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
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

 Lecture 3 - Recurrences, Solution of Recurrences by substitution
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

 Lecture 5 - Master Method

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

 Lecture 7 - Worst case analysis of merge sort, quick sort and binary search


 Lecture 8 - Heaps and Heap sort


 Lecture 9 - Priority Queue


 Lecture 10 - Lower Bounds for Sorting



 
 
 

Lecture 1 - Introduction to Design and analysis of  algorithms 
 
 

 

What is an algorithm? 
 

Algorithm is a set of steps to complete a task. 
 

For example, 
 

Task: to make a cup of tea. 
 

Algorithm: 

 

 add water and milk to the kettle,


 boilit, add tea leaves,


 Add sugar, and then serve it in cup.

 

What is Computer algorithm? 
 
 
‘’a set of steps to accomplish or complete a task that is described precisely enough that a 

computer can run it’’. 

 

Described precisely: very difficult for a machine to know how much water, milk to be added etc. 

in the above tea making algorithm. 

 

These algorithmsrun on computers or computational devices.Forexample, GPS in our 

smartphones, Google hangouts. 

 

GPS uses shortest path algorithm. Online shopping uses cryptography which uses RSA algorithm. 
 
 
 

Characteristics of an algorithm:- 

 

 Must take an input.


 Must give some output(yes/no,valueetc.)


 Definiteness –each instruction is clear and unambiguous.


 Finiteness –algorithm terminates after a finite number of steps.


 Effectiveness –every instruction must be basic i.e. simple instruction.



 
 
 
 
 
 

Expectation from an algorithm 
 

 Correctness:-


Correct: Algorithms must produce correct result. 


Produce an incorrect answer:Even if it fails to give correct results all the time still 

there is a control on how often it gives wrong result. Eg.Rabin-Miller PrimalityTest 

(Used in RSA algorithm): It doesn’t give correct answer all the time.1 out of 2
50

 times 

it gives incorrect result. 


Approximation algorithm: Exact solution is not found, but near optimal solution can 

be found out. (Applied to optimization problem.) 

 Less resource usage:
 

Algorithms should use less resources (time and space). 
 

 

Resource usage: 
 

Here, the time is considered to be the primary measure of efficiency .We are also concerned 

with how much the respective algorithm involves the computer memory.But mostly time is 

the resource that is dealt with. And the actual running time depends on a variety of 

backgrounds: like the speed of the Computer, the language in which the algorithm is 

implemented, the compiler/interpreter, skill of the programmers etc. 
 

So, mainly the resource usage can be divided into: 1.Memory (space)  2.Time 
 

 

Time taken by an algorithm? 
 

performance measurement or Apostoriori Analysis: Implementing the algorithm 
 

in a machine and then calculating the time taken by the system to execute the program 

successfully. 
 

Performance Evaluation or Apriori Analysis. Before implementing the algorithm in a 

system. This is done as follows 



 
 

 

1. How long the algorithm takes :-will be represented as a function of the size of the 

input. 

 
f(n)→how long it takes if ‘n’ is the size of input. 

 

2. How fast the function that characterizes the running time grows with the input 

size. 
 

“Rate of growth of running time”. 
 

The algorithm with less rate of growth of running time is considered better. 
 
 
 
 

How algorithm is a technology ? 
 
 
Algorithms are just like a technology. We all use latest and greatest processors but we need to 

run implementations of good algorithms on that computer in order to properly take benefits of 

our money that we spent to have the latest processor. Let’s make this example more concrete by 

pitting a faster computer(computer A) running a sorting algorithm whose running time on n 

values grows like n
2
 against a slower computer (computer B) running asorting algorithm whose 

running time grows like n lg n. They eachmust sort an array of 10 million numbers. Suppose that 

computer A executes 10 billion instructions per second (faster than anysingle sequential 

computer at the time of this writing) and computer B executes only 10 million instructions per 

second, so that computer A is1000 times faster than computer B in raw computing power. To 

makethe difference even more dramatic, suppose that the world’s craftiestprogrammer codes in 

machine language for computer A, and the resulting code requires 2n
2
 instructions to sort n 

numbers. Suppose furtherthat just an average programmer writes for computer B, using a high-

level language with an inefficient compiler, with the resulting code taking 50n lg n instructions. 

 
Computer A (Faster) Computer B(Slower) 
     

Running time grows like n
2
.  Grows innlogn. 

10 billion instructions per sec. 10million instruction per sec 

2n
2
 instruction. 50 nlogn instruction. 



 
 

 

Time taken=  
                
                

                 

It is more than 5.5hrs      it is under 20 mins. 

So choosing a good algorithm (algorithm with slower rate of growth) as used by 

computer B affects a lot.             
 
 
 

 

Lecture 2 - Growth of Functions ( Asymptotic notations) 
 
 
 

 

Before going for growth of functions and asymptotic notation let us see how to analyase 

an algorithm. 

 

How to analyse an Algorithm 
 
 
Let us form an algorithm for Insertion sort (which sort a sequence of numbers).The pseudo code 

for the algorithm is give below. 

 
Pseudo code:   

for j=2 to A length -------------------------------------------------- C1 

key=A[j]----------------------------------------------------------------- C2 

//Insert A[j] into sorted Array A[1..... j-1]------------------------C3 

i=j-1------------------------------------------------------------------------  C4 

while i>0 & A[j]>key--------------------------------------------------- C5 

A[i+1]=A[i]---------------------------------------------------------------  C6 

i=i-1------------------------------------------------------------------------  C7 

A[i+1]=key---------------------------------------------------------------- C8 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let Ci be the cost of i
th

 line. Since comment lines will not incur any cost C3=0. 

 
Cost No. Of times Executed 
 

C1n 
 

C2 n-1 
 

C3=0 n-1 
 

C4n-1  
 
C5   
 

C6 )  
 

C7   
 

C8n-1 
 
 
 
 
Running time of the algorithm is:    

T(n)=C1n+C2(n-1)+0(n-1)+C4(n-1)+C5 +C6( )+C7( )+ C8(n-1)  
 

Best case: 

 

It occurs when Array is sorted. 



 

 

All tjvalues are 1. 
 

T(n)=C1n+C2(n-1)+0 (n-1)+C4(n-1)+C5 +C6( )+C7( )+ C8(n-1)  
 

=C1n+C2 (n-1) +0 (n-1) +C4 (n-1) +C5 + C8 (n-1)  
 

= (C1+C2+C4+C5+ C8) n-(C2+C4+C5+ C8) 

 

 Which is of the forman+b.


 Linear function of n.So, linear growth.
 
 
 

 

Worst case: 
 

It occurs when Array is reverse sorted, and tj =j 
 

T(n)=C1n+C2(n-1)+0 (n-1)+C4(n-1)+C5 +C6( )+C7( )+ C8(n-1)  
 

=C1n+C2(n-1)+C4(n-1)+C5 +C6( )+C7( )+ C8(n-1)  
 

which is of the form an
2
+bn+c 

 

Quadratic function. So in worst case insertion set grows in n
2
. 

 
Why we concentrate on worst-case running time? 

 

 The worst-case running time gives a guaranteed upper bound on the runningtime for any 

input.


 For some algorithms, the worst case occurs often. For example, when searching, the 

worst case often occurs when the item being searched for is not present, and searches 

for absent items may be frequent.


 Why not analyze the average case? Because it’s often about as bad as the worst case.

 

Order of growth: 

 

It is described by the highest degree term of the formula for running time. (Drop lower-order 

terms. Ignore the constant coefficient in the leading term.) 



 
 

 

Example: We found out that for insertion sort the worst-case running time is of the form an
2
 + bn 

+ c. 
Drop lower-order terms. What remains is an

2
.Ignore constant coefficient. It results in n

2
.But we 

 

cannot say that the worst-case running time T(n) equals n
2
 .Rather It grows like n

2
 . But it doesn’t 

equal n
2
.We say that the running time is Θ (n

2
) to capture the notion that the order of growth is 

n
2
. 

 
We usually consider one algorithm to be more efficient than another if its worst-case 

running time has a smaller order of growth. 

 

Asymptotic notation 
 

 It is a way to describe the characteristics of a function in the limit.


 It describes the rate of growth of functions.


 Focus on what’s important by abstracting away low-order terms and constant factors.


 It is a way to compare “sizes” of functions:
 

O≈ ≤ 
 

Ω≈ ≥ 
 

Θ ≈ = 
 

o ≈ < 
 

ω ≈ >  





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: n
2
 /2 − 2n = Θ (n

2
), with c1 = 1/4, c2 = 1/2, and n0 = 8.  



 
 
 

Lecture 3-5: Recurrences, Solution of Recurrences by substitution, 
Recursion Tree and Master Method 

 

 
Recursion is a particularly powerful kind of reduction, which can be described loosely as 

follows: 

 
• If the given instance of the problem is small or simple enough, just solve it. 
 
• Otherwise, reduce the problem to one or more simpler instances of the same problem. 
 

Recursion is generally expressed in terms of recurrences. In other words, when an 

algorithm calls to itself, we can often describe its running time by a recurrence equation which 

describes the overall running time of a problem of size n in terms of the running time on smaller 

inputs. 

 
E.g.the worst case running time T(n) of the merge sort procedure by recurrence can be 

expressed as 
 

T(n)=  ϴ(1)  ; if n=1 
 

2T(n/2)  + ϴ(n) ;if n>1 
 

whose solution can be found as T(n)=ϴ(nlog n) 

 
There are various techniques to solve recurrences. 
 
