies over the patch. The angle 8 is the angle between the patch normal and the directionto q .
Right: For an infinitesimal patch with area dA, the foreshortened areais exactly dA cos 6.

Let g bethe point (such asalight source or aviewer) about which we want to compute solid angle.
Let p bethelocation of asmall planar surface patch S with area A at distancer=||q - p || from
g . Additionally, suppose the surface normal pointsdirectly at g (Figure 8). In this case, we can
imagine drawing a hemisphere about g with radiusr, and the projected area a of this patch will be

approximately A. Hence, the solid angle w = A/r2. In other words, the solid angle isinversely
proportional to distance squared; a more distant object obscuresless of q 's “field of view.” This is
an approximation, however, since the distance r varies over the patch. Nevertheless, if we consider

the limit of an infinitesimal patch with area dA, then the solid angle is exactly dw = dAIr’,

When the surface normal does not point directly at g , foreshortening plays a significant role. As
the surface normal rotates away from the direction of @ — p , the surface, as viewed from point
g , becomes smaller; it projects onto a smaller area on a sphere centered at q . sphere. So, we
say that the area of the patch, as seen from q , is foreshortened. More formally, let © be the
angle between the norma ~n and direction, @ - p . Then, for our infinitesimal surface with
areadA, the solid angle subtended by the tilted patch is

duy = JAcos b ’ (60)

r

The cosine term should look familiar; this is the same cosine term used in Lambertian shading
within the Phong model.

Figure 8: Solid angle of a patch. Left: A patch with normal pointing at I. Right: A patch with
arbitrary orientation.

80

12.2 Elements of Radiometry

The field of radiometry concerns the measurement of light (el ectromagnetic radiation), usually
restricted to the visible wavelengths, in the range 400-700 nm. Light is often measured in discrete
units called photons. It is difficult to talk about the number of photons that illuminate a point on a
surface at a particular time (as it isalmost aways zero). Instead, we talk about the average number of
photons in small (infinitesimal) intervals of spac e or time, that is, we talk about photon density, and
thereby treat light as a continuous quantity rather than a photon count. In effect, we are assuming that
there is enough light in the scene so that we can treat light as a continuous function of space-time.
For example, we will talk about the light hitting a specific surface patch as a continuous function
over the patch, rather than discuss the discrete photons of light.

12.2.1 Basic Radiometric Quantities

Formally, we describe light in terms of radiant energy. You can think of radiant energy as the
totality of the photons emitted from a body over its entire surface and over the entire period of
time it emits light. Radiant energy is denoted by Q(t) and measured in Joules (J). You can think
of radiant energy as describing how much light has been emitted from (or received by) a surface

up to atimet, starting from some initial time 0. 2

The main quantity of interest in radiometry is power, that is, the rate at which light energy is
emitted or absorbed by an object. This time-varying quantity, usually called flux , is measured in

Joules per second (J - s_l). Here we denote flux by ®(t):

o) = 90 (61)

We can compute the total light that hits asurfa%a uptotimet as.

t
Q)= d(1)dr (62)
0
Flux is sufficiently important that we define a special unit of measure for it, namely, watts (W).
One watt is one Joule per second; so a 50 watt light bulb draws 50J of energy per second. Most
of this radiant energy is emitted as visible light. The rest is converted to thermal energy (heat).
Higher wattage means a brighter light bulb.

Not surprisingly, the light received or emitted by an object varies over the surface of the object.
Thisisimportant since the appearance of an object is often based on how the light reflected from

2Of course, radiant energy depends on wavelength A, so it is common to express energy as a function of wavelength;
the resulting density function, Q(A), is called spectral energy. This is important since different wavelengths are seen as
different colours. Nevertheless, our next magjor simplifi cation will be to ignore the dependence of radiant energy on
wavelength. In computer graphics, colours are controlled by the relative amounts of power in three separate spectral bands,
namely, Red, Green, and Blue. What we describe in this chapter can be applied to each colour channel.

81

its surface depends on surface position. Formally, light received at the surface of an object, as a
function of image position is called irradiance. The light emitted from a surface, as a function of
surface position, is often called radiant exitance (or radiosity).

Irradiance, the incident flux, as a function of surface posit ion p , is denoted by H(p).
Remember, we cannot talk about the amount of light received at a single point on a surface
because the number of photons received at a single point is generally zero. Instead, irradiance is
the spatial density of flux, i.e., the amount of light per unit surface area. The inte gral of
irradiance over the surface of an object gives us the total incident flux (i.e., received by) th e
object. Accordingly, irradiance is the spatial derivative of flux. For smooth surfaces we write

HE) = % (63

where dA refersto differential surface area. Irradiance isjust power per unit surface area (W-m_z).

Example:
For aplanar patch in the x — y plane, we can write irradiance as a function of (X, y)
position on the patch. Also, we have dA = dxdy. In this case:

dz ¢
dxdy

H(x,y) = (64)

These terms are al functions of timet, since lighting ® may change over timet. However, we
will leave the dependence on timet implicit in the equations that follow for notational simplicity.

Example:
What istheirradiance, owing to a point light source, on an infinitesimal patch
S with area dA? Let's say we have apoint light source at | emitting| ~ watts per

steradian into all directions:
dd =1 dw (65)

In other words, the amount of light from this source is proportional to solid angle,
and independent of direction. Our goal isto compute the irradiance H on the patch,
which can be done by subtitution of formulas from this chapter:

= 40 _ldw :IdAcozse =I(:0236 (66)
dA dA dAr r
wherep isthepositionof S, r= ||l - p ||, and 8 is the angle between the surface

normal and the vector | = p . Thisformulaillustrates the importance of solid angle:
the amount of light hitting a surface is proportional to its solid angle with respect to

82

the light source. A distant patch (with large r) receives less light than a nearby patch,
and a foreshortened patch receives less light than a frontal patch. Furthermore, the
amount of light hitting the patch is proportional to the intensity | of the light source.

12.2.2 Radiance

Of course the light emitted or received by an object depends on visual direction as well as surface
position. For example, objects are often illuminated more from above (the sky) than below (the
ground). As a consequence, when the direction of light propagation isimportant, we will express flux
as a function of visual direction. This leads to the centr al quantity in radiometry, namely, radiance.
Radiance is a measure of the rate at which light energy is emitted from a surface in a particular
direction. It isafunction of position and direction, and it is often denoted by L (or

-1

N -2
L(p, d)). Formally, it is defined as power per steradian per surface area (W - st -m), wherethe

surface areais defined with respect to asurface patchat p that is perpendicular to the direction d.

Normally, one might think of radiance as a measure of the light emitted from a particular surface
location into a particular direction. The definition abovei s more general however. It allows usto
talk about the light travelling in a particular direction through an arbitrary point in space. In this
case we are measuring surface area with respect to a virtual surface, but we can talk about
surface area nonethel ess.

