
Unit-1: Introduction to C++

Objectives: Exposure to the basics of the Object Oriented Mode, C++ Programming
and I/O in C++
Topics to be covered: Part 1
Introduction to C++, Difference between C and C++, The Object Oriented Technology,

Disadvantages of Conventional programming, Concepts of OOP, Advantages of OOP,

Structure of C++ program, Header files and Libraries.

Introduction to C++
The C++ programming was developed by Bjarne StrousStrup in the year 1979 at AT & T

Bell laboratories in Murray Hill, New Jersey (USA) as part of his PhD thesis. C++ runs on a

variety of platforms, such as Windows, Mac OS, and the various versions of UNIX. He

added new features taking from the language called "SIMULA 67" to the c language to

enhance its performance, and originally named it as " C with classes", but later he added

some features from the language called "ALGOL 68", it was renamed by Rick Mascitti as

"C++" in the year 1983. The name C++, is thought as the C post increment operator ++.

C++ is a superset of c, hence any legal c program can be executed in the C++.

C SIMULA 67

Bjarne Stroustrup
Difference between C and C++

C with CLASSES ALGOL 68

C++

Fig 1. The Evolution of C++

Sl NO C Language C++ Language

1 C is a Procedural Oriented Language C++ is Object Oriented language

2 Data is not Protected in C. Data is Secured in C++

3 It uses Top Down approach It uses Bottom Up Approach
4 In C, same name cannot be given to With function overloading it is possible to

 two function give same name to two or more functions
5 scanf() and printf() are used for cin and cout are used for reading and writing

 reading and writing data respectively data respectively
6 C uses "stdio.h" header file for input C++ uses, "iostream.h" for the same purpose.

 & output operations

7 C has no constructor & destructor C++ provides constructors and destructors

8 Inline functions can be used as macros Inline functions are supported by C++

1
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

The Object Oriented Technology
The nature is composed of various objects such as rocks, plants, trees, animals,

and people etc. These objects can be further divided into two groups: living things and

Non-living things. The rocks, chairs are the best example for Non-Living things which

nothing but physical objects. The animals, trees, and people are the best example for

Living things, which are again physical objects.

Fig 2. Living and Non-Living things

To understand the object oriented technology, let us take an analogy of the

education institute which has two different working sections: Teaching and Non-Teaching.

The institute will be having different departments such as CSE, ECE, MEC, EEE, CIVIL and

LIBRARY. Each Department contains Teaching and Non-Teaching staff. Each department

is considered as Object and is working for specific goals and objectives. Each department

carries its own activities, and serves other departments when even needed. Departments

can "communicate" with each other to carry out inter-departmental activities such as

organizing the "workshops" and "conferences" though they are performing their own

activities. The departments interact with other departments by sending messages. All these

things can be represented in the C++. The departments can be represented as "class" from

which different objects can be derived. The CSE Department is called an instance of the

"department" which is called as Object. These objects contain their own data and methods

to carry out their task and to communicate with other department whenever needed.

Fig 3. Relationship between departments

2
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

Disadvantages of Conventional programming
Traditional programming languages such as C, COBOL, FORTRAN are called

Procedure Oriented (POP) language and also called as Conventional Languages.

The program written using these languages contains sequence of

instructions that tell the compiler or interpreter to perform the task.
When the program size is large, it is a bit difficult to manage and debug.

To overcome this problem it is divided into smaller functions that

carryout some specific task.
Each function can call other function during the execution.

As the functions are executing they may access same data, and may

modify the data which in turn affects the entire task.
Most of the functions are allowed to access the global variables.

Main Function

Function A Function B Function C

Fig 4. Flow of Functions in POP

Global Variable: X Global Variable: Y Global Variable: Z

Function A Function B Function C

Fig 5. Sharing of Data by functions in POP.

Drawbacks of these languages:
Large program is divided into smaller functions. These functions can

call one another. Hence security is not provided.
No importance is given to the data security.

Data passes globally from one function to other

function. Most function access global data.