 
 
 

1. SUBSTITUTION METHOD: 
 

The substitution method comprises of 3 steps 
 

i. Guess the form of the solution 
 

ii. Verify by induction 
 

iii. Solve for constants 

 

We substitute the guessed solution for the function when applying the inductive 

hypothesis to smaller values. Hence the name “subst itution method”. This method is powerful, but 

we must be able to guess the form of the answer in order to apply it. 
 
e.g.recurrence equation: T(n)=4T(n/2)+n 



 
 
 
step 1: guess the form of solution 
 

T(n)=4T(n/2) 
 

F(n)=4f(n/2) 

F(2n)=4f(n) 

F(n)=n
2 

 

So, T(n) is order of n
2
 

Guess T(n)=O(n
3
) 

 
Step 2: verify the induction 
 

Assume T(k)<=ck
3 

 
T(n)=4T(n/2)+n 

 

<=4c(n/2)
3
 +n 

 

<=cn
3
/2+n 

 

<=cn
3
-(cn

3
/2-n) 

 

T(n)<=cn
3
 as (cn

3
/2 –n) is always positive 

 
So what we assumed was true. 

 

T(n)=O(n
3
) 

 
Step 3: solve for constants 
 

Cn
3
/2-n>=0 

 
n>=1 

c>=2 

 

 

Now suppose we guess that T(n)=O(n
2
) which is tight upper bound 

 

Assume,T(k)<=ck
2 

 

so,we should prove that T(n)<=cn
2 

 
T(n)=4T(n/2)+n 

 

4c(n/2)
2
+n 

cn
2
+n 



 
 
 

So,T(n) will never be less than cn
2
. But if we will take the assumption of T(k)=c1 k

2
-c2k, then we 

can find that T(n) = O(n
2
) 

 
 
 
 
2. BY ITERATIVE METHOD: 
 
e.g. T(n)=2T(n/2)+n 
 
=> 2[2T(n/4) + n/2 ]+n 
 

=>2
2
T(n/4)+n+n 

 

=> 2
2
[2T(n/8)+ n/4]+2n 

 

=>2
3
T(n/2

3)
 +3n 

 

After k iterations ,T(n)=2
k
T(n/2

k
)+kn --------------(1) 

 

Sub problem size is 1 after n/2
k
=1 => k=logn 

 
So,afterlogn iterations ,the sub-problem size will be 1. 
 
So,when k=logn is put in equation 1 
 
T(n)=nT(1)+nlogn 
 

nc+nlogn ( say c=T(1)) 
 

O(nlogn) 

 

3.BY RECURSSION TREE METHOD: 
 
In a recursion tree ,each node represents the cost of a single sub-problem somewhere in the set of 

recursive problems invocations .we sum the cost within each level of the tree to obtain a set of per 

level cost,and then we sum all the per level cost to determine the total cost of all levels of 

recursion . 

Constructing a recursion tree for the recurrence T(n)=3T(n/4)+cn
2 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Constructing a recursion tree for the recurrence T (n)= 3T (n=4) + cn
2
.. Part (a) shows T (n), 

which progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part 
 

(d) has height log4n (it has log4n + 1 levels). 

Sub problem size at depth i =n/4
i
 

 

Sub problem size is 1 when n/4
i
=1 => i=log4n 

 

So, no. of levels =1+ log4n 
 
Cost of each level = (no. of nodes) x (cost of each node) 



 
 
 

No. Of nodes at depth i=3
i 

 

Cost of each node at depth i=c (n/4
i
)
2 

 

Cost of each level at depth i=3
i
 c (n/4

i
)
2
 = (3/16)

i
cn

2 

 

T(n)= i=0∑
log

4
n
  cn

2
(3/16)

i 

 

T(n)= i=0∑
log

4
n -1

  cn
2
(3/16)

i
 + cost of last level 

 

Cost of nodes in last level =3
i
T(1) 

 

c3 
log n   

(at last level i=log4n) 
 

4     

cn 
log 3                             

4                              

T(n)= 

                            

+  c n 
log  3                             

                            4  
 
 

<=  cn
2 

 
 

 

2 

*(16/13)+ cn 
log  3 2 

) <= cn 4 => T(n)=O(n 
 
4.BY MASTER METHOD: 
 
The master method solves recurrences of the form 
 

T(n)=aT(n/b)+f(n) 
 
where a>=1  and b>1 are constants  and f(n) is a asymptotically positive function . 
 
To use the master method, we have to remember 3 cases: 
 

1. If f(n)=O(n 
log a - Ɛ 

) for some constants  Ɛ >0,then T(n)=ϴ(n 
log a 

) b b 
 

2. If f(n)=ϴ( n
log

b
a
)  then T(n)=ϴ(n

log
b

a
logn) 

 

3. If f(n)=Ὠ(n 
log a+Ɛ 

)  for some constant Ɛ>0 ,and if a*f(n/b)<=c*f(n) for some constant c<1 b 
 
and all sufficiently large n,then T(n)=ϴ(f(n)) 



 
 
 
e.g. T(n)=2T(n/2)+nlogn 
 
ans: a=2  b=2 
 

f(n)=nlogn 
 

using 2
nd

 formula 
 

f(n)=ϴ( n
log

2
2
log

k
n) 

 

=>ϴ(n
1
 log

k
n)=nlogn =>K=1 

T(n)=ϴ( n 
log  2 1 

2 log n) 
 

=>ϴ(nlog
2
n) 

 
 
 
 

Lecture 6 - Design and analysis of Divide and Conquer  
Algorithms 

 
 
 

DIVIDE AND CONQUER ALGORITHM 
 

 In this approach ,we solve a problem recursively by applying 3 steps


1. DIVIDE-break the problem into several sub problems of smaller size. 
 

2. CONQUER-solve the problem recursively. 
 

3. COMBINE-combine these solutions to create a solution to the original problem. 

 
CONTROL ABSTRACTION FOR DIVIDE AND CONQUER ALGORITHM 
 

Algorithm D and C (P) 
 

{ 
 

if small(P) 
 

then return S(P) 
 

else 
 

{ divide P into smaller instances P1 ,P2 .....Pk 
 

Apply D and C to each sub problem 
 

Return combine (D and C(P1)+ D and C(P2)+.......+D and C(Pk)) 
 

} 



 
 
 

} 
 

 

Let a recurrence relation is expressed as 
 

ϴ(1),  if n<=C 
 

aT(n/b) + D(n)+ C(n) ,otherwise 
 

then  n=input size a=no. Of sub-problemsn/b= input size of the sub-problems 

 

 

T(n)= 

 
 
 

 

Lecture 7: Worst case analysis of merge sort, quick sort 
 
 
 

 

Merge sort 
 

It is one of the well-known divide-and-conquer algorithm. This is a simple and very efficient 

algorithm for sorting a list of numbers. 

 

We are given a sequence of n numberswhich we will assume is stored in an array A [1...n]. 

Theobjective is to output a permutation of this sequence, sorted in increasing order. This is 

normally done by permuting the elements within the array A. 

 
How can we apply divide-and-conquer to sorting? Here are the major elements of the Merge Sort 

algorithm. 

 
Divide: Split A down the middle into two sub-sequences, each of size roughly n/2 . 

 
Conquer: Sort each subsequence (by calling MergeSort recursively on each). 

 
Combine: Merge the two sorted sub-sequences into a single sorted list. 

 

The dividing process ends when we have split the sub-sequences down to a single item. A 

sequence of length one is trivially sorted. The key operation where all the work is done is in the 

combine stage,which merges together two sorted lists into a single sorted list. It turns out that 

the merging process is quite easy to implement. 



 
 

 

The following figure gives a high-level view of the algorithm. The “divide” phase is shown on the 

left. It works top-down splitting up the list into smaller sublists. The “conquer and combine” 

phases areshown on the right. They work bottom-up, merging sorted lists together into larger 

sorted lists. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Merge Sort 

 

Designing the Merge Sort algorithm top-down. We’ll assume that the procedure thatmerges two 

sortedlist is available to us. We’ll implement it later. Because the algorithm is called recursively 

on sublists,in addition to passing in the array itself, we will pass in two indices, which indicate the 

first and lastindices of the subarray that we are to sort. The call MergeSort(A, p, r) will sort the 

sub-arrayA [ p..r ] and return the sorted result in the same subarray. 

 
 
 
Here is the overview. If r = p, then this means that there is only one element to sort, and we may 

returnimmediately. Otherwise (if p < r) there are at least two elements, and we will invoke the 

divide-and-conquer. We find the index q, midway between p and r, namely q = ( p + r ) / 2 

(rounded down to thenearest integer). Then we split the array into subarrays A [ p..q ] and A [ q 
 
+ 1 ..r ] . Call Merge Sort recursively to sort each subarray. Finally, we invoke a procedure (which 

we have yet to write) whichmerges these two subarrays into a single sorted array. 

 
MergeSort(array A, int p, int r) { 
 

if (p < r) { 
 
// we have at least 2 items 

 
q = (p + r)/2 

 
MergeSort(A, p, q) 

 
MergeSort(A, q+1, r) 

 
// sort A[p..q] 

 
// sort A[q+1..r] 



 
 
 

Merge(A, p, q, r) 

 
 
 
// merge everything together 

 
} 

 
} 

 

Merging: All that is left is to describe the procedure that merges two sorted lists. Merge(A, p, q, 

r)assumes that the left subarray, A [ p..q ] , and the right subarray, A [ q + 1 ..r ] , have already 

been sorted.We merge these two subarrays by copying the elements to a temporary working 

array called B. Forconvenience, we will assume that the array B has the same index range A, that 

is, B [ p..r ] . We have to indices i and j, that point to the current elements ofeach subarray. We 

move the smaller element into the next position of B (indicated by index k) andthen increment 

the corresponding index (either i or j). When we run out of elements in one array, thenwe just 

copy the rest of the other array into B. Finally, we copy the entire contents of B back into A. 