When we talk about the light (radiance) emitted from a particular surface into a particular emittant

direction de we have to be a little more careful because radiance is defined with respect to a
surface perpendicular to the emittant direction, which is usually not the same orientation as the
actual rea surface in question. Accordingly, often radiance is defined as power per unit
foreshortened surface area per solid angle to make explicit the fact that we are using a virtual
surface and not the real surface to measure area. That is, we are measuring surface area as seen
by someone looking at the surface from somewhere along aray in the emittant direction.

- Y &
A de nA . dA = cosB dAg
/',/.- 7 o N
£ g
y / dg/”

Note:
Computing radiant exitance (radiosity): As mentioned above, radiant exitanceis
the total amount of flux leaving a surface into the entire hemi sphere of emittant di-

83

rections, as a function of surface position. Intuitively, it is the integral of surface
radiance, but we have to be careful; radiance is defined with r espect to unit areaon a
surface perpendicular to the emittant direction rather than unit area on the real sur-face
of interest. Before we can integrate radiance we need to specify al radiance quantities
in terms of unit surface area on the rea surface. To do this one needsto

multiply radiance for emittant direction de by the ratio of the surface area normal

to de (i.e., dA), to the real surface area, denoted dAs. As discussed above, for an
infinitesimal patch the ratio of these areasis just the fores hortening factor, i.e.,

~

dA =cos 6 dAs =~n - de dAg, (67)
where 0 is the angle between the unit vectors ~n and de.

Taking this foreshortening factor into account, the relation between radiant exitance
E(p) andradiance L(p, d) isgiven by
Z
E(p) = L(p,” d)~n - d dw (68)

deQe

The domain of integration, Qg, isthe hemisphere of possible emittant directions.

Note:

Computing Irradiance: Above we showed that the irradiance on an infinitesimal
surface patch S at point p owing to a point light source at g with radiant
intensity | is given by

H= 252 (69)

wherer = ||g - p || isthe distance between the light source and the surface patch,
and 0 is the angle between the surface normal and the direction of the light source
from the surface patch,q - p . ~
In thls case, theradianceat p from the point light source directiond=p - qg/r ,i.e,
L(p, d) . issmply | /r 2 Thefactor cos 8 is the foreshortening factor to convert from
area perpendicular to the direction d to area on the surface S.
Accordingly, if we consider radiance at p from the entire hemisphere of possible
incident directions, then the total irradiance at p is given by
Z
H(p) = L(p,” =d) ~n - d dw (70)

deQj

(Note that incident directions here are outward facing fromp .)

84

Note:
Radiance vs. Irradiance. Radiance and irradiance are very similar concepts — both
describe an amount of light transmitted in space — but it isim portant to recognize the
distinctions between them. There are several ways of thinking about the difference;
» Radiance is afunction of direction; it is power per foreshortened surface area
per steradian in a specific direction. Irradiance is inciden t power per surface
area (not foreshortened); it is not a directional quantity.

- Radiance (W - s - m) and irradiance (W - m_2) have different units,

 Radiance describes light emitted from a surface. Irradiance describes light in-
cident on a surface. Indeed, from the radiance emitted from one surface we
can compute the incident irradiance at a nearby surface.

12.3 Bidirectional Reflectance Distribution Function

We are now ready to explore how to model the reflectance proper ties of different materias. Dif-
ferent objects will interact with light in different ways. Some surfaces are mirror-like, while
others scatter light in awide variety of directions. Surfaces that scatter light often look matte, and
appear similar from different viewing directions. Some objects absorb a significant amount of
light; the colour of an object is largely a result of which wavelengths it absorbs and which
wavelengthsit reflects.

One simple model of surface reflectance is refered to as the bi directional reflectance distribution
function (BRDF). The BRDF describes how light interacts with a surface for a relatively wide range
of common materials. In intuitive terms, it specifiesw hat fraction of the incoming light from a given
incident direction will be reflected toward a given em ittant direction. When multiplied by the
incident power (i.e., the irradiance), one obtains the desired emittant (i.e., reflected) power.

More precisely, the BRDF is a function of emittant and incident directions de and d;. It is defined

to be theratio of radiance to irradiance;

~~ L

p(de, d) = H (71)
For most common materials the only way to determine the BRDF is with measurements. That is,
for awide range of incident and emittant directions, a material is illuminated from one direction
while the reflected light is measured from another direction . Thisis often atedious procedure. In
computer graphics it is more common to design (i.e., make up) parametric BRDF formulag, and
then vary the parameters of such models to achieve the desired appearance. Most parametric
models are based on analytic models of certain idealized materials, as discussed below.

85

12.4 Computing Surface Radiance

When rendering an image of an object or scene, one wants to know how much light isincident at
each pixel of the image plane. (In effect, one wants to compute the image irradiance.)
Fortunately it can be shown that this quantity is linearly related to the scene radiance. In
particular, for a point on an opaque object in a given visual direction, one simply needs to
compute the radiance from that point on the surface in the direction of the camera. Based on the
BRDF model of reflectance, the surface radiance depends on the incident illumination
(irradiance) at the surface, and the BRDF of course.

Point Light Sources

For example, consider a single point source with radiant intensity 1. To compute the irradiance at a
small surface patch we can compute the total flux arriving at the surface, and then divide by the area
of the surface to find flux per unit area. More precisel y, radiant intensity for the source is given by |
= d®/dw. We multiply by the solid angle subtended by the patch dw to obtain the flux on the surface
d®, and then we divide by the surface area dA to obtain d®/dA, that is, irradiance as in Egn (63).
For a point light source this was shown above (see Eqgn. (66)) to be given by

H=|-n-di (72)

r2

where ~n isthe unit surface normal, d; is the unit vector in the direction of hte light source from
the surface patch, and r is the distance from the patch to the light source.

We now want to compute the radiance from the surface (e.g., toward the camera). Toward this end,

we multiply theirradiance H by the BRDF, p(de, d;), in order to find radiance as afunction of the

emittant direction:

70 o)=pld o d 1 75 73

This perspective generalizes naturally to multiple light sources. That is, the radiance from a point
p on asurface in the direction of the camerais the sum of radiances due to individual light
sources. For J point light sources, at locations |j , with intensities | , the radiance is given by

Lp, d ¢)=) pd ed)l ~ (74)

=1 i

th I th - j
wherer; = p isthedistancetothej ~ source, and d =(I p)ir is the incident direction

of thej source.

86

Extended Light Sources

Many light sources are not infinitesimal point sources. Rather, in the general case we need to be
able to work with extended light sources for which the incident light is a continuous function of
incident direction. One way to think of this is to let the number of discrete light sources go to
infinity so that the sum in Eqn (74) becomes an integral.

Here we take a dightly different, but equivalent approach. As discussed above, radiance can be used
to express the light energy transport through any point in space, in any direction of interest. Thus,
givenapoint p on asurface with unit normal ~n, we can expr_e&the radiance through p along

the hemisphere of possible incident directions as L(p, d;) for dj € Q; where Q; denotes the
domain of plausibleincident directionsat p .