Programming Paradigms

The change in the development of the software had taken place because of the 4 reasons:

3
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

1. The complexity of the problem domain
2. The difficulty of managing development process
3. The flexibility possible through the software
4. The problems of characterizing the behavior of discrete systems

To address different problems of the above, 4 programming paradigms have been designed.
1. Monolithic Programming
2. Procedural Programming
3. Structural Programming
4. Object Oriented Programming

Monolithic Programming
These programs contain global data and sequential code.

Program flow control is achieved through Jump

statements. There is no support of subroutine concept.

It is suitable for small and simple applications.

There is no support for data abstraction

Examples: Assembly language and BASIC

1.------

2.------

3.-----

goto:3

……….
Global Data

34.----------

35.-----------

goto:24

…………..

45.--------

Fig 6. Monolithic Programming
Procedural Programming

The programs are organized in the form of subroutines and all the data items

are global These programs are very easy to understand and modify.

These programs follow Top Down approach.

These programs focus on the functions apart from

data. Data is globally accessed to functions.

Data is transferred by means of functions.
It is difficult to implement simultaneous processes/parallelism
Examples: FORTRAN and COBOL

Global Data

Fig 7: Procedure

 Programming

Subprograms

4
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

Structured Programming

Programs are divided into individual procedures that perform

specific task. Each procedure is independent of other procedure

Procedures have their own local data and processing logic

The projects can be broken up into modules; each module consists of

different set of functions.
Data access is controlled across the

modules Examples: Pascal and C

Global Data

Subprograms

Module 1 Module 2 Module 3 Module 4
Fig 8: Procedure

Programming Object Oriented Programming
One of the main drawbacks of the procedure oriented programming is, it

cannot provide data abstraction. It provides functional abstraction.
To address the increasing complexity with software for the data abstraction

Object oriented programming came into existence.
Depending on the object features the languages are classified into two categories:

o Object –Based Programming (OBP), example: JavaScript
o Object-Oriented Programming(OOP), examples: Java and C++

The OBP languages support Encapsulation, and object Identity, but do not

support Inheritance and polymorphism.

The OOP languages incorporate all the features of the OOP.

5
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

Fig 9. Object Oriented Programming

Key Concepts of Object Oriented Programming

There are several fundamental concepts in object oriented programming. They are

shown as follow:

C++

Encapsulation

 Data Abstraction

Inheritance

 Polymorphism

Delegation

Genericity

Fig 10. Key Concepts of OOP
Encapsulation:
Definition: The process of binding Data and functions into a single unit is called Encapsulation.

C++ supports the feature of Encapsulation using classes.

The data in the class is not accessed by outside functions.

The functions that are defined along with the data within the same class are

allowed to access the data.
Class defines the structure of data and member functions. The variables declared inside

the class are called instance variables, and functions are called member functions.
Objects are created from the class. An Object is specimen of a class.

6
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

Class is logical structure, and object is physical structure.

Each member in the class may be public or private.

Only the member functions can access the private data of the class. However the

public members can be accessed by the outside class.

Class declarations

A class definition starts with the keyword class followed by the class name; and the

class body, enclosed by a pair of curly braces. A class definition must be followed

either by a semicolon or a list of declarations. A Class is used to pack the data and

member functions together. For example:

class class_name
{

type variable1;

type variable2; instance variables

type variable3;

type name_of_function(parameter_list);
member functions type name_of_function(parameter_list);

};

Data abstraction
Definition: It the process of providing essential features without providing the background or
implementation details.
Example:

It is not important for the user how TV is working internally, and different

components are interconnected. The essential features required to the user are how to

start, how to control volume, and change channels.

Inheritance
Definition: It the process by which an object of one class acquires the properties of

another class. When creating a class, instead of writing completely new data members

and member functions, the programmer can designate that the new class should inherit

the members of an existing class. This existing class is called the base class, and the

new class is referred to as the derived class. The actual power of the inheritance is that

it permits the programmer to reuse the existing class to create new class.

Red Yellow Blue

Orange green violet

7
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

Fig 11: Inheritance
In Fig 11, Red, Yellow and Blue are main colors. From these colors orange is created from

red and yellow. Green is created from the Yellow and Blue. The violet is created from the

blue and red. So here a new color is inheriting the properties from two or more colors.