 
 
 
 

 

Merge(array A, int p, int q, int r) { // merges A[p..q] with A[q+1..r]  

array B[p..r]    

i = k = p //initialize pointers  

j = q+1    

while (i <= q and j <= r) { //  while both  subarrays  are nonempty 

if (A[i] <= A[j]) B[k++] = A[i++] // copy from left subarray  

else B[k++] = A[j++] // copy from right subarray  

}    

while (i <= q) B[k++] = A[i++] // copy any leftover to B  

while (j <= r) B[k++] = A[j++]    

for i = p to r do A[i] = B[i] // copy B back to A } 

 

Analysis: What remains is to analyze the running time of MergeSort. First let us consider the 

running timeof the procedure Merge(A, p, q, r). Let n = r − p + 1 denote the total length of both 

the leftand right subarrays. What is the running time of Merge as a function of n? The algorithm 

contains fourloops (none nested in the other). It is easy to see that each loop can be executed at 

most n times. (Ifyou are a bit more careful you can actually see that all the while-loops 



 
 

 

together can only be executed ntimes in total, because each execution copies one new element 

to the array B, and B only has space forn elements.) Thus the running time to Merge n items is 
 
Θ ( n ) . Let us write this without the asymptoticnotation, simply as n. (We’ll see later why we do 

this.) 

 
Now, how do we describe the running time of the entire MergeSort algorithm? We will do this 

throughthe use of a recurrence, that is, a function that is defined recursively in terms of itself. To 

avoidcircularity, the recurrence for a given value of n is defined in terms of values that are strictly 

smallerthan n. Finally, a recurrence has some basis values (e.g. for n = 1 ), which are defined 

explicitly. 

 
Let’s see how to apply this to MergeSort. Let T ( n ) denote the worst case running time of 

MergeSort onan array of length n. For concreteness we could count whatever we like: number of 

lines of pseudocode,number of comparisons, number of array accesses, since these will only 

differ by a constant factor.Since all of the real work is done in the Merge procedure, we will 

count the total time spent in theMerge procedure. 

 
First observe that if we call MergeSort with a list containing a single element, then the running 
 
time is aconstant. Since we are ignoring constant factors, we can just write T ( n ) =1 . When we 

call MergeSortwith a list of length n >1 , e.g. Merge(A, p, r), where r − p +1 = n, the algorithm first 

computes q = ( p + r ) / 2 . The subarray A [ p..q ] , which contains q − p + 1 elements. You can 

verify that is of size n/ 2 . Thus the remaining subarray A [ q +1 ..r ] has n/ 2 elements in it. How 

long does it taketo sort the left subarray? We do not know this, but because n/ 2< n for n >1 , we 

can express this as T (n/ 2) . Similarly, we can express the time that it takes to sort the right 

subarray as T (n/ 2). 

 
Finally, to merge both sorted lists takes n time, by the comments made above. In conclusion we 

have 

 
T ( n ) =1 if n = 1 , 

 
2T (n/ 2) + n otherwise. 

 
Solving the above recurrence we can see that merge sort has a time complexity of Θ (n log n) . 



 
 
 

QUICKSORT 
 
Worst-case running time: O (n2). 
 

Expected running time: O (n lgn). 

Sorts in place. 

 
Description of quicksort 
 
Quicksort is based on the three-step process of divide-and-conquer. 
 

• To sort the subarray A[p . . r ]: 
 
Divide: Partition A[p . . r ], into two (possibly empty) subarraysA[p . . q − 1] and 
 

A[q + 1 . . r ], such that each element in the Þrstsubarray A[p . . q − 1] is ≤ A[q] and A[q] is 

≤ each element in the second subarrayA[q + 1 . . r ]. 
 
Conquer: Sort the two subarrays by recursive calls to QUICKSORT. 
 
Combine: No work is needed to combine the subarrays, because they are sorted in place. 
 
• Perform the divide step by a procedure PARTITION, which returns the index q that marks the 

position separating the subarrays. 
 

QUICKSORT (A, p, r) 
 
ifp < r 
 
thenq ←PARTITION(A, p, r ) 
 

QUICKSORT (A, p, q − 1 ) 
 

QUICKSORT (A, q + 1, r) 
 

 

Initial call is QUICKSORT (A, 1, n) 
 
Partitioning 
 
Partition subarrayA [p . . . r] by the following procedure: 
 

PARTITION (A, p, r) 
 

x ← A[r ] 
 

i ← p –1 
 

for j ← p to r –1 
 
do if A[ j ] ≤ x 
 
theni ← i + 1 



 
 
 
exchangeA[i ] ↔ A[ j ] 
 

exchangeA[i + 1] ↔ A[r ] 
 
returni + 1 
 

 PARTITION always selects the last element A[r ] in the subarrayA[p . . r ] as the pivot the 

element around which to partition.

 As the procedure executes, the array is partitioned into four regions, some of which may be 

empty:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Performance of Quicksort 
 
The running time of Quicksort depends on the partitioning of the subarrays: 
 
• If the subarrays are balanced, then Quicksort can run as fast as mergesort. 
 
• If they are unbalanced, then Quicksort can run as slowly as insertion sort. 
 
Worst case 
 
• Occurs when the subarrays are completely unbalanc ed. 
 
• Have 0 elements in one subarray and n − 1 elements in the other subarray. 



 
 
 
• Get the recurrence 
 
T (n) = T (n − 1 ) + T (0) + Θ (n) 
 
= T (n − 1 ) + Θ (n) 
 
= O (n2) . 
 
• Same running time as insertion sort. 
 
• In fact, the worst-case running time occurs when Quicksort takes a sorted array as input, but 

insertion sort runs in O(n) time in this case. 

 

 

Best case 
 
• Occurs when the subarrays are completely balanced every time. 
 
• Each subarray has ≤ n/2 elements. 
 
• Get the recurrence 
 
T (n) = 2T (n/2) + Θ (n) = O(n lgn). 
 

 

Balanced partitioning 
 
• QuickPort’s average running time is much closer t o the best case than to the worst case. 
 
• Imagine that PARTITION always produces a 9-to-1 s plit. 
 
• Get the recurrence 
 

 

• Intuition: look at the recursion tree. 
 
• It’s like the one for T (n) = T (n/3) + T (2n/3) + O (n). 
 
• Except that here the constants are different; we get log10 n full levels and log10/9 n levels that 

are nonempty. 
 
• As long as it’s a constant, the base of the log d oesn’t matter in asymptotic notation. 
 
• Any split of constant proportionality will yield a recursion tree of depth O (lgn). 



 
 
 

Lecture 8 - Heaps and Heap sort 
 

 

HEAPSORT 
 

Inplace algorithm 
 

Running Time: O(n log n) 

Complete Binary Tree 

 
The (binary) heap data structure is an array object that we can view as a nearly complete binary 

tree.Each node of the tree corresponds to an element of the array. The tree is completely filled on 

all levels except possibly the lowest, which is filled from the left up to a point. 

 
The root of the tree is A[1], and given the index i of a node, we can easily compute the indices of 

its parent, left child, and right child: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

PARENT (i) => return [ i / 

2] LEFT (i) => return 2i 
 
RIGHT (i)  => return 2i+ 1 
 
On most computers, the LEFT procedure can compute 2i in one instruction by simply shifting the 

binary representation of i left by one bit position. 

 
Similarly, the RIGHT procedure can quickly compute 2i + 1 by shifting the binary 

representation of i left by one bit position and then adding in a 1 as the low-order bit. 



 
 
 
The PARENT procedure can compute [i/2] by shifting i right one bit position. Good 

implementations of heapsort often implement these procedures as "macros" or "inline" 

procedures. 
 
There are two kinds of binary heaps: max-heaps and min-heaps. 
 

 In a max-heap,the max-heap property is that for every node i other than the root, 

A[PARENT(i)] >= A[i] ,that is, the value of a node is at most the value of its parent. Thus, 

the largest element in a max-heap is stored at the root, and the subtree rooted at a node 

contains values no larger than that contained at the node itself.


 A min-heap is organized in the opposite way; the min-heap property is that for every node 

i other than the root, A[PARENT(i)<=A[i] ,


The smallest element in a min-heap is at the root. 
 

The height of a node in a heap is the number of edges on the longest simple downward 

path from the node to a leaf and 
 

The height of the heap is the height of its root. 
 

Height of a heap of n elements which is based on a complete binary tree is O(log n). 
 
 

 

Maintaining the heap property 
 

MAX-HEAPIFY lets the value at A[i] "float down" in the max-heap so that the subtree 

rooted at index i obeys the max-heap property. 

 
MAX-HEAPIFY(A,i) 

 
1. lLEFT(i) 

 
2. r   RIGHT(i) 

 
3. if A[l] > A[i] 

 
4. largest   l 

 
5. if A[r] > A[largest] 

 
6. Largest   r 

 
7. if largest != i 

 
8. Then exchange A[i]A[largest] 



 
 
 

9. MAX-HEAPIFY(A,largest) 
 
 

At each step, the largest of the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is 

determined, and its index is stored in largest. If A[i] is largest, then the subtree rooted at node i is 

already a max-heap and the procedure terminates. Otherwise, one of the two children has the 

largest element, and A[i ] is swapped with A[largest], which causes node i and its children to 

satisfy the max-heap property. The node indexed by largest, however, now has the original value 

A[i], and thus the subtree rooted at largest might violate the max-heap property. Consequently, we 

call MAX-HEAPIFY recursively on that subtree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure: The action of MAX-HEAPIFY (A, 2), where heap-size = 10. (a) The initial con-figuration, 

with A [2] at node i = 2 violating the max-heap property since it is not larger than both children. 

The max-heap property is restored for node 2 in (b) by exchanging A [2] with A[4], which 

destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY (A,4) 



 
 
 
now has i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the 

recursive call MAX-HEAPIFY(A, 9) yields no further change to the data structure. 