Note:
As above, we can erect a spherical coordinate system at p . Toward this end, let 6;

denote an angle measured from the surface normal, and let @; be an angle in the
surface tangent plane about the normal relative to some Cartesian X — y coordinate
system in the plane. Then al directions

- T
di = (sin 6j cos @j, sin 6; sin @;, cos 6;) (75)
contained in Q; satisfy 8; € [0, /2] and @; € [-T1, T1).

One problem with radiance is the fact that it expresses the light flux in terms of power per unit area
on a surface perpendicular to the direction of interest. Thus, for each incident direction we are using a
different plane orientation. In our case we want to express the power per unit area on our

surface S, and therefore we need to rescale the radiance in direction dj by the ratio ofkforeshortened
surface areato surface area. One can show that this is accomplished by multiplying L(p, d;) by

cos 6j = dj - ~n, for norma ~n. The result is now the incident power per unit surface area (not
foreshortened) per solid angle. We multiply this by solid angle dw to obtain irradiance:

H=L(p, -dj)cos 8; dwj (76)
Therefore, the resulting surface radiance in the direction of the camera due to thisirradianceisjust

p(de, di) L(p, —di) cos 6; dwj
If we then accumulate the total radiance from the incident illumination over the entire
hemisphere of possible incident directions we obtain
Z

Lde)= p(de di) L(p,” ~d) cos 6; dw; (77)
di G

87

where, as above, theinfinitesimal solid angleis dwj = sin 6; d6; de;.

Light sources vary greatly from scene to scene. In effect, when you take a photograph you are
measuring irradiance at the image plane of the camera for a limited field of view (angular
extent). This shows how complex illumination sources can be.

Note:

The ideal point light source can also be cast in the framework of a continuous, ex-
tended source. To do this we assume that the distribution of incident light can be
modeled by a scaled Dirac delta function. A Dirac delta function &(x) is defined by:

y
5(x)=0 for x=60, and (x)f(x)dx =f(0) (79)

With the light source defined as a delta function, Egn (77) red uces to Eqgn (73).

12.5 Idealized Lighting and Reflectance Models

We now consider several important special instances of BRDF models. In particular, we are in-
terested in combinations of lighting and BRDF models that facilitate efficient shading
algorithms. We discuss how diffuse and specular surfaces can be represented as BRDFs.

12.5.1 Diffuse Reflection

A diffuse (or matte) surface is one for which the pattern of shading over the surface appears the same
from different viewpoints. The ideal diffusely reflect ing surface is known as a perfect Lam-bertian
surface. Its radiance is independent of the emittant direction, its BRDF is a constant, and it reflects all
of the incident light (i.e., it absorbs zero po wer). The only factor that determines the appearance
(radiance) of a Lambertian surface is therefore the irradiance (the incident light). In

this case, with the BRDF constant, p(de, dj) = po , the (constant) radiance Le has the form:

~ 7 o~
Ld(p, d &) =po d-ien L(p, —d i) cos 6; dw (79)

Note:
A perfect Lambertian surface reflects all incident light, ab sorbing none. Therefore,
the total irradiance over the hemisphere of incident directions must equal the

radiant exitance. Setting these quantities to be equal, one can show that pg = 1/1T.
The BRDF for any diffuse surface must therefore have a value between 0 and 1/1.

Despite the smplicity of the BRDF, it is not that simple to compute the radiance because we still
have an integral over the hemisphere of incident directions. So let's simplify the model further.

88

Let's assume a single point light source with intensity | at location |. This gives us

~

Lop.d e)=pot =% (80)
: Iz]]
wherer = ||l - p]| isthe distance to the light source from p , and dj = (I — p)/r isthe direction
of the source from p . Of course, the surface normal ~n aso changeswithp .
Eqn (80) is much easier to compute, but we can actually make the computation even easier. Let's

assume that the point source is sufficiently far away that r and dj do not change much with points
p ontheobject surface. That is, let's treat them as constant. Then we can simplify Eqgn (80) to

Lgp)=rgl~s-~n (81)

where rg is often called the diffuse reflection coefficient, and ~s is the direction of the source.
Then the only quantity that depends on surface position p is the surface normal ~n.

Note:

Thevaue ~s - ~n should actually be max(0, ~s - ~n). Why? Consider the
relationship of the light source and surface when this dot product is negative.

12.5.2 Ambient Illumination

The diffuse shading model in Egn (80) is easy to compute, but often appears artificial. The biggest
issue is the point light source assumption, the most obvious consequence of which isthat any surface
normal pointing away from the light source (i.e., for which ~s - ~n < 0) will have a radiance of zero.
A better approximation to the light source is a uniform ambient term plus a point light source. Thisis
adtill aremarkably crude model, but it's much better than the point source by itself.

With a uniform illuminant and a constant BRDF, it is easy to see that the integral in Egn (79)
becomes a constant. That is, the radiance does not depend on the orientation of the surface
because the illumination is invariant to surface orientation. As aresult we can write the radiance
under auniform illuminant as

La(p)=rala (82)

whererg is often called the ambient reflection coefficient, and |5 denotes the integral of the
uniform illuminant.

Note:

If the illuminant is the sum of a point source and a uniform source, then the
resulting radiance is the sum of the radiances to the individual sources, that is, the
sum of Eqns (82) and (81).

89

12.5.3 Specular Reflection

For specular (mirror) surfaces, the incident light from each incident direction di is reflected toward
aunique emittant direction de. The emittant direction liesin the same plane as the incident direction
dj and the surface normal ~n, and the angle between ~n and de is equal to that between ~n and d;. One

ﬁl
dil\/d—e

can show that the emittant directionisgiven by de = 2(~n - dj)~n - dI For all B ower from d; be
reflected into a single emittant direction the BRDF for a perfec t mirror must be proportional to a

deltafunction, p(de, di) « 6(dj — (2(~n - deg)~n — dg)).

In particular, if we choose the constant of proportionality so that the radiant emittance is equal to
the total incident power, then the BRDF becomes:

- ~p(de‘d‘):_1~ - ~;(d‘—(2(~n-de)~:de)) (83)
~n - d;
In this case, Eqn (77) reducesto
Ls(p, de) = L(p,” ~(2(~n - de)~n - d¢)) (84)

This equation plays amajor rolein ray tracing.

Off-Axis Specularity: Many materials exhibit a significant specular component in t heir re-
flectance. But few are perfect mirrors. First, most specular s urfaces do not reflect all light, and
that is easily handled by introducing a scalar constant in Eqn (84) to attenuate surface radiance

Ls. Second, most specular surfaces exhibit some form of off-axis specular reflection . That is,
many polished and shiny surfaces (like plastics and metals) emit light in the perfect mirror
direction and in some nearby directions as well. These off-axis specularities look a little blurred.
Good examples are highlights on plastics and metals.