Polymorphism
Definition: polymorphism is a technique in which various forms of a single function can

be defined and shared by different objects to perform an operation.

A function "display()" can display the shape of line, rectangle and square. Here the function

"display()" has three different forms to perform the task of displaying the different things.

shape

display()

 line rectangle square

 display() display() display()

Fig 12. Polymorphism in OOP
Delegation

In OOP, two classes can be joined in two ways: (a) Inheritance (b) Delegation. In

inheritance a new class can be derived from the existing class. The relationship

between these two classes is called "Kind of relationship". For example class Y has

been derived from class X, then class Y is called kind of X.

Definition:The second type of relations ship is " has a relationship". When object of one class is

used as data member in another class, such composition of objects is known as "Delegation"

class X//Base class

class Y//Derived
class

class A class B

class C
{ A a; //object of A

 B b; //Object of B
}

Fig 13 (a). Inheritance Fig 13 (b). Delegation

8
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

Genericity

We can write a program that contains more than one version depending on the data types of the

arguments provided at run time. For example we can write a program that can perform addition

on integers, and the same program can also perform addition on floating point numbers. This

feature allows declaration of variables without specifying exact data types. The compiler

identifies the data at run time. The "template" feature of C++ allows this genericity.

Advantages of OOP
OOP provides many advantages to the programmer and use. This solves many problems

related to the software development, and provides improved quality and low cost.
1. These programs can be easily upgraded.
2. Using Inheritance, we can avoid writing the redundant code, and reuse already

existing code.
3. It allows designing and developing safe programs using the data hiding.
4. Using the encapsulation feature of OOP, we can define new class with many

functions and only few functions can be exposed to the user.
5. All the OOP language allows crating extended and reusable parts of the programs.
6. It changes the thinking of the programmer and results in rapid

development of the software in a short time.
7. Objects communicate with each other and pass messages.

The structure of C++ Program
C++ program consists of objects, classes, variables, functions and other program

statements. It contains 4 main parts. (1) The preprocessor directives (2) class

declaration or definition (3) class function definition (4) The main() function.

 Preprocessing directive
Class declaration or definition

 Class function definition
The "main()" function

Fig 14. The parts of the C++ program

(1) Preprocessor Directives(Include header file section):
The preprocessor directive must be included at the beginning of program. It begins with

symbol #(hash). It can be placed anywhere, but quite often it is placed at the beginning

before the main() function. In traditional C, # must begin at the first column.
Example:

#include<iostream>

(2) Declaration of the class:
Declaration of the class is done in this section. The class declaration starts with
keyword "class" and contains some name followed by a pair of curly ({ }) braces
with instance variable and member functions. The class ends with semicolon (;);
Example:

9
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

#include<iostream>
using namespace std;

class Box
{

public:
double l;
double w;
double b;
void volume()
{//body of the function

}
};

(3) Class functions declaration:
This part contains the definition of the functions. The definition can be also written

outside the function with class name and scope operator before the function name.
Example:

#include<iostream>

using namespace

std; class Box
{

public:

double l;

double w;

double b;
void volume(void); //function

declaration }; //end of the class
void Box:: volume() //definition outside the class
{

// body of the function
}

(4) The main() function:
Like C, C++ also starts with main function. The execution of every program starts

with "main()" functions. The programming rules for C++ are same as C language.

Example:
#include<iostream>

using namespace

std; class Box
{

public:

double l;

double w;

double b;
void volume(void); //function

declaration }; //end of the class

10
II CSE I SEM –OOPT C++

Unit-1: Introduction to C++

void Box:: volume() //definition outside the
class {// body of the function

cout<< "The volume of Box is:"<<(l*w*b);
}

int main()
{

Box b;
b.l=12.3;
b.w=13.4;
b.b=14.5;
b.volume();
return 0;

}

11
II CSE I SEM –OOPT C++

Simple C++ program:
hello.cpp

int main()
{

//simple c++ program
cout<<"\n Hello! Welcome to C++
programming:"; return 0;

}
Compiling:

$>g++ hello.cpp ENTER //compiling

$>./a.out // seeing the output

Explanation of above program:
Program must be saved as ".cpp" as extension.