 
The running time of MAX-HEAPIFY by the recurrence can be described as 
 
 
T (n) < = T (2n/3) + O (1) 
 
 
The solution to this recurrence is  T(n)=O(log n) 
 
 
Building a heap  
 
 
Build-Max-Heap(A) 
 
 

1. for i   [n/2] to 1 
 

2. do MAX-HEAPIFY(A,i) 
 
 

 

4 1 3 2 1 9 1 1 8 7  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to run at a node varies 

with the height of the node in the tree, and the heights of most nodes are small. Our tighter 

analysis relies on the properties that an n-element heap has height [log n] and at most [n/2
h+1

] 

nodes of any height h. 
 
The total cost of BUILD-MAX-HEAP as being bounded is T(n)=O(n) 
 
The HEAPSORT Algorithm 
 
HEAPSORT(A) 
 

1. BUILD MAX-HEAP(A) 
 

2. for i=n to 2 
 

3. exchange A[1] with A[i] 
 

4. MAX-HEAPIFY(A,1)  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A 1 2 3 4 7 8 9 10 14 16 
 
TheHEAPSORT procedure takes time O(n log n), since the call to BUILD-MAX- HEAP takes time 

O(n) and each of the n - 1 calls to MAX-HEAPIFY takes time O(log n). 

 
 
 

Lecture 10: Lower Bounds For Sorting 
 
 

 
Review of Sorting: So far we have seen a number of algorithms for sorting a list of numbers in 

ascendingorder. Recall that an in-place sorting algorithm is one that uses no additional array 

storage (however,we allow Quicksort to be called in-place even though they need a stack of size 

O(log n) for keepingtrack of the recursion). A sorting algorithm is stable if duplicate elements 

remain in the same relativeposition after sorting. 

 

Slow Algorithms: Include BubbleSort, InsertionSort, and SelectionSort. These are all simple 
 

Θ (n
2
)in-place sorting algorithms. BubbleSort and InsertionSort can be implemented as stable 

algorithms,but SelectionSort cannot (without significant modifications). 



 
 
 
Mergesort: Mergesort is a stable Θ(n log n) sorting algorithm. The downside is that MergeSort 

isthe only algorithm of the three that requires additional array storage, implying that it is not anin-

place algorithm. 

 

Quicksort: Widely regarded as the fastest of the fast algorithms. This algorithm is O(n log n) in 

theexpected case, and O(n2) in the worst case. The probability that the algorithm takes 

asymptoticallylonger (assuming that the pivot is chosen randomly) is extremely small for large n. 

It is an(almost) in-place sorting algorithm but is not stable. 

 

Heapsort: Heapsort is based on a nice data structure, called a heap, which is a fast priority 

queue.Elements can be inserted into a heap in O(log n) time, and the largest item can be extracted 

inO(log n) time. (It is also easy to set up a heap for extracting the smallest item.) If you only 

wantto extract the k largest values, a heap can allow you to do this is O(n + k log n) time. It is 

anin-place algorithm, but it is not stable. 

 
 
Lower Bounds for Comparison-Based Sorting: Can we sort faster than O(n log n) time? 
 
We will give anargument that if the sorting algorithm is based solely on making comparisons 

between the keys in thearray, then it is impossible to sort more efficiently than (n log n) time. Such 

an algorithm is called acomparison-based sorting algorithm, and includes all of the algorithms 

given above.Virtually all known general purpose sorting algorithms are based on making 

comparisons, so this isnot a very restrictive assumption. This does not preclude the possibility of a 

sorting algorithm whoseactions are determined by other types of operations, for example, 

consulting the individual bits ofnumbers, performing arithmetic operations, indexing into an array 

based on arithmetic operations onkeys.We will show that any comparison-based sorting algorithm 

for a input sequence ha1; a2; : : : ; animust 
 
make at least (n log n) comparisons in the worst-case. This is still a difficult task if you think about 

it.It is easy to show that a problem can be solved fast (just give an algorithm). But to show that a 

problemcannot be solved fast you need to reason in some way about all the possible algorithms 

that might everbe written. In fact, it seems surprising that you could even hope to prove such a 

thing. The catch hereis that we are limited to using comparison-based algorithms, and there is a 

clean mathematical way ofcharacterizing all such algorithms. 



 
 
 
 
 
Decision Tree Argument: In order to prove lower bounds, we need an abstract way of modeling 

“any possible”comparison-based sorting algorithm, w e model such algorithms in terms of an 

abstract modelcalled a decision tree.In a comparison-based sorting algorithm only comparisons 

between the keys are used to determinethe action of the algorithm. Let ha1; a2; : : : ; anibe the 

input sequence. Given two elements, aiandaj, their relative order can only be determined by the 

results of comparisons likeai<aj, ai<=aj,ai=aj, ai>=aj, and ai>aj.A decision tree is a 

mathematical representation of a sorting algorithm (for a fixed value of n). Eachnode of the 

decision tree represents a comparison made in the algorithm (e.g., a4 : a7), and the twobranches 

represent the possible results, for example, the left subtree consists of the remaining 

comparisonsmade under the assumption that a4 _ a7 and the right subtree for a4 > a7. 

(Alternatively, onemight be labeled with a4 < a7 and the other with a4 _ a7.)Observe that once we 

know the value of n, then the “action” of the sorting algorithm is com pletelydetermined by the 

results of its comparisons. This action may involve moving elements around in thearray, copying 

them to other locations in memory, performing various arithmetic operations on non-keydata. But 

the bottom-line is that at the end of the algorithm, the keys will be permuted in the final array in 

some way. Each leaf in the decision tree is labeled with the final permutation that the 

algorithmgenerates after making all of its comparisons.To make this more concrete, let us assume 

that n = 3, and let’s build a decision tree for SelectionSort.Recall that the algorithm consists of two 

phases. The first finds the smallest element of the entire list,and swaps it with the first element. 

The second finds the smaller of the remaining two items, and swapsit with the second element. 

Here is the decision tree (in outline form). The first comparison is betweena1 and a2. The possible 

results are: 
 
a1 <= a2: Then a1 is the current minimum. Next we compare a1 with a3 whose results might be 

either: 
 
 
a1 <=a3: Then we know that a1 is the minimum overall, and the elements remain in their 

originalpositions. Then we pass to phase 2 and compare a2 with a3. The possible 

results are: 
 
a2 <=a3: Final output is ha1; a2; a3i. 
 
a2 > a3: These two are swapped and the final output is ha1; a3; a2i. 



 
 
 
a1 > a3: Then we know that a3 is the minimum is the overall minimum, and it is swapped witha1. 

The we pass to phase 2 and compare a2 with a1 (which is now in the third position 

ofthe array) yielding either: 
 
a2 <=a1: Final output is ha3; a2; a1i. 
 
a2 > a1: These two are swapped and the final output is ha3; a1; a2i. 
 
a1 > a2: Then a2 is the current minimum. Next we compare a2 with a3 whose results might be 

either: 
 
a2 <=a3: Then we know that a2 is the minimum overall. We swap a2 with a1, and then pass to 

phase 2, and compare the remaining items a1 and a3. The possible results are: 
 
a1 <=a3: Final output is ha2; a1; a3i. 
 
a1 > a3: These two are swapped and the final output is ha2; a3; a1i. 
 
a2 > a3: Then we know that a3 is the minimum is the overall minimum, and it is swapped witha1. 

We pass to phase 2 and compare a2 with a1 (which is now in the third position of 

thearray) yielding either: 
 
a2<= a1: Final output is ha3; a2; a1i. 
 
a2 > a1: These two are swapped and the final output is ha3; a1; a2i. 
 

 

The final decision tree is shown below. Note that there are some nodes that are unreachable. For 

example,in order to reach the fourth leaf from the left it must be that a1 _ a2 and a1 > a2, which 

cannotboth be true. Can you explain this? (The answer is that virtually all sorting algorithms, 

especiallyinefficient ones like selection sort, may make comparisons that are redundant, in the 

sense that theiroutcome has already been determined by earlier comparisons.) As you can see, 

converting a complexsorting algorithm like HeapSort into a decision tree for a large value of n will 

be very tedious andcomplex, but I hope you are convinced by this exercise that it can be done in a 

simple mechanical way. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(Decision Tree for SelectionSort on 3 keys.) 
 
 

 

Using Decision Trees for Analyzing Sorting: Consider any sorting algorithm. Let T(n) be the 

maximumnumber of comparisons that this algorithm makes on any input of size n. Notice that the 

running timefo the algorithm must be at least as large as T(n), since we are not counting data 

movement or othercomputations at all. The algorithm defines a decision tree. Observe that the 

height of the decisiontree is exactly equal to T(n), because any path from the root to a leaf 

corresponds to a sequence ofcomparisons made by the algorithm. 
 
As we have seen earlier, any binary tree of height T (n) has at most 2T(n) leaves. This means that 

thissorting algorithm can distinguish between at most 2T (n) different final actions. Let’s call this 

quantityA (n), for the number of different final actions the algorithm can take. Each action can be 

thought of asa specific way of permuting the original input to get the sorted output.How many 

possible actions must any sorting algorithm distinguish between? If the input consists of ndistinct 

numbers, then those numbers could be presented in any of n! different permutations. For 

eachdifferent permutation, the algorithm must “unsc ramble” the numbers in an essentially 

different way,that is it must take a different action, implying that A(n) >= n!. (Again, A (n) is 

usually not exactlyequal to n! because most algorithms contain some redundant unreachable 

leaves.) 

 
 
Since A(n) ≤ 2T(n) we have 2T(n) ≥ n!, implying that 
 

 

T(n) ≥ lg(n!): 



 
 
 
 
 
We can use Stirling’s approximation for n! yielding:  
 
 
 
n! ≥   
 
T(n)  ≥  
 

=  
 
 
 
Thus we have the following theorem.  
 

 
Theorem: Any comparison-based sorting algorithm has worst-case running time (n log n). 
 