The problem with off-axis specularities is that the BRDF is no longer a simple delta function.
The radiance into a particular emittant direction will now be affected from the incident power
over a range of incident directions about the perfect specular direction. This means that, unlike
the ssimple radiance function in Egn (84) for perfect measures, we need to return to the integral in
Eqgn (77). Thereforeit is not easy to compute radiance in this case.

Like the diffuse case above, one way to ssmplify the model with off-axis specularities is to assume a
point light source. With apoint light source we can do away with the integral. In that case the

0

light from a distant point source in the direction of ~s is reflected into a range of directions about

the perfect mirror directions m~ = 2(~n - ~s)~n — ~s. One common model for thisis the following:
-~ ~a
Ls(de) = rsl max(0, m~ - dg) | (85)
whererg is called the specular reflection coefficient (often equal to 1 - rg), | isthe incident power
from the point source, and a = O is a constant that determines the width of the specular

highlights. As a increases, the effective width of the specular reflection de creases. In the limit as
a increases, this becomes amirror.

12.5.4 Phong Reflectance M odel

The above components, taken together, give us the well-known Phong reflectance model that
was introduced earlier:

~ ~a

L(p, de) = rqlg max(0, ~s - ~n) +ra la + rsls max(0, m~ - dg) | (86)
where

* Ia, lg, and |, are parameters that correspond to the power of the light sources for the
ambient, diffuse, and specular terms;

* Iy, Ig and rg are scalar constants, called reflection coefficients, that d etermine the relative
magnitudes of the three reflection terms;

* a determines the spread of the specurlar highlights;
* ~nisthesurfacenormal a p ;
* ~sisthedirection of the distant point source;

* m~ isthe perfect mirror direction, given ~n and ~s ; and

« and de isthe emittant direction of interest (usually the direction of the camera).

91

13 Distribution Ray Tracing

In Distribution Ray Tracing (hereafter abbreviated as “DRT”), our goal is to render a scene as
ac-curately as possible. Whereas Basic Ray Tracing computed a very crude approximation to
radiance at a point, in DRT we will attempt to compute the integral as accurately as possible.
Additionally, the intensity at each pixel will be properly modeled as an integral as well. Since
these integral s cannot be computed exactly, we must resort to numerical integration techniques to
get approximate solutions.

Aside:

When originally introduced, DRT was known as “Distributed Ray Tracing.” We
will avoid this name to avoid confusion with distributed computing, especially
because some ray-tracers are implemented as parallel algorithms.

13.1 Problem statement

Recall that, shading at a surface point is given by:
Z

L(de) = Qp(de,‘di(cp, 8)) L(=di(®, 8)) (~n - di) dw 87)

This equation says that the radiance emitted in direction de is given by integrating over the hemi-

sphere Q the BRDF p times the incoming radiance L(—dj(¢, 0)). Directions on the hemisphere
are parameterized as

di = (sin 8 sin @, sin 8 cos @, cos) (88)
The differential solid angle dw is given by:

dw = sin 6d6de (89)

and so:

~ 7 Z ~ ~ - ~ (90)
L{d)= ge0,2m o<fo,m2) Pd e, d (@, 6))L(-d i(9,8))(~n-d i)sinBdOde

Thisis an integral over al incoming light directions, and we cannot compute these integrals in

closed-form. Hence, we need to develop numerical techniques to compute approximations.

Intensity of a pixel. Up to now, we've been engaged in afiction, namely, that the int ensity of a
pixel isthe light passing through a single point on an image plane. However, real sensors

— including cameras and the human eye — cannot gather light at an infinitesimal point, due
both to the nature of light and the physical properties of the sensors. The actual amount of light
passing through any infinitesimal region (a point) isinfinit esimal (approaching zero) and cannot
be measured. Instead light must be measured within aregion. Specificaly, the image plane (or

92

retinad) is divided up into an array of tiny sensors, each of which measures the total light incident
on the area of the sensor.

As derived previously, the image plane can be parameterized asp (a, B) = p o + a~u + B~v. In camera
coordinates, p_co = (0, 0,), and the axes correspond to the x and y axes: ~u¢= (1,0, 0) and
~© = (O, 1, 0). Then, we placed pixel coordinates on agrid: p_ci,j =(L+ii, T+jj,f)=p o+

a, wherei=(R-L)/ncandj=(B-T)/n,,and L, T, B, R are the boundaries of the image
plane.

We will now view each pixel as an area on the screen, rather than a single point. In other words,
pixel (i, j) isall vauesp (a, B) for dmin < @ < dmax , Bmin < B < Bmax - The bounds of each
pixel are: amin =L +ii, dmax =L + (i + DA, Bnin =T +jj, ad Bmax =T + (j + 1A]j. (In
genera, we will set things up so that this rectangle is a square in world-space.) For each point

on the image plane, we can write the ray passing through this pixel as

~ —_ —_

d (o p)=—Pt0E=e—
llp (a,B)-¢ ||

To compute the color of a pixel, we should compute the total light energy passing through this
rectangle, i.e., the flux at that pixel:

V4 Z
o = H(a, B)dadpB (92)

Omin SA<Omax Bmin <B<Pmax

(91)

where H(a, B) isthe incoming light (irradiance) on the image at position a, 3. For color images, this
integration is computed for each color channel. Again, we cannot compute thisintegral exactly.

Aside:
An even more accurate model of a pixel intensity isto weight rays according to
how close they are to the center of the pixel, using a Gaussian weighting function.

13.2 Numerical integration

We begin by considering the general problem of computing an integral in 1D. Suppose we wish
to integrate afunction f (x) from O to D:

Zp
S= f (x)dx (93)
0
Visually, this corresponds to computing the area under a curve. Recall the definition of the integral.
We can break the rea lineinto a set of intervals centered at uniformly-spaced points X1, ..., XN . We
can then define one rectangle on each interval, each width D/N and height f (X;). The total area

93

of these rectangles will be approximately the same as the area under the curve. The area of each
rectangleisf (xj)D/N , and thus the total area of all rectangles together is:
X

D
SN =N f(xi) (94)

|
Hence, we can use Sy as an approximation to S. Moreover, we will get more accuracy as we
increase the number of points:
lim Sy =S (95)

N >0

There are two problems with using uniformly-spaced samples for numerical integration:
* Some parts of the function may be much more “important” than o thers. For example, we
don't want to have to evaluate f (x) in areas where it is amost zero. Hence, you need to
generate many, many x; values, which can be extremely slow.

+ Uniformly-spaced samples can lead to aliasing artifacts. These are especially noticable
when the scene or textures contain repeated (periodic) patterns.

In ray-tracing, each evaluation of f (x) reguires performing a ray-casting operation and a
recursive call to the shading procedure, and is thus very, very expensive. Hence, we would like
to design integration procedures that use as few evaluations of f (x) as possible.

To address these problems, randomized techniques known as Monte Carlo integration can be
used.