Every program executes from main() function.

A Comment can be placed in anywhere of the program. We can use single line

comments (Begins with //), and multiple comment line start with /*Comment here…….*/

Header files are needed at the beginning of the program.

The statement cout<<"\n Hello! Welcome to C++ program:"; displays the

string enclosed between the quotations. The "\n" is called escape sequence

used to print the string in the next line.
The << operator is called "insertion" operator.

Header files and Libraries

The library functions perform operations such as managing memory, reading and
writing to disk files, input/output, mathematical operations, etc.
Name of the Header File Function of the Header List of few functions supported

 File by header files
alloc.h Memory management Calloc(), malloc(), free(),realloc()

 functions etc;

complex.h Complex math functions asin(),atan(),arg(),atanh() etc;
ctype.h automatic type conversion toupper(), tolower(), islower(),
 isupper() etc;
dos.h Perform DOS functions getdate(), gettime(), int86(), sleep()

 etc;

graphics.h Graphic functions arc(), bar(), circle(), getx() etc;

process.h Process functions exit(), abort(), system() etc;
stdio.h Standard input/output puts(),gets(),fopen(),fclose(),

 functions printf(),getchar(),putchar() etc;

stdlib.h Standard library functions ato(), atoi(),time(),abort() etc;
string.h Manipulate various string strcpy(),strcat(), strlen() etc;
 functions

time.h Time manipulate functions time(),stime(),difftime(),localtime()

 etc

Introduction to Input and Output in C++

Part –II
INPUTAND OUTPUTIN C++:
Introduction, Streams In C++ and Stream Classes, Pre-Defined Streams, Stream

Classes, 'Formatted and Unformatted Data, Unformatted Console I/O Operations,

Member Functions of Istream Class, Formatted Console I/O Operations, Bit Fields,

Flags without Bit Field, Manipulators, User Defined Manipulators

Generally computer applications use large amount of Data to be read from input devices

and writing them to the output devices. To facilitate reading and writing operations C++

support number of inbuilt functions. These functions are stored in the library. The library

is a set of .OBJ file that are linked during the execution of the program. This library is

also called "iostream" library.

What is a stream? : stream is an intermediator between I/O devices and user. It is a
flow of data, measured in bytes, in sequence.
Input Stream: If the data is received from the input devices, it is called "source stream"
and also called input stream. Examples for the input stream are Keyboard and disk.
Output Stream: If the Data is written or passed to the output devices, then that stream is called

"destination stream" or "output stream". Examples for the output device are Monitor and disk.

Predefined Streams

C++ has number of predefined streams. These streams are also called as Standard I/O Objects.

These streams are automatically activated when the program execution starts.

stream Description

Cin standard input stream, usually the keyboard

Cout standard output stream, usually the monitor

Cerr standard error (output) stream, usually the monitor

Clog standard logging (output) stream, usually the monitor

Write an Example program to display a message using predefined objects
#include<iostream>
int main() {

cout<<"\\Hello displayed on monitor";
cerr<<"Errors also printed to the monitor":
clog<<"Displayed to the monitor";
return 0; }

Stream Classes
C++ streams are based on classes and object theory. C++ has number of classes that work

together with console and file operations. These classes are known as stream classes. All these

classes are declared inside the header file "iostream.h". The istream and ostream are the

derived classes of the "ios" base class. The ios contains member variable streambuf. The

iostream is derived from istream and ostream classes using the multiple inheritance.

Fig 16(a). Stream classe

 Fig 16(b). Hierarchy of stream classes

Functions and contents of stream classes

Class Function/Contents
Ios (1) it is an input and output stream class

(2) It is used to implement a buffer
(3) It maintains information on the state of streambuf

 istream (1) it provides the formatted input

ostream

(2) used to handle formatted as well as unformatted conversion
characters from streambuf

(3) properties of ios are inheritated to istream class
(4) it provides the functions such as peek(), tellg(),

seek(),getline()
(5) it overloads the '>>' operator
(1)It used for general purpose output.
(2)used to declare output functions such as tellp(), put(),write(),

seekp() etc.
(3)It is the parent of all output streams
(4)it overloads '<<' operator

iostream
istream_withassign

iostream_withassign

It is used to handle both input and output streams

(1). It is derived from istream
(2) It is used for cin input

 It is a bidirectional stream

Formatted and Unformatted Data

Formatting means representation of data with different settings according to the user

requirements. Various settings that can be done are number format, field width, decimal

points, etc. The data accepted or printed with default setting of I/O functions of the

language is known as "Unformatted Data". For example, when cin is executed is asks
for the number and if the number is entered, then the cout will display it on the screen.