This can be generalized to show that the average-case time to sort is also (n log n) (by arguing 

aboutthe average height of a leaf in a tree with at least n! leaves). The lower bound on sorting can 

begeneralized to provide lower bounds to a number of other problems as well. 
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Greedy Method 
 
 
 
 

Introduction 

 
Let we are given a problem to sort the array a = {5, 3, 2, 9}. Someone says the array after sorting is 

,1, 3, 5, 7-. Can we consider the answer is correct? The answer is definitely “no” because the elements of 

the output set are not taken from the input set. Let someone says the array after sorting is {2, 5, 3, 9}. Can 

we admit the answer? The answer is again “no” because the output is not satisfying the objective function 

that is the first element must be less than the second, the second element must be less than the third and 

so on. Therefore, the solution is said to be a feasible solution if it satisfies the following constraints. 
 
 

(i) Explicit constraints: - The elements of the output set must be taken from the input set.  
(ii) Implicit constraints:-The objective function defined in the problem. 

 

 
The best of all possible solutions is called the optimal solution. In other words we need to find the solution 
which has the optimal (maximum or minimum) value satisfying the given constraints. 



 
 

 
The Greedy approach constructs the solution through a sequence of steps. Each step is chosen such 

that it is the best alternative among all feasible choices that are available. The choice of a step once made 
cannot be changed in subsequent steps. 
 

Let us consider the problem of coin change. Suppose a greedy person has some 25p, 20p, 10p, 5paise 

coins. When someone asks him for some change then be wants to given the change with minimum 

number of coins. Now, let someone requests for a change of top then he first selects 25p. Then the 

remaining amount is 45p. Next, he selects the largest coin that is less than or equal to 45p i.e. 25p. The 

remaining 20p is paid by selecting a 20p coin. So the demand for top is paid by giving total 3 numbers of 

coins. This solution is an optimal solution. Now, let someone requests for a change of 40p then the Greedy 

approach first selects 25p coin, then a 10p coin and finally a 5p coin. However, the some could be paid 

with two 20p coins. So it is clear from this example that Greedy approach tries to find the optimal solution 

by selecting the elements one by one that are locally optimal. But Greedy method never gives the 

guarantee to find the optimal solution. 
 

The choice of each step is a greedy approach is done based in the following: 
 

 It must be feasible
 It must be locally optimal
 It must be unalterable

 

 

Fractional Knapsack Problem 

 
Let there are n number of objects and each object is having a weight and contribution to profit. The 

knapsack of capacity M is given. The objective is to fill the knapsack in such a way that profit shall be 
maximum. We allow a fraction of item to be added to the knapsack. 
 
 
 
 
 
Mathematically, we can write 
 
 
 

n 

maximize� pi xi 
i 1 

 
Subject to 

n 

� wi xi   M
i 1  
1  i  n and 0  xi   1. 



 
 
 

Where pi  and wi  are the profit and weight of i
th

  object and xi  is the fraction of i
th

  object to be 

selected. 
 
For example 
 

Given n = 3, (p1, p2, p3) = {25, 24, 15} 
 

( w1, w2, w3) = {18, 15, 10} M = 20 
 
 
 
Solution 
 

Some of the feasible solutions are shown in the following table. 
 

Solution No x1 x2 x3 ∑wi xi ∑pi xi 

      
1 1 2/15 0 20 28.2 

      

2 0 2/3 1 20 31.0 
      

3 0 1 1/2 20 31.5 
      

 
 
These solutions are obtained by different greedy strategies. 
 
 
 
Greedy strategy I: In this case, the items are arranged by their profit values. Here the item with maximum 

profit is selected first. If the weight of the object is less than the remaining capacity of the knapsack then 

the object is selected full and the profit associated with the object is added to the total profit. Otherwise, a 

fraction of the object is selected so that the knapsack can be filled exactly. This process continues from 

selecting the highest profitable object to the lowest profitable object till the knapsack is exactly full. 
 
 
 

 
Greedy strategy II: In this case, the items are arranged by fair weights. Here the item with minimum 
weight in selected first and the process continues like greedy strategy-I till the knapsack is exactly full. 
 
 
 
Greedy strategy III: In this case, the items are arranged by profit/weight ratio and the item with maximum 
profit/weight ratio is selected first and the process continues like greedy strategy-I till the knapsack is 
exactly full. 
 
 
 
Therefore, it is clear from the above strategies that the Greedy method generates optimal solution if we 
select the objects with respect to their profit to weight ratios that means the object with maximum profit 
to weight ratio will be selected first. Let there are n objects and the object i is associated with 



 
 

profit  piand  weight  wi.  Then  we  can  say  that  if p1 ³ 

p
2 ³ LL ³ 

p
n       the  solution 

 w1 w2 w n  

x1 , x2 , x3 LL xn generated by greedy method is an optimal solution. The proof of the above 
statement is left as an exercise for the readers. The algorithm 6.1 describes the greedy method for finding 
the optimal solution for fractional knapsack problem.  
 
 
 
 
 
AlgorithmFKNAPSACK (p, w, x, n, M) 
 
// p[1:n] and w[1:n] contains the profit and weight of n objects. Mis the maximum capacity of knapsack 
and x[1:n] in the solution vector.// 
 
{ 
 

for (i = 1; i<= n; i ++) 
 

x[i] = 0 ; // initialize the solution to 0 // 
 

cu = M // cu is the remaining capacity of the knapsack// 
 

for (i =1; i<= n ; i ++){ 
 

if(w[i] >cu ) 
 

break; 
 

else{ 
 

x[i] = 1 ; 
 

cu = cu – w[i] ; 
 

} 
 

} 
 

if( i<= n){ 
 

x[i] = cu/w[i] ; 
 

returnx; 
 
}  
 
Algorithm 1. Greedy algorithm for fractional knapsack problem. 
 
 
 

Huffman Coding 
 

Each character is represented in 8 bits when characters are coded using standard codes such as ASCII. 
It can be seen that the characters coded using standard codes have fixed-length code word 



 
 

 
representation. In this fixed-length coding system the total code length is more. For example, let we have 
six characters (a, b, c, d, e, f) and their frequency of occurrence in a message is {45, 13, 12, 16, 9, 5}. In 
fixed-length coding system we can use three characters to represent each code. Then the total code length 
of the message is (45+13+12+16+9+5) x 3 = 100 x 3 = 300. 
 

Let us encode the characters with variable-length coding system. In this coding system, the 
 
character with higher frequency of occurrence is assigned fewer bits for representation while the 

characters having lower frequency of occurrence in assigned more bits for representation. The variable 

length code for the characters are shown in the following tableThe total code length in variable length 

coding system is 1  45 + 3  12 + 3  16  4  9 + 4  5 = 224. Hence fixed length code requires 300 bits 

while variable code requires only 224 bits. 
 

a b c d e f 
      

0 101 100 111 1101 1100 
      

Prefix (Free) Codes 
 

We have seen that using variable-length code word we minimize the overall encoded string length. 

But the question arises whether we can decode the string. If a is encoded 1 instead of 0 then the encoded 
string “111” can be decoded as “d” or “aaa”. It can be seen that we get ambiguous string. The key point to 

remove this ambiguity is to use prefix codes. Prefix codes is the code in which there is no codeword that is 

a prefix of other codeword. 
 

The representation of “decoding process” is binary tree whose leaves are characters. We interpret the 
binary codeword for a character as path from the root to that character, where 
 

⇒ “0” means “go to the left child”  
⇒ “1” means “go to the right child”  

Greedy Algorithm for Huffman Code: 
 

According to Huffman algorithm, a bottom up tree is built starting from the leaves. Initially, there are n 

singleton trees in the forest, as each tree is a leaf. The greedy strategy first finds two trees having 

minimum frequency of occurrences. Then these two trees are merged in a single tree where the frequency 
of this tree is the total sum of two merged trees. The whole process is repeated until there in only one tree 

in the forest. 
 

Let us consider a set of characters S=<a, b, c, d, e, f> with the following frequency of occurrences P = 
 
< 45, 13, 12, 16, 5, 9 >. Initially, these six characters with their frequencies are considered six singleton 
trees in the forest. The step wise merging these trees to a single tree is shown in Fig. 6.3. The merging is 
done by selecting two trees with minimum frequencies till there is only one tree in the forest. 
 
 
 

a : 45  b : 13  c : 12  d : 16  e : 5  f : 9 
           



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Step wise merging of the singleton trees. 

 
 
 

Now the left branch is assigned a code “0” and right branch is assigned a code “1”. The decode tree 
after assigning the codes to the branches. 
 

The binary codeword for a character is interpreted as path from the root to that character; Hence, the 
codes for the characters are as follows 
 
a = 0 
 
b = 101 
 
c = 100 
 
d = 111 



 
 
 
e = 1100 
 
f = 1101 
 

Therefore, it is seen that no code is the prefix of other code. Suppose we have a code 01111001101. 
To decode the binary codeword for a character, we traverse the tree. The first character is 0 and the 
character at which the tree traversal terminates is a. Then, the next bit is 1 for which the tree is traversed 
right. Since it has not reached at the leaf node, the tree is next traversed right for the next bit 
 
1. Similarly, the tree is traversed for all the bits of the code string. When the tree traversal terminates at a 
leaf node, the tree traversal again starts from the root for the next bit of the code string. The character 
string after decoding is “adcf”.  
 

 

AlgorithmHUFFMAN(n, S) 
 
{ 
 

// n is the number of symbols and S in the set of characters, for each character c S, the frequency of 

occurrence in f(c) // 
 

Initialize the priority queue; 
 

Q = S ; // Inilialize the priority Q with the frequencies of all the characters of set S// 
 

for(i =1 ; i<= n-i, i++){ 
 

z = CREAT _NODE ( ); // create a node pointed by z; // 
 
// Delete the character with minimum frequency from the Q and store in node x// 
 

x = DELETE _MIN (Q); 
 
// Delete the character with next minimum frequency from the Q and store in node y// 
 

y = DELETE_MIN (Q); 
 

zleft = x; // Place x as the left child of z// 
 

zright = y; // Place y as the right child of z// 
 
//The value of node z is the sum of values at node x and node y// 
 

f(z) = f(x) + f(y); 
 
//insert z into the priority Q// 
 

INSERT (Q, z); 
 

} 
 
returnDELETE_MIN(Q) 
 
} 



 
 
 
Algorithm 2. Algorithm of Huffman coding. 
 