13.3 Simple Monte Carlointegration

Simple Monte Carlo addresses the problem of aliasing, and works as follows. We randomly sample
N valuesx; intheinterva [0, D], and then evaluate the same sum just as before:
X

D
SN=N f() (96)

It turns out that, if we have enough samples, we will get just as accurate a result as before; more-
over, aliasing problems will be reduced.

Aside:

Formally, it can be shown that the expected value of Sy is S. Moreover, the variance
of Sy isproportional to N, i.e., more samples |eads to better estimates of the integral.
In the C programming language, the random sampling can be computed asr and() = D.

Aside:

Monte Carlo is a city near France and Italy famous for a big casino. Hence, the
name of the Monte Carlo algorithm, since you randomly sample some points and
gamble that they are representative of the function.

94

13.4 Integration at a pixel

To compute the intensity of an individual pixel, we need to evaluate Equation 92). Thisis a 2D
integral, so we need to determine K 2D points (aj, Bj), and compute:

® (Gmax = QOmin)(Bmax - Bmin))K(H(G) B) (97)

ij = K 1 i

In other words, we pick N points withnin the pixel, cast a ray through each point, and then

average the intensities of the rays (scaled by the pixel's area (dmax — Amin)(Bmax — Bmin)-
These samples can be chosen randomly, or uniformly-spaced.

Example:
The simplest way to compute thisis by uniformly-spaced samples (am, Bn):

am = (m-1)Aq, a = (dmax ~ Gmin)/M (98)
Bn = (n-1)AB, B =(Bmax ~ Bmin)/N (99
and then sum:
b
®j=ap _ Hm, Bn) (100)

However, Monte Carlo sampling — in which the samples are rando mly-spaced
— will usually give better results.

13.5 Shadingintegration
Our goal in shading a point isto compute the integral :

~ 7 ~ ~ ~ ~
L(d) = oclo2m ecom2p(d e d (9 0))L(-d i(¢,0))(~n-d i)sinBdBde (101)
We can choose uniformly-spaced values of ¢ and 8 values asfollows:

Om

(m-1)A0, 0= (m/2)/M (102)

Pn (n = DAg, ¢ =21/N (103)
This divides up the unit hemisphereinto M N solid angles, each with area approximately equal to
sin 8 8 ¢. Applying 2D numerical integration gives:

L(de) = XX p(de, di(®, 8)) L(-di(, 8)) (~n - di)sin® B @ (104)

m=1n=1

95

Once you have al the elements in place (e.g., the ray-tracer, the BRDF model, etc.), evaluating
this equation is actually quite smple, and doesn't require all the treatment of special cases
required for basic ray-tracing (such as specular, diffuse, mirror, etc.). However, it is potentially
much slower to compute.

13.6 Stratified Sampling

A problem with Simple Monte Carlo isthat, if you use a small number of samples, these samples
will be spaced very irregularly. For example, you might be very unlucky and get samples that
don't place any samples in some parts of the space. This can be addressed by a technique called
stratified sampling: divide the domain into K-uniformly sized regions, and randomly sample J

points xj within each region; then sum NQ i T (X;) as before.
13.7 Non-uniformly spaced points

Quite often, most of the radiance will come from a small part of the integral. For example, if the
sceneislit by abright point light source, then most of the energy comes from the direction to this
source. If the surface is very shiny and not very diffuse, then most of the energy comes from the
reflected direction. In generd, it is desirable to sample mo re densely in regions where the
function changes faster and where the function values are large. The general equation for thisis:

X
SN =f (x;)d (105)

where d; is the size of the region around point x;. Alternatively, we can use stratified sampling,
and randomly sample J values within each region. How we choose to define the region sizes and
spaces depends on the specific integration problem. Doin g so can be very difficult, and, as a
consequence, deterministic non-uniform spacing is normaly used in graphics, instead,
importance sampling (below) is used instead.

13.8 Importance sampling

The method of importance sampling is a more sophisticated form of Monte Carlo that allows

non-uniform sample spacing. Instead of sampling the points x; uniformly, we sample them from
another probability distribution function (PDF) p(x). We need to design this PDF so that it gives
us more samplesin regions of X that are more “important,” e.g., values of f (x) are larger. We can
then approximate theintegra S as.

Sn= o 109 (106)

N ; p(xi)

96

If we use a uniform distribution: p(x) = 1/D for x € [0, D], then it is easy to see that this
procedure reduces to Simple Monte Carlo. However, we can aso use something more sophisti-
cated, such as a Gaussian distribution centered around the point we expect to provide the greatest

contribution to the intensity.

97

13.9 Distribution Ray Tracer

for each pixd (i,j)
< choose N pointsx k withinthepixel'sarea >
for each samplek

_~

< computeray ~rk (A) = ~pk +)\dk~ Where dy =~px - ~e >
Ik = rayTrace(~pk|’_' s 1)
e end for i N
setpixel(i, |,)

The rayTrace and findFirstHit procedures are the same as for Ba sic Ray Tracing. However, the
new shading procedure uses numerical integration:

~ o~

distRtShade(OBJ, p, n, de, depth)
< choose N directions (@ , 8k) on the hemisphere >
for each direction k

kK = rayTrace(p; dk , depth+1)
end for

return © @ p(de, di(k . Bk)l sin B

98

olation

14.1 Interpolation Basics

Goal: We would like to be able to define curvesin away that meets the f ollowing criteria
1. Interaction should be natural and intuitive.
2. Smoothness should be controllable.
3. Analytic derivatives should exist and be easy to compute.
4. Representation should be compact.

I nterpolation is when a curve passes through a set of “control points.”

Figure 9: *
Interpol ation

Approximation iswhen a curve approximates but doesn't necessarily contain its control points.

Figure 10: *
Approximation

Extrapolation is extending a curve beyond the domain of its control points.

th
Continuity - A curve isils c" when it is continuous in uptoitsn -order derivatives. For
example, acurveisin C if it is continuous and itsfirst derivative is also continuou s.

- 2 3
Consider acubic interpolant — a2D curve, ct xt) y() where
X(t) =ap+at+agt +ast, (207)
2
y(t) =Dbo+bit+bot + bt (108)

99

Figure 11: *
Extrapolation
SO
ap
X3 2 3 ay T
X(t) = at = 1 tt t =t ~a (109)
az
i=0
as
T . .
~ ()= ~a-~1 h~a~i
Here, t isthe basis and ~a is the coefficient vector. Hence, ct t (Note: T is

X

There are eight unknowns, four a; values and four bj values. The constraints are the values of
c (t) at known values of t.

Example: 1
Forte (0, 1), supposeweknow ¢ j=c (tj)fortj=0,73,73,1asj=1,2, 3, 4.
That is,
Cp =X2 Y2 x(1/3) y1 3)
c1= X1 y1 = x0) y@) , ‘ (110
/ (111)
4= Xa ya = x(1) y@d@) . (113)
So we have the following linear system, _
Xo y2 = 1 13 @3)° W3’ -a b, (114)
X1 Y1 1 0 0 0
2 3 .
X3 VY3 1 2/13 (2/13)" (2/3) h i
X y 1 1 1 1

" | I I

or more compactly, ~x 4 =C ~a b .Then, ~ah =C-t ~x~y .From
this we can find ~a and b, to calculate the cubic curve that passes through the
given points.