By default the I/O functions represent the data in decimal format.

If the user wants to accept the data in the HEXADECIMAL format, manipulator with I/O

functions should be used. The obtained data with these formats is called "Formatted Data".
For example, hex is the manipulator.

cout<<hex<<15;

The above statement is converted to decimal to hexadecimal format.

Unformatted Console I/O Operations

Input and Output Streams
The input stream uses "cin" object to read the data from the keyboard.

The output stream uses "cout" object to write data to the screen.

The "cin" and "cout" are called predefined streams for input and output data.

The operator "<<" is used after the cout. It is called "insertion" operator.

The operator ">>" is used before the variable name. It is called "extraction"

operator. These two means "<<" and ">>" are called overloading operators.

Fig 17. Working of cin and cout statements
Input stream
The input stream reads the data using the cin object. The cin statement uses >>

(extraction operator) before the variable name. The Syntax is as follows:

cin>>variable;

Example:
int v1;

float v2;
cin >> v1>>v2;

Where v1 and v2 are variables. If the user enters data 4 and 5, then 4 is stored in v1

and 5 is stored in v2. More than one variable can be used in cin statement then it is

called "cascading input operations"

Output Streams
The output streams manage the output of the streams. The cout object is used as
output stream. It uses the << operator before the variable or string to display it on the
screen. The Syntax is as follows:

cout<< variable;
Example:

cout<<v1<<v2;
or
cout<<"Hello";

Write a program to accept the string from the keyboard and display it on the
screen. Use cin and cout statements.

exp.cpp
#include<iostream.h>
using namespace std;
int main()
{

char name[20];

cout<<"Enter your name:";
cin>>name;
cout<<name;
return 0;

}
Write a program to read int, float, char and string using cout to display them on the screen.

#include<iostream.h>
using namespace std;
int main()
{

char c;
int a;
float b;
char city[10];
cout<<"Enter Character:\n";
cin>>c;
cout<<"Enter integer a\n";
cin>>a;
cout<<"Enter String :";
cin>>city;
cout<<" Char is:\n"<<c<<"The integer is :\n"<<a<<"The float is \n:"<<b<<"\n the city
name is :"<<city;
return 0;

}
Write a C++ program to carry out all the arithmetic operations on integers.

#include<iostream.h>
using namespace std;
int main()
{

int a,b,c;
cout<<"Enter integer a and b\n";
cin>>a>>b;
c=a+b;
cout<<"The sum is :"<<c;
c=a*b;
cout<<"The Multiplications is :"<<c;
c=a/b;
cout<<"The Division is :"<<c;
return 0;

}

Type casting with cout statement

The type casting refers to the conversion of one basic type into another by applying external

use data type keywords. C++ provides the type casting operator in the following format:

cout<<(type)variable; // here the type refers to the destination type and variable refers to the data

of one basic type.
Example:

float f=2.34;
cout<<(int)<<f;

Output: displays 2
Write a c++ program to use different formats of the type casting and display the

converted value.

#include<iostream.h>
using namespace std;
int main()
{

int a=66;
float f=2.34;
double d=85.45;
char c='A';
cout<<"\n int in char format:"<<(char)a;
cout<<"\n float in in t format:"<<(int)f;
cout<<"\n double in char format:"<<(char)d;
cout<<"\n char in int format:"<<(int)c;
return 0;

}

Write a c++ program to display A to Z alphabets using the ASCII values
#include<iostream.h>
using namespace std;
int main()
{

int j;
cout<<"\n the alphabets from A to Z are :\n";
for (j=65;j<91;j++)
cout<<(char)j<<"\t";
return 0;

}

Note 1: The & operator is used to print the address of the operator. For example, int x=12; the
variable is stored at some address of the memory. That address can be printed using the &
operator before the variable name.
Example:

cout<<"The address of the variable is:"<<&x;
output :0x887ffff4, it is the hexadecimal format of the address.