 
 

Activity Selection Problem 
 

Suppose we have a set of activities S = {a1, a2 ………an} that with to use a common resource. The 
 
objective is to schedule the activities in such a way that maximum number of activities can be performed. 

Each activity ai has a start timesi and a finish time fi, where 0  Si<fi< ∞. The activities ai and aj are said to 

compatible if the intervals [si, fi] and [Sj, fj] do not overlap that means si ≥ fj or sj ≥ fi. 
 

For example, let us consider the following set S of activities, which are sorted in monotonically 
increasing order of finish time. 
 

 

i  a1   a2  a3  a4 a5  a6   a7   a8  a9   a10  a11  

si 1  3   0  5  3  5   6   8   8 2  12 

fi 4   5  6  7  8  9  10  11  72 13  14 
 
 
 

For this example, the subsets {a3, a9, a11}, {a1, a4, a8, a11} and {a2, a4, a9, a11} consist of mutually 
compatible activities. We have two largest subsets of mutually compatible activities. 
 

Now, we can devise greedy algorithm that works in a top down fashion. We assume that the n 
input activities are ordered by monotonically increasing finish time or it can be sorted into this order in 

O(nlog2n) time. The greedy algorithm for activity selection problem is given below.  
 

 
AlgorithmACTIVITY SELECTION (S, f) 
 
{ 
 

n = LENGTH (S) ; // n is the total number of activities // 
 

A = {a1} ; // A is the set of selected activities and initialized to a1)// 
 

i = 1; // i represents the recently selected activity // 
 

for (j = 2 ; j< = n ; j++) 
 

{ 
 

if (sj ≥ fi) { 
 

A = A {am} ; 
 

i = j ; 
 

} 



 
 
 

} 
 

returnA ; 
 
}  
 
Algorithm 3. Algorithm of activity selection problem. 
 
 
 

The algorithm takes the start and finish times of the activities, represented as arrays s and f , length  
(s) gives the total number of activities. The set A stores the selected activities.Since the activities are  
ordered with respect to their finish times the set A is initialized to contain just the first activity a1. The 

variable i stores the index of the recently selected activity. The for loop considers each activityaj and  
adds to the set A if it is mutually compatible with the previously selected activities. To see whether  
activity aj is compatible with every activity assumingly in A, it needs to check whether the short time of aj 

is greater or equal to the finish time of the recently selected activity ai. 
 
 
 

Minimum Cost Spanning Tree 
 

Let G = (V, E) be the graph where V is the set of vertices, E is the set of edges and |V|= n. The spanning 

tree G= (V, E) is a sub graph of G in which all the vertices of graph G are connected with minimum 
number of edges. The minimum number of edges required to correct all the vertices of a graph G in n – 1. 
Spanning tree plays a very important role in designing efficient algorithms. 
 

Let us consider a graph shown in Fig 6.6(a). There are a number of possible spanning trees that is 
shown in Fig 6.6(b). 
 

If we consider a weighted graph then all the spanning trees generated from the graph have different 
weights. The weight of the spanning tree is the sum of its edges weights. The spanning tree with minimum 
weight is called minimum spanning tree (MST). Fig. 6.7 shows a weighted graph and the minimum 
spanning tree. 
 

A greedy method to obtain the minimum spanning tree would construct the tree edge by edge, where 
each edge is chosen accounting to some optimization criterion. An obvious criterion would be to choose 
an edge which adds a minimum weight to the total weight of the edges selected so far. There are two 
ways in which this criterion can be achieved. 
 
 
 

1. The set of edges selected so far always forms a tree, the next edge to be added is such that not 
only it adds a minimum weight, but also forms a tree with the previous edges; it can be shown 
that the algorithm results in a minimum cost tree; this algorithm is called Prim’s algorithm. 

 
2. The edges are considered in non decreasing order of weight; the set T of edges at each stage is 

such that it is possible to complete T into a tree; thus T may not be a tree at all stages of the 
algorithm; this also results in a minimum cost tree; this algorithm is called Krusleat’s algorithm. 

 

Prim’s Algorithm 



 
 

 
This algorithm starts with a tree that has only one edge, the minimum weight edge. The edges (j, q) is 

added one by one such that node j is already included, node q is not included and weight wt(j, q) is the 

minimum amongst all the edges (x, y) for which x is in the tree and yis not. In order to execute this 

algorithm efficiently, we have a node index near(j) associated with each node j that is not yet included in 

the tree. If a node is included in the tree, near(j) = 0. The node near(j) is selected into the tree such that 

wt(j, near(j)) in the minimum amongst all possible choices for near(j).  
 

 
AlgorithmPRIM (E, wt, n, T) 
 
//E is the set of edges, wt(n, n) is the weight adjacency matrix for G, n is the number of nodes and T(n–1,  
2) stores the spanning tree. 
 
{ 
 

(k, l) = edge with minimum wt. 

minwt = wt[k, l] ; 

 
T[1, 1] = k, T[1, 2] = l ; 

for(i = 1; i<=n; i++){ 

 
if(wt[i, k] <wt [i, l] ) 

near[i] = k; 
 

else 
 

near[i] = l; 
 

} 
 

near[k] = near[l] = 0; 

for(i = 2; i£=n-1 ; i++) 
 

{ 
 

letj be an index such that near[j] ¹ 0 and wt[j, near[j]] is minimum. 

T[i, 1] = j; T[i, 2] = near[j]; 

 
minwt = minwt + wt[j, near[j]] ; 

near[j] = 0 ; 
 

for(k = 1; k<= n ; k++){ 
 

if (near[k] ¹ 0 and wt[k, near[k]] >wt[k, j]) 

near[k] = j; 
 

} 



 
 
 

} 
 

if(minwt == ∞) 
 

print(“No spanning tree”); 
 
returnminwt; 
 
}  
 
Algorithm 4. Prim’s algorithm for finding MST. 
 
 
 

Fig 6. The weighted undirected graph to illustrate Prim’s algorithm 
 
 
 
Let us consider the weighted undirected graph shown in Fig.6.8 and the objective is to construct a 
minimum spanning tree. The step wise operation of Prim’s algorithm is described as follows. 
 
 
 
Step 1 The minimum weight edge is (2, 3) with weight 5. Hence, the edge (2, 3) is added to the tree. 

  near(2) and near(3) are set 0. 

Step 2 Find near of all the nodes that are not yet selected into the tree and its cost. 

  near(1) = 2 weight = 16 

  near(4) = 2 weight = 6 

  near (5) = - weight = ∞ 

  near (6) = 2 weight = 11 

  The node 4 is selected and the edge (2, 4) is added to the tree because 

  weight(4, near(4) ) is minimum. Then near(4) is set 0. 

Step 3 near(1) = 2 weight = 16 

  near(5) = 4 weight = 18 

  near(6) = 2 weight = 11 

  As weight(6, near(6)) is minimum, the node 6 is selected and edge (2, 6) is added to the tree. So 

  near(6) is set 0  

Step 4 near (1) = 2 weight = 16 

  near (5) = 4 weight = 18 

  Next, the edge (2, 1) is added to the tree as weight(1, near(1)) is minimum. So near(1) is set 0. 



 
 
 
Step 5 near (5) = 1 weight 12 
 

The edge (1, 5) is added to the tree. The Fig. 6.9(a) to 6.9(e) show the step wise construction of 
MST by Prim’s algorithm. 
 
 
 

Fig. 6.9 Step wise construction of MST by Prim’s algorithm 
 
Time complexity of Prim’s Algorithm 
 
Prim’s algorithm has three for loops. The first for loop finds the near of all nodes which require O(n) time. 
The second for loop is to find the remaining n-2 edges and the third for loop updates near of each node 

after adding a vertex to MST. Since the third for loop is within the second for loop, it requires O(n
2
) time. 

Hence, the overall time complexity of Prim’s algorithm is O(n
2
). 

 
 
 

Kruskal’s Algorithm 
 

This algorithm starts with a list of edges sorted in non decreasing order of weights. It repeatedly adds 

the smallest edge to the spanning tree that does not create a cycle. Initially, each vertex is in its own tree 

in the forest. Then, the algorithm considers each edge ordered by increasing weights. If the edge (u, v) 

connects two different trees, then (u, v) is added to the set of edges of the MST and two trees connected 

by an edge (u, v) are merged in to a single tree. If an edge (u, v) connects two vertices in the same tree, 

then edge (u, v) is discarded. 
 

The Krushal’s algorithm for finding the MST is presented as follows. It starts with an empty set A, and 
selects at every stage the shortest edge that has not been chosen or rejected regardless of where this 
edge is situated in the graph. The pseudo code of Kruskal’s algorithm is given in Algorithm . 
 
 
 

The operations an disjoint sets used for Krushal’s algorithm is as follows: 
 

Make_set(v) : create a new set whose only member is pointed to v. 
 

Find_set(v) : returns a pointer to the set containing v. 
 

Union(u, v) : unites the dynamic sets that contain u and v into a new set that is union of these 
two sets.  

 
 
 
AlgorithmKRUSKAL (V, E, W) 
 
// V is the set of vertices, E is the set of edges and W is the adjacency matrix to store the weights of the 
links. // 
 
{ 
 

A =  ; 



 
 
 

for (each vertex u in V) 
 

Make_set(u) 
 

Create a min heap from the weights of the links using procedure heapify. 
 

for (each least weight edge (u, v) in E) // least weight edge is the root of the heap// 

if (Find_set(u) ¹Find_set(v)){ // u and v are in two different sets // 
 

A = AÈ{u, v} 
 

Union(u, v) 
 

} 
 

} 
 

return A ; 
 
}  
 
Algorithm. 5 Kruskal’s algorithm for finding MST. 
 