100

We can also place derivative constraints on interpolant curves. Let
dec () d) 3

~1(t) = " dt gt 1t t t h-a i (115)

1tt2h, - (116)

that is, adifferent basis with the same coefficients.

Example: 1
?uppose we are given three points, tj = 0, ™2, 1, and the derivative at a point, ~T2(
~2). So we can write thisas -
X2 Yo = 1 1/2 @1/2)° (1/2)° ~a b, (117)
X1 Y1 1 0 0 0
X'3 y3' l;l-l 1 2(11/2) 3(1/2) 1 2 h I
and
C1
¢ h -
c3 =0C ~a bl (118)
2
which we can useto find ~aand b:] o -
C1
h | C3
~T
2

Unfortunately, polynomial interpolation yields unintuitive results when interpolating large num-
bers of control points; you can easily get curves that pass through the control points, but oscillate
in very unexpected ways. Hence, direct polynomial interpolation is rarely used except in combi-
nation with other techniques.

14.2 Catmull-Rom Splines

o . 1 — .
Catmull-Rom Splines interpolate degree-3 curves with C™ continuity and are made up of cubic
curves.

A user specifiesonly the points[p 1, ...p n] for interpolation, and the tangent at each point is set to
be parallel to the vector between adjacent points. So thetangent at p j isk(p j+1 = p j-1) (for
101

A2

endpoints, the tangent isinstead parallel to the vector from the endpoint to its only neighbor).
The value of K is set by the user, determining the “tension” of the curve.

— P
p/ I

Between two points, p jand p j+1, wedraw acubic curveusingp j,p j+1, and two auxiliary

points on the tangents, K(p j+1 = P j-1) adK(p j+2 =P j).

. . 2 3 T
Wewant to find the coefficientsa; whenx(t)= 1t t t ap a1 az az ,wherethe

curveisdefined asc (t) = c(t) y(t) (similarly for y(t) and bj). For the curve between p jand p j+1,
assume we know two end points, ¢ (0) and ¢ (1) and their tangents, ~c (0) and ~c (1). That is,

X(0) = x, (120)
X(1) = Xj+1, (121)
X(0) = K(Xj+1 = Xj-1), (122)
X(1) = K(Xj+2 =X). (123)
To solve for ~a, set up the linear system,
x(1) = 1111
x(0) 1 000 aop
x (1 0123
x((O)) o100 " (124)
as

Then~x=M~a,so~a=M _1~x. Substituting ~a in x(t) yields

X() =1 ttt° 0 O 1 O Xj+1
1 0O 0 O Xj
2 2 1 1 K(Xj+2 Xj) (125)
-3 3 -2 -1 K(Xji+1 Xj-1)
=1t p -0 « -
0 1 0 0 Xj-1
K2 K K 2K Xj+2 (126)
2k K 3 3 2K —K Xj+1

102

For thefirst tangent in the curve, we cannot use the above form ula. Instead, we use:

~T11 = k(P 2-Pp 1) (127)
and, for the last tangent:

~IN = K(P N—P N-1) (128)

103

15 Parametric Curves And Surfaces

15.1 Parametric Curves
Designing Curves
* We don't want only polygons.

* Curves are used for design. Usersrequire asimple set of controlsto allow them to edit and
design curves easily.

» Curves should have infinite resolution, so we can zoom in and st ill see a smooth curve.
» We want to have a compact representation.

Parametric functions are of the form x(t) = f (t) and y(t) = g(t) in two dimensions. This can be
extended for arbitrary dimensions. They can be used to model curves that are not functions of
any axisin the plane.

, . 1
Curves can be defined as polynomials, for example x(t) = 5t 0, 4t9 + 3t8 + However,
coefficients are not intuitive editing parameters, and thes e curves are difficult to control. Hence,
we will consider more intuitive parameterizations.

15.2 Bezier’ curves

We can define a set of curves called B ezier” curves by a procedure called the de Casteljau a gorithm.

Given a sequence of control points p , de Casteljau evaluation provides a construction of smooth
parametric curves. Evaluation proceeds by repeatedly defin ing new, smaller point sequences until
we have a single point at the value for t for which we are evaluating the curve.

1
P1 P1 Y

Figure 12: de Casteljau evaluation for t = 0.25.

1 — _
po() = (1-Ypo+tp 1 (129)
104

P = (1-tp 1+t (130)
P2 () =(1-tp 2+t 3 (131)
hh%):m—gﬁﬁm+m1%o , (132)
=(1-1) p_ol+ 2t(1 - t)f_l +tp 2 (133)
P12 = (1-tp 1M +tp 2) (134)
= (1-1p 1+ 2t(1 — t)p 2 + p 3 (135)
p o) = (1-tp o () +tp 1) (136)
= (1-1°p 0+ 3(1 - tp 1 + 3(1 - °p 2+ p 3 (137)

The resulting curve p_3o isthe cubic Bezier” defined by the four control points. The curves p_zo

and p 1 are quadratic Bezier” curves, each defined by three control points. For all B ezier
curves, we keep t in therange [O...1].

15.3 Control Point Coefficients

Given a sequence of pointsp o,pP 1,.- P n, we can directly evaluate the coefficient of each point. For a
class of curves known as Bezier” curves, the coefficients are defined by the Bernstein pol ynomials:

(138)
X X
where P (-t
n (139)
are called the Bernstein basis functions.
For example, cubic Bezier” curves have the following coefficients:
Bol(t) = (1-1)° (140)
Bio(t) = 3(1 - t)t (141)
B,o(t) = 3(1 - bt (142)
Ba(t) = © (143)

Figure 13 isanillustration of the cubic Bernstein basis functions.

Similarly, we define basis functions for alinear curve, whic h is equivalent to the interpolation

p{)=p o(1-t)+p 1t. Theseare shown in Figure 3.

105

Figure 13: Degree trgee basis functions for Bezier” curves. Bos(t) (dark blue), Bls(t) (green),
B2 (1) (red), and B3 (t) (light blue).

Figure 14: Degree one basis functions for Bezier” curves. Bol(t) (green) and Bll(t) (blue).

15.4 Bezier” CurveProperties

» Convexity of the basisfunctions. For all valuesof t € [0...1], the basis functions sum to 1:
n

Bi"(t) =1 (144)
i=0

In the cubic case, this can be shown asfollows:

(1-1+1° =(1-°+3(1-0t+3(1-f+£ =1 (145)
In the general case, we have: B
noj (1-t 't =1 (146)
X

Similarly, it is easy to show that the basis functions are always non-negative: Bin(t) > 0.

106

Affinelnvariance
What happensif we apply an affine transformation to aB ezier” curve?