Note 2: The & and * operators are used with string to display string.
Example: char *name=" Ashok Kamthen";

cout<<name<<"\n";
cout<<&name[0]<<"\n";

Output statements will display the Same output. If we write only the &name, then it

displays the address, if we use & along with the base address of the variable then it

displays the string present at that address.

Member functions of the istream class

The istream class contains the following functions using cin object.

Function name Description

cin.get() Used to read a character from the keyboard
cin.peek() It returns the succeeding character without

 extraction
cin.ignore(number, character) Used to ignore the maximum number of

 characters
cin.putback() Replaces the given character into the input

 stream
cin.gcount() Return the number of characters extracted from

 the stream to a variable
cin.getline() Contains the two arguments: variable and size ,

 used to get the text from the variable with

 specified number of character in 2
nd

 argument

Example programs:
Write a c++ program to demonstrate the use of get(), peek() and ignore() functions.

#include<iostream.h>
using namespace std;
int main()
{

char c;
cout<<"Enter the chars : And PRESS F6 to end";
while(cin.get(c))
{
cout<<c;

while(cin.peek()=='#')
{

cin.ignore(1,'#');
}

}
return 0;

}
Output:

Write a c++ program to demonstrate the use of putback() function
#include<iostream.h>

#include<conio.h>
int main()
{char c;

clrscr();
cout<<"Enter the text and F6 to end:";

while(cin.get(c))
{

if(c=='s')

cin.putback('S');
cout.put(c);

}
getch();

return 0;

}

Output:

Write a c++ program to demonstrate the use of gcount() function

#include<iostream.h>

#include<conio.h>
int main()

{
char name[20];
int len;

clrscr();

cout<<"Enter text:";

cin.getline(name,20);

len= cin.gcount();
cout<<"The number of chars

is:"<<len; return 0;

}

Output

Formatted Console I/O Operations
C++ provides various formatted console I/O functions for formatting the output. There
are three types of Formatted I/O Functions:

1. IOS class functions flags
2. Manipulators
3. User defined output functions

IOS Functions

Sl No Function Description

1 width() Used to set the required field width

2 precision() Used to set the number of decimal points to a float value

3 fill() Used to set the character in the blank spaces

4 setf() Used to set various formatting flags
5 unsetf() Used to remove the flag setting
Note: all these functions are used along with "cout" object. For example, cout.width().
The cout::width() function can be declared in two ways:

i) int width()- used to return the current field width.
ii) int width(int)- used to set the width with given integer.

The cout::precision() can be declared in two ways:
i) int precision() –used to return the current precision
ii) int precision(int) –used to set the precision

i) char fill()-used to return the current fill character
ii) char fill(char) –used to set the filling character

The cout::setf() function has the following form:
i) cout.setf(V1,V2) –where v1 is flag, and v2 is bit field
ii) cout.unsetf() –used to clear the formatting flags

Flag and Bit Field are as follow:

Format Flag (V1) Bit Field (V2)

Left Justifications Ios::left Ios::adjustfield

Right Justification Ios::right Ios:: adjustfield

Padding after sign and base Ios::internal Ios:: adjustfield

Scientific notation Ios::scientific Ios::floatfield

Fixed point notation Ios::fixed Ios::floatfield

Decimal base Ios::dec Ios::basefield

Octal base Ios::oct Ios::basefield

Hexadecimal base Ios::hex Ios::basefield

Example Program:
fop1.cpp

#include<iostream.h>

#include<conio.h>

void main()