 
 

Let us consider the graph shown in Fig.6.10 to illustrate Kruskal’s algorithm. 
 
 
 

The step wise procedure to construct MST by following the procedure presented given below. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step wise construction of MST by Kruskal’s algorithm 
 
Time complexity of Kruskal’s Algorithm 
 
The Kruskal’s algorithm first creates n trees from n vertices which is done in O(n) time. Then, a heap is 
created in O(n) time using heapify procedure. The least weight edge is at the root of the heap. Hence, the 
edges are deleted one by one from the heap and either added to the MST or discarded if it forms a cycle. 

This deletion process requires O(nlog2n). Hence, the time complexity of Kruskal’s algorithm is O(nlog2n). 

 

Shortest Path Problem 
 

Let us consider a number of cities connected with roads and a traveler wants to travel form his home 
city A to the destination B with a minimum cost. So the traveler will be interested to know the following: 



 
 
 

 Is there a path from city A to city B?
 If there is more than one path from A to B, which is the shortest or least cost path?

 

 

Let us consider the graph G = (V, E), a weighting function w(e) for the edges in E and a source node v0. 

The problem is to determine the shortest path from v0 to all the remaining nodes of G. The solution to this 

problem is suggested by E.W. Dijkstra and the algorithm is popularly known as Dijustra’s algorithm. 

 
This algorithm finds the shortest paths one by one. If we have already constructed i shortest paths, 

then the next path to be constructed should be the next shortest path. Let S be the set of vertices to which 
the shortest paths have already been generated. For z not in S, let dist[z] be the length of the shortest path 

starting form v0, going through only those vertices that are in S and ending at z. Let u is the vertex in S to 

which the shortest path has already been found. If dist[z] >dist[u] + w(u,z) then dist[z] is updated to dist[u] 
+ w(u,z) and the predecessor of z is set to u. The Dijustra’s algorithm is presented in Algorithm 6.6.  

 

AlgorithmDijkstra (v0, W, dist, n) 
 
// v0 is the source vertex, W is the adjacency matrix to store the weights of the links, dist[k] is the array to 
store the shortest path to vertex k, n is the number of vertices// 
 
{ 
 

for (i = 1 ; i < = n ; i ++){ 
 

S[i] = 0; // Initialize the set S to empty i.e. i is not inserted into the set// 
 

dist[i] = w(v0,i) ; //Initialize the distance to each node 
 

} 
 

S[vo] = 1; dist[v0] = 0; 
 

for (j = 2; j<= n; j++) { 
 

choose a vertex u from those vertices not in S such that dist [u] is minimum. 
 

S[u] = 1; 
 

for (each z adjacent to u with S[z] = 0) { 
 

if(dist[z] >dist [u] + w[u, z]) 
 

dist[z] = dist [u] + w[u, z]; 
 

} 
 

} 
 
}  
 
Algorithm 6.6. Dijkstra’s algorithm for finding shortest path. 



 
 
 
 

 
Let us consider the graph. The objective is to find the shortest path from source vertex 0 to the all 
remaining nodes. 

 
 
 

Iteration Set of nodes to which the shortest Vertex selected  Distance  
 path is found       
        

   0 1 2 3 4 
        

Initial {0} - 0 10 ∞ 5 ∞ 
        

1 {0, 3} 3 0 8 14 5 7 
        

2 {0, 3,4} 4 0 8 13 5 7 
        

3 {0, 3, 4, 1} 1 0 8 9 5 7 
        

4 {0, 3, 4, 1, 2} 2 0 8 9 5 7 
        

The time complexity of the algorithm is O(n
2
). 

 
 
 
 
 
 
 
 
 
 
 
 

Dynamic Programming 
 

Introduction 
 

The Dynamic Programming (DP) is the most powerful design technique for solving optimization 

problems. It was invented by mathematician named Richard Bellman inn 1950s. The DP in closely related 

to divide and conquer techniques, where the problem is divided into smaller sub-problems and each sub-

problem is solved recursively. The DP differs from divide and conquer in a way that instead of solving sub-

problems recursively, it solves each of the sub-problems only once and stores the solution to the sub-

problems in a table. The solution to the main problem is obtained by the solutions of these sub-problems. 

 
The steps of Dynamic Programming technique are: 

 
 Dividing the problem into sub-problems: The main problem is divided into smaller sub-problems. 

The solution of the main problem is expressed in terms of the solution for the smaller sub-
problems.


 Storing the sub solutions in a table: The solution for each sub-problem is stored in a table so that 

it can be referred many times whenever required.



 
 

 
 Bottom-up computation: The DP technique starts with the smallest problem instance and 

develops the solution to sub instances of longer size and finally obtains the solution of the 
original problem instance. 

 
The strategy can be used when the process of obtaining a solution of a problem can be viewed as a 

sequence of decisions. The problems of this type can be solved by taking an optimal sequence of decisions. 

An optimal sequence of decisions is found by taking one decision at a time and never making an erroneous 

decision. In Dynamic Programming, an optimal sequence of decisions is arrived at by using the principle of 

optimality. The principle of optimality states that whatever be the initial state and decision, the remaining 

decisions must constitute an optimal decision sequence with regard to the state resulting form the first 

decision. 
 

A fundamental difference between the greedy strategy and dynamic programming is that in the 
greedy strategy only one decision sequence is generated, wherever in the dynamic programming, a 
number of them may be generated. Dynamic programming technique guarantees the optimal solution for 
a problem whereas greedy method never gives such guarantee. 
 
 

Matrix chain Multiplication 
 

Let, we have three matrices A1, A2 and A3, with order (10 x 100), (100 x 5) and (5 x 50) respectively.  
Then the three matrices can be multiplied in two ways. 
 

(i) First, multiplying A2 and A3, then multiplying A1 with the resultant matrix i.e. A1(A2 A3). 

(ii) First, multiplying A1 and A2, and then multiplying the resultant matrix with A3 i.e. (A1A2) A3. 
 
 
The number of scalar multiplications required in case 1 is 100 * 5 * 50 + 10 * 100 * 50 = 25000 + 50,000 
 
= 75,000 and the number of scalar multiplications required in case 2 is 10 * 100 * 5 + 10 * 5 * 50 = 5000 + 
2500 = 7500 
 

To find the best possible way to calculate the product, we could simply parenthesize the expression in 
every possible fashion and count each time how many scalar multiplications are required. Thus the matrix 
chain multiplication problem can be stated as “find the optimal parenthesisation of a chain of matrices to 
be multiplied such that the number of scalar multiplications is minimized”. 
 
Dynamic Programming Approach for Matrix Chain Multiplication 
 

Let us consider a chain of n matrices A1, A2……….An, where the matrix Ai has dimensions P[i-1] x P[i]. 

Let the parenthesisation at k results two sub chains A1…….Ak and Ak+1……..An. These two sub chains must 

each be optimal for A1……An  to be optimal. The cost of matrix chain (A1….An) is calculated as 

cost(A1……Ak) + cost(Ak+1…...An) + cost of multiplying two resultant matrices together i.e. 
 

cost(A1……An)= cost(A1……Ak) + cost(Ak+1…...An) + cost of multiplying two resultant matrices together. 
 

 

Here, the cost represents the number of scalar multiplications. The sub chain (A1….Ak) has a dimension 

P[0] x P[k] and the sub chain (Ak+1……An) has a dimension P[k] x P[n]. The number of scalar  
multiplications required to multiply two resultant matrices is P[0] x P[k] x P[n]. 



 
 

 
Let m[i, j] be the minimum number of scalar multiplications required to multiply the matrix chain 

(Ai………..Aj). Then 
 

(i) m[i, j] = 0 if i = j  
(ii) m[i, j] = minimum number of scalar multiplications required to multiply (Ai….Ak) + minimum 

number  of  scalar  multiplications  required  to  multiply  (Ak+1….An)  +  cost  of 
multiplying two resultant matrices i.e.  
m[i, j]  m[i, k ]  m[k, j]  P[i 1] P[k ] P[ j] 

 
 
 
However, we don’t know the value of k, for which m[i, j] is minimum. Therefore, we have to try all j – i 
possibilities. 
 
 0 if i  j 
mi , j  Otherwise 

minm[i, k ]  m[k, j]  P[i 1] P[k ] P[ j]

ik  j  
 
Therefore, the minimum number of scalar multiplications required to multiply n matrices A1 A2……An is 
 

m[1, n]  minm[1, k ]  m[k , n]  P[0] P[k ] P[n]
1k n 

 
 
The dynamic programming approach for matrix chain multiplication is presented in Algorithm 7.2.  
 
 
 
 
 
AlgorithmMATRIX-CHAIN-MULTIPLICATION (P) 
 

// P is an array of length n+1 i.e. from P[0] to P[n]. It is assumed that the matrix Ai has the dimension P[i-  
1] ×P[i]. 
 
{ 
 

for(i = 1; i<=n; i++) 
 

m[i, i] = 0; 
 

for(l = 2; l<=n; l++){ 
 

for(i = 1; i<=n-(l-1); i++){ 
 

j = i + (l-1); 
 

m[i, j+ = ∞; 
 

for(k = i; k<=j-1; k++) 
 

q = m[i, k] + m[k+1, j] + P[i-1] P[k] P[j] ; 
 

if (q<m [i, j]){ 



 
 
 

m[i, j] = q; 
 

s[i, j] = k; 
 

} 
 

} 
 

} 
 

} 
 

returnm and s. 
 
}  
 
Algorithm 7.2 Matrix Chain multiplication algorithm. 
 