Let C:(t) = 20 P iBi ! (t),andlet F (p) = Ap + d be an affine transformation. Then we have
the P
F(e) = Ac () +d (147
X ~
-A piB® +d (148)
A ~
_ 149
= 49780+ (149)
_ n 150
= Ap j+d- Bi(t) (150
n _
= Bj (1)q j (151)

~

q j = Ap j + d denotes the transformed points. Thisillustrates that the transformed curve

we get isthe same as what we get by transforming the control points. (The third statement
follows from the fact that " o Bngt) =1.)
J:

Convex Hull Property

SinceB; (t) 20, p (t) isaconvex combination of the control points. Thus, Bezier” curves
always lie within the convex hull of the control points.

Linear Precision

When the control points lie on a straight line, then the corresponding Bezier” curve will
also be astraight line. This follows from the convex hull property.

Variation Diminishing

No straight line can have more intersections with the Bezier” curve than it has with the
control polygon. (The control polygon is defined as the line segments pj pj+1.)

Derivative Evaluation
. p" \
Lettingc(t) = j=gp {Bj (t), wewant tofind the following:
de (1) dx(t) dy(t)

Lettingd; =p j+1 — P j, it can be shown that:
d d N N N-1 ~ N-1
T)=—c=5gr PiB ®O=N dBi () (153)
dt i=0 j=0
107

%

Figure 15: Theline (green) will always intersect the curve less often than or as many times as the
control polygon.

Thus, ¢ (t) isaconvex sum of the pointsp j and isapoint itself. T (t) isaconvex sum of
vectors and is a vector.

Example: What isT (0) whenN =3, given(p 0,p 1.P 2, P 3)?

Since B;(0) = 0 for all j 6= 0 and B (0) = 1,
X

_ 154
1) =N dB (9=3d =3¢ 1-p o) (159

Therefore, the tangent vector at the endpoint is parallel to the vector from the endpoint to
the adjacent point.

* Global vs. Local Control

Bezier” curves that approximate a long sequence of points produce high-degree
polynomials. They have global basis functions; that is, modifying any point changes the
entire curve. Thisresultsin curves that can be hard to control.

15.5 Rendering Parametric Curves

Given aparameter ranget € [0, 1], sample t by some partition t, and draw a line connecting each
pair of adjacent samples.

» Thisisan expensive algorithm.
» This does not adapt to regions of a curve that do not require as many samples.

* It'sdifficult to determine a sufficient number of samplesto r ender the curve such that it
appears smooth.

There are faster a gorithms based on adaptive refinement and subdivision.

108

15.6 Bezier” Surfaces

Cubic Bezier” patches are the most common parametric surfaces used for modeling. They are of
the following form:

3 3
s(a, B) = Bi"(0)BK“(B)P ik = Bk’ (B)P (@) (155)
X X X
whereeach p k (a) isaBezier” curve: X
— 3 -
Pk(@= Bi(a)p jk (156)

i

Rather than considering only four points as in a cubic Bezier” curve, consider 16 control points
arranged asa4 x 4 grid:

P

Figure 16: Evauation of any point can be done by evaluating curves along one direction (blue),
and evaluating a curve among points on these curves with corresponding parameter values.

For any given a, generate four points on curves and then approximate them with a Bezier” curve
along B.

3
Pk(@=B" (a)p ik (157)
=0
To connect multiple patches, we align adjacent control points. to ensure C1 continuity, we also
have to enforce colinearity of the neighboring points.
The surface can also be written in terms of 2D basis functions Bj,k3 (a, B) = Bjs(a)Bkg’(B):

3 3
s B)= Bk (@ B ik (158)
o

109

16 Animation

16.1 Overview

Motion can bring the simplest of characters to life. Even simple polygonal shapes can convey a
number of human qualities when animated: identity, character, gender, mood, intention, emotion,

and so on.

Very simple characters (image by Ken Perlin)

A movie is a sequence of frames of still images. For video, the frame rate is typically 24 frames
per second. For film, thisis 30 frames per second.

. oy "
“EALLIE OANDNER ward by LELAND NTANYORD ruaning 4t = 140 gait dver tha Falo Alto traek, iy

110

In general, animation may be achieved by specifying amodel with n parameters that identify
degrees of freedom that an animator may be interested in such as

 polygon vertices,

* spline control,

* joint angles,

* muscle contraction,

* cameraparameters, or
+ color.

With n parameters, this results in a vector ~q in n-dimensional state space. Parameters may be
varied to generate animation. A model's motion is a trgjectory through its state space or a set of
motion curves for each parameter over time, i.e. ~q(t), where t is the time of the current frame.
Every animation technique reduces to specifying the state space trgjectory.

The basic animation algorithmisthen: for t=t1 to tend: render(~q(t)).

Modeling and animation are loosely coupled. Modeling describes control values and their
actions. Animation describes how to vary the control values. There are a number of animation
techniques, including the following:

» User driven animation

— Keyframing
— Motion capture

* Procedural animation

— Physical simulation
— Particle systems
— Crowd behaviors

» Data-driven animation

111

16.2 Keyframing

Keyframing is an animation technique where motion curves are interpolated through states at
times, (~qz, ..., ~0T), called keyframes, specified by a user.

-

Keyframe 2 Keyframe 3

Catmull-Rom splines are well suited for keyframe animation because they pass through their
con-trol points.

* Pros:

— Very expressive
— Animator has complete control over al motion parameters

* Cons:

112

— Very labor intensive
— Difficult to create convincing physical realism
* Uses:

— Potentialy everything except complex physical phenomena such as smoke, water, or
fire

16.3 Kinematics

Kinematics describe the properties of shape and motion independent of physical forces that
cause motion. Kinematic techniques are used often in keyframing, with an animator either setting
joint parameters explicitly with forward kinematics or specifying a few key joint orientations
and having the rest computed automatically with inver se kinematics.

16.3.1 Forward Kinematics

With forward kinematics, a point p is positioned by p = f (©) where © is a state vector (01,
02, ...6n) specifying the position, orientation, and rotation of al joints.

For the above example, p = (I 1 cos(81) + Iz cos(61 + 62), |1 sin(B1) + |2 sin(B1 + 65)).

16.3.2 Inverse Kinematics

With inverse kinematics, a user specifies the position of the end effector, p , and the algorithm
has to evaluate the required © givep . Thatis, © = f _1(p').

Usualy, numerica methods are used to solve this problem, as it is often nonlinear and either
underdetermined or overdetermined. A system is underdetermined when there is not a unique
solution, such as when there are more equations than unknowns. A system is overdetermined
when it isinconsistent and has no solutions.

Extra constraints are necessary to obtain unique and stable solutions. For example, constraints
may be placed on the range of joint motion and the solution may be required to minimize the
kinetic energy of the system.

113

16.4 Motion Capture

In motion capture, an actor has a number of small, round markers attached to his or her body that
reflect light in frequency ranges that motion capture camera s are specifically designed to pick up.