{
clrscr();

cout.width(6);

int x=cout.width(); //returns the current width
cout<<"The current width is:"<<x <<"\n";

cout.width(10);
cout<<"A\n";

cout.width(20); //sets the width 20
cout<<"B\n";
cout.precision(2); //keeps only 2 decimal points

cout<<3.1472<<"\n";
cout.fill('*'); //used to set the blank spaces with *

cout.width(10);

cout<<123<<"\n";

cout.fill('=');

cout.width(20);
cout.setf(ios::left,ios::adjustfield); //sets the justification left

cout<<"C++";

cout.setf(ios::scientific,ios::floatfield); //sets the float to

//scientific notation

cout<<"\n";

cout<<3.14734<<"\n";

cout.setf(ios::hex,ios::basefield);//sets input number to
hexadecimal

cout<<27;

getch();
}

Output:

Manipulators
The output format can be controlled using manipulators. The header file "iomanip.h"
has set of functions. The effect of these manipulators is similar to ios class member
functions. Every ios member function has two formats. The first format is used for
setting and the second format is used to understand the previous setting. But the
manipulator does not return previous setting. The manipulator can be used along with
cout() statement as follows: cout<<m1<<m2<<v1;
where m1 and m2 are manipulators and v1 is the variable.

Manipulator Function

setw(int n) The field width is fixed to n

setbase Sets the base of the number system.

setprecision(int p) Sets the precision point to p

setfill(char f) Sets the filling character to f

setiosflags(long l) Format flag is set to l

sesetiosflags(long l) Removes the flags indicated by l

endl Splits the new line

skipws Omit whitespace on input

noskipws Does not omit white space on input

ends Adds a null character to close output string

flush Flushes the buffer stream

lock Locks the file associated with file handle

ws Omit the leading white space

hex, oct, dec Displays the numbers in hexadecimal, octal and decilmal format

Write a program to display the formatted output using the manipulator
man1.cpp

#include<iostream.h>

#include<iomanip.h>
#include<conio.h>
void main()

{

clrscr();
//setting the width and precision at a time

cout<<setw(10)<<setprecision(2)<<3.14567;

cout<<endl; //splits the new line

cout<<setiosflags(ios::hex);
cout<<"The hexadecimal value of the 23 is:"<<23<<endl;

//converting hex into oct
cout<<"The octal value of 23 is:"<<oct<<23<<endl;

//reading a number into hexa decimal format int

x;
cout<<"Enter a number:"<<endl;

cin>>hex>>x;

cout<<x<<endl;

getch();

}

User defined manipulator
The programmer can also define his or her own manipulators according to the

requirements. The syntax for creating the manipulators is as follows:

ostream & manip_name(ostream & o)
{

statement 1;
statement 2;
return o;

}
where mani_name is the name of the manipulator used by the user.

Write a C++ program to create a manipulator equivalent to the "\t" ?
tabtest.cpp

#include<iostream.h>
#include<conio.h>

#include<iomanip.h>

ostream & tab(ostream &o)

{

//here tab is the name of the manipulator
//when it is used it returns the o which contains the tab

o<<"\t";

return o;

}

void main()

{

clrscr();

cout<<1<<tab<<2<<tab<<3;
getch();

}
Output:

Flags without Bit fields

Sl No Flag Working

1. ios::showbase Uses base indicator on the output

2. ios::showpos Display + preceding positive number

3. ios::showpoint Shows trailing decimal point and zeros

4. ios::uppercase Uses capital case for hex output

5. ios::skipws Skips the white space

6. ios::unitbuf Flushes all the stream buffers

7. ios::stdio Flushes stdout and stdin later insertion

8. ios::boolalpha Converts the boolean value into text(True or False)

Note: all the flags are used with setf() function.

Write a C++ program that uses various Flags of ios ?

#include<iostream.h>

#include<conio.h>
void main()

{
clrscr();

//cout.setf(ios::hex,ios::basefield);
cout.setf(ios::uppercase);
//converts the hex value into uppercase

cout.setf(ios::showbase);
//showbase adds some base before the number such as 0x1B

cout.setf(ios::hex,ios::basefield);

cout<<27;

cout<<"\n==================\n";

cout.setf(ios::showpoint);
//adds the zeros at the end of the number

cout<<12.23;
cout<<"\n==================\n";
cout.setf(ios::showpos);

//displays the sign operator before the number

cout.setf(ios::dec,ios::basefield);

cout<<123;

getch();

}
Output:

*******end of 1
st

 unit******