(image from movement.nyu.edu)

With enough cameras, it is possible to reconstruct the position of the markers accurately in 3D.
In practice, this is a laborious process. Markers tend to be hidden from cameras and 3D recon-
structions fail, requiring a user to manually fix such drop ou ts. The resulting motion curves are

often noisy, requiring yet more effort to clean up the motion data to more accurately match what
an animator wants.

Despite the labor involved, motion capture has become a popular technique in the movie and
game industries, as it allows fairly accurate animations to be created from the motion of actors.
However, thisis limited by the density of markers that can be placed on a single actor. Faces, for
example, are still very difficult to convincingly reconstruct.

114

* Pros:
— Captures specific style of real actors
* Cons:

— Often not expressive enough
— Time consuming and expensive
— Difficult to edit

e Uses.

— Character animation
— Medicine, such as kinesiology and biomechanics

16.5 Physically-Based Animation

It is possible to ssimulate the physics of the natural world to generate realistic motions, interactions,
and deformations. Dynamics rely on the time evolution of a physical system in response to forces.

Newton's second law of motion statesf = ma, wheref isforce, m ismass, and a is accel eration.

If x(t) isthe path of an object or point mass, then v(t) = ﬁl isvelocity and a(t) = d—V@ :deQ

is acceleration. Forces and mass combine to determine acceleration, i.e. any changein motion.

In forward simulation or forward dynamics, we specify the initial values for position and Ve
locity, x(0) and v(0), and the forces. Then we compute a(t), v(t), x(t) wherea(t) = i

R t R t ’
V()= o a®dt+v(0),andx®) = o v(Hdt+ x(0).

Forward simulation has the advantage of being reasonably easy to simulate. However, a
simulation is often very sensitive to initial conditions, and it is often difficult to predict paths x(t)
without running a simulation—in other words, control is hard.

With inver se dynamics, constraints on a path x(t) are specified. Then we attempt to solve for the
forces required to produce the desired path. This technique can be very difficult computationally.

Physically-based animation has the advantages of:
* Redlism,
+ Long simulations are easy to create,

» Natural secondary effects such as wiggles, bending, and so on—materials behave naturally,

115

* Interactions between objects are also natural .

The main disadvantage of physically-based animation is the lack of control, which can be
critical, for example, when a complicated series of events needs to be modeled or when an artist
needs precise control over e ementsin a scene.

* Pros.
— Very redistic motion
* Cons:

— Very slow
— Very difficult to control
— Not expressive

e Uses.

— Complex physical phenomena

16.5.1 Single 1D Spring-Mass System

Spring-mass systems are widely used to model basic physical systems. Ina 1D spring, x(t) repre-
sents the position of mass, increasing downwards.

« Mass

A spring hasresting length | and stiffness k. Deformation force is linear in the difference from the
resting length. Hence, a spring'sinternal force, according to Hooke's Law, isf S(t) = k(I = x(t)).

The external forces acting on a spring include gravity and the friction of the medium. That is, f g
= mg and f OI(t) = —pv(t) = -p O Where p isthe damping constant.

Hence, the total force acting on aspringisf (t) = f S(t) +19 41 d(t). Then we may use a(t) = o

m
with initial conditions x(0) = xg and v(0) = v to find the position, velocity, and accel eration of
aspring at agiventimet.

116

16.5.2 3D Spring-Mass Systems

Mass-spring systems may be used to model approximations to more complicated physical systems.
Rope or string may be modeled by placing a number of springs end-to-end, and cloth or rubber sheets
may be modeled by placing masses on a grid and connecting adjacent masses by springs.

| f \
> E - -
-

Let the ith mass, m;, be at location p i(t), with elements x;(t), yi(t), zi(t). Let I;j denote the resting
length and kij the stiffness of the spring between massesi and j.

Theinternal forcefor massiis
fs)= ke _Pi=DPi |

ij —j ! kpl ~ P k
whereejj = lij — kpj — pj k.
Note:
It is the case that ;> (t) = —f;” (1).
The net total internal force on amassi isthen
X
M= 0,

jeN;
where N;j isthe set of indices of neighbors of massi.
16.5.3 Simulation and Discretization

A common approach to discretizing over timein a physical ssmulation isto use a numerical ordi-
nary differential equation solver, such as the Runge-K utta method, with finite difference approxi-
mations to derivatives.

To find an approximation to a(t), we choose a time increment t so the solution is computed &t t;
=it.

The simplest approach is the use Euler time integration with forward differences:

117

» Compute ~a;j(t) = fi(t)/m;.
» Update ~vj(t + t) = ~vj(t) + t~a;(t).
*Updatep i(t+ t)=p i) + t~vi(t).

16.5.4 Particle Systems

A particle system fakes passive dynamics to quickly render complex systems such asfire,
flowing water, and sparks. A particleis apoint in space with some associated parameters such as
velocity, timeto live, color, or whatever €lse might be appropriate for the given application.
During asimulation loop, particles are created by emitters that determine their initial properties,
and existing particles are removed if their timeto live has been exceeded. The physical rules of
the system are then applied to each of the remaining particles, and they are rendered to the
display. Particles are usually rendered as flat textures, but they may be rendered pr ocedurally or
with asmall mesh as well.

16.6 Behavioral Animation

4 A LS .
I, N O R
7 K
4\ 4

Flocking behaviors

Particle systems don't have to model physics, since rules may be arbitrarily specified. Individual
particles can be assigned rules that depend on their relationship to the world and other particles,
effectively giving them behaviors that model group interactions. To create particles that seem to
flock together, only three rules are necessary to simulate se paration between particles, alignment
of particle steering direction, and the cohesion of agroup of particles.

118

FPS:142 .46
AL0C3.0S:1.0W:1.0SP:1.9 AV:0.1
lasy objective: 2616.00

rtime:6.334ms stime:0.681ms

Particles that flock and steer around obstacles

More complicated rules of behavior can be designed to control large crowds of detailed
characters that would be nearly impossible to manually animate by hand. However, it is difficult
to program characters to handle all but simple tasks automatically. Such techniques are usually
limited to animating background charactersin large crowds and charactersin games.

A crowd with rule-based behaviors

e Pros:

119

— Automatic animation
— Real-time generation

* Cons:
— Human behavior is difficult to program
* Uses:

— Crowds, flocks, game characters

16.7 Data-Driven Animation

Data-driven animation uses information captured from the real world, such as video or captured
motion data, to generate animation. The technique of video textures finds points in a video se-
guence that are similar enough that a transition may be made without appearing unnatural to a
viewer, alowing for arbitrarily long and varied animation from video. A similar approach may
be taken to alow for arbitrary paths of motion for a 3D character by automatically finding
frames in motion capture data or keyframed sequences that are similar to other frames. An
animator can then trace out a path on the ground for a character to follow, and the animation is
automatically generated from a database of motion.

¢ Pros:

— Captures specific style of real actors
— Very flexible
— Can generate new motion in real-time

* Cons:
— Requires good data, and possibly lots of it
* Uses:

— Character animation

120