 
 

Now let us discuss the procedure and pseudo code of the matrix chain multiplication. Suppose, we are 
given the number of matrices in the chain is n i.e. A1, A2………An and the dimension of matrix Ai is P[i-  
1] ×P[i]. The input to the matrix-chain-order algorithm is a sequenceP[n+1] = {P[0], P*1+, …….P[n]}. The  
algorithm first computes m[i, i] = 0 for i = 1, 2, …….n in lines 2-3. Then, the algorithm computes m[i, j] for 
 
j– i = 1 in the first step to the calculation of m[i, j] for j – i = n -1 in the last step. In lines 3 – 11, the value of 
m[i, j] is calculated for j – i = 1 to j –i = n – 1 recursively. At each step of the calculation of m[i, j], a 

calculation on m[i, k] and m[k+1, j] for ik<j, are required, which are already calculated in the previous 
steps. 
 

To find the optimal placement of parenthesis for matrix chain multiplication Ai, Ai+1, …..Aj, we should 

test the value of ik<j for which m[i, j] is minimum. Then the matrix chain can be divided from (A1 ……Ak) 

and (Ak+1 ……. Aj).  

Let us consider matrices A1,A2……A5 to illustrate MATRIX-CHAIN-MULTIPLICATIONalgorithm. The matrix  
chain order P = {P0, P1, P2, P3, P4, P5} = {5, 10, 3, 12, 5, 50}. The objective is to find the minimum number 
of scalar multiplications required to multiply the 5 matrices and also find the optimal sequence of 
multiplications. 
 

The solution can be obtained by using a bottom up approach that means first we should calculate mii 

for 1i  5. Then mijis calculated for j – i = 1 to j – i = 4. We can fill the table shown in Fig. 7.4 to find the 
solution. 
 
 
 

Fig. 7.4Table to store the partial solutions of the matrix chain multiplication problem 
 
 
 

The value of mii for 1i  5 can be filled as 0 that means the elements in the first row can be assigned 0. 
Then 
 
For j – i = 1 



 
 
 

m12 = P0 P1 P2 = 5 x 10 x 3 = 150 

m23 = P1 P2 P3    = 10 x 3 x 12 = 360 

m34 = P2 P3 P4 = 3 x 12 x 5 = 180 

m45 = P3 P4 P5 = 12 x 5 x 50 = 3000 
 
For j – i = 2  

m13 = min {m11 + m23 + P0 P1 P3, m12 + m33 + P0 P2 P3} 

 = min {0 + 360 + 5 * 10 * 12, 150 + 0 + 5*3*12} 

 = min {360 + 600, 150 + 180} = min {960, 330} = 330 

m24 = min {m22 + m34 + P1 P2 P4, m23 + m44 + P1 P3 P4} 

 = min {0 + 180 + 10*3*5, 360 + 0 +10*12*5} 

 = min {180 + 150, 360 + 600} = min {330, 960} = 330 

m35 = min {m33 + m45 + P2 P3 P5, m34 + m55 + P2 P4 P5} 

 = min {0 + 3000 + 3*12*50, 180 + 0 + 3*5*50} 

 = min {3000 + 1800 + 180 + 750} = min {4800, 930} = 930 

For j – i = 3  

m14 = min {m11 + m24 + P0 P1 P4, m12 + m34 + P0 P2 P4, m13+m44+P0 P3 P4} 

 = min {0 + 330 + 5*10*5, 150 + 180 + 5*3*5, 330+0+5*12*5} 

 = min {330 + 250, 150 + 180 + 75, 330 +300} 

 = min {580, 405, 630} = 405 

m25 = min {m22 + m35 + P1 P2 P5, m23 + m45 + P1 P3 P5, m24+m55+P1 P4 P5} 

 = min {0 + 930 +10*3*50, 360+3000+10*12*50, 330+0+10*5*50} 

 = min {930 + 1500, 360 +3000+6000, 330+2500} 

 = min {2430, 9360, 2830} = 2430 

For j - i = 4  

m15 = min{m11+ m25+ P0 P1 P5, m12+m35+ P0 P2 P5, m13 + m45 +P0 P3 P5, m14+m55+P0 P4 P5 } 

 = min{0+2430+5*10*50, 150+930+5*3*50, 330+3000+5*12*50, 
 

405+0+5*5*50} 
 

= min {2430+2500, 150+930+750, 330+3000+3000, 405+1250} 

= min {4930, 1830, 6330, 1655} = 1655 



 
 
 
 
 

Hence, minimum number of scalar multiplications required to multiply the given five matrices in  
1655. 
 

To find the optimal parenthesization of A1……….A5, we find the value of k is 4 for which m15 is 

minimum. So the matrices can be splitted to (A1….A4) (A5). Similarly, (A1….A4) can be splitted to (A1A2) (A3  
A4) because for k = 2, m14 is minimum. No further splitting is required as the subchains (A1A2) and (A3 A4) 

has length 1. So the optimal paranthesization of A1 …….A5 in ( (A1 A2) (A3 A4) ) (A5). 
 
Time complexity of multiplying a chain of n matrices 
 
Let T(n) be the time complexity of multiplying a chain of n matrices. 
 

 1 

T (n) 

 n1 

1

 �T (k ) 


  k 1 

n1 

⇒ T (n) 1  �T (k 

)  
k 1 

 
if n  1 

 

T (n  k ) 1 if n  1 
 

 T (n  k ) 1 if n  1 

 
n1 

1 n 1 �T (k )  T (n 
k 1 

⇒ T (n) n 2T (1)  T (2) LL T (n 

 

k ) 
 

 1)LLL(7.1)
 
Replacing n by n-1, we get 
 

T (n 1) n 1 2T (1) T (2) LLT (n  2)LLL(7.2) 
 
Subtracting equation 7.2 from equation 7.1, we have 
 

T (n) T (n 1) nn 1 2T (n 

1) ⇒ T (n) 1  3T (n 1)  
 1  31 3T (n  2)1  31 32 T (n  2)

 11  3  32 LL 3n2  3n1T (1)

 11  3  32 LL 3n


1 

 3n
 

1
 2n  

2 
 
 
 

Longest Common Subsequence 
 

The longest common subsequence (LCS) problem can be formulated as follows “Given two sequences 
X = 〈x1, x2 ……….xn〉 and Y = 〈y1, y2………yn〉 and the objective is to find the LCS Z = 〈z1, z2 

………zn〉 that is common to x and y”. 



 
 

 

Given two sequences X and Y, we say Z is a common sub sequence of X and Y if Z is a subsequence of 

both X and Y. For example, X = 〈 A, B, C, B, D, A, B〉 and Y = 〈 B, D, C, A, B, A〉, the sequence 〈B, C, A〉 is a 

common subsequence. Similarly, there are many common subsequences in the two sequences X and Y. 

However, in the longest common subsequence problem, we wish to find a maximum length common 

subsequence of X and Y, that is 〈 B, C, B, A〉 or 〈 B, D, A, B〉. This section shows that the LCS problem can be 

solved efficiently using dynamic programming. 
 
4.7.1 Dynamic programming for LCS problem 
 
Theorem.4.1.(Optimal Structure of an LCS) 
 

Let X = 〈x1, x2 ……….xn〉 and Y = 〈y1, y2………yn〉 be sequences and let Z = 〈z1, z2 ………zn〉 be any LCS of X and  
Y. 
 

Case 1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1. 
 

Case 2. If xm¹yn, then zk¹xm implies that Z is an LCS of Xm-1 and Y. 
 

Case 3. If xm¹yn, then zk¹yn implies that Z is an LCS of X and Yn-1. 
 

 
Proof The proof of the theorem is presented below for all three cases. 
 
 
 
Case 1. If xm = yn and we assume that zk¹xm or zk¹yn then xm = yn can be added to Z at any index after k 

violating the assumption that Zk is the longest common subsequence. Hence zk = xm = yn. If we do not 

consider Zk-1 as LCS of Xm-1 and Yn-1, then there may exist another subsequence W whose length is more 

than k-1. Hence, after adding xm = yn to the subsequence W increases the size of subsequence more than 
k, which again violates our assumption. 
 

Hence, Zk=xm = yn and Zk-1 must be an LCS of Xm-1 and Yn-1. 
 
Case 2.If xm¹yn, then zk¹xm implies that Z is an LCS of Xm-1 and Yn. If there were a common subsequence W 

of Xm-1and Y with length greater then k than W would also be an LCS of Xm and Yn violating our 

assumption that Zk is an LCS of Xm and Yn. 
 
Case 3. The proof is symmetric to case-2. 
 
 
 
Thus the LCS problem has an optimal structure. 
 
 
 
Overlapping Sub-problems 
 
From theorem 4.1, it is observed that either one or two cases are to be examined to find an LCS of Xmand 
Yn. If xm = yn, then we must find an LCS of Xm-1 and Yn-1. If xm¹yn, then we must find an LCS of Xm-1 and Yn 
and LCS of Xm and Yn-1. The LCS of X and Y is the longer of these two LCSs. 



 
 
 

Let us define c[m, n] to be the length of an LCS of the sequences Xm and Yn. The optimal structure of  
the LCS problem gives the recursive formula   

0  if m = 0 or n = 0 
 

+1 if xm  = yn   ..............(7.1) c[m,n] =  c[m -1, n -1] 
   

xm  ¹ yn maxc[m -1, n], c[m, n -1] if 
Generalizing equation 7.1, we can formulate    

 0 if i = 0 or j = 0  

c[i,j] = c[i -1, j -1] +1  if xi = y j   ..............(7.2) 
 

maxc[i -1, j], c[i, j -1] if xi ¹ y j  
 

 
Computing the length of an LCS 
 

Based on equation (7.1), we could write an exponential recursive algorithm but there are only m*n 
distinct problems. Hence, for the solution of m*n distinct subproblems, we use dynamic programming to 
compute the solution using bottom up approach. 
 

The algorithm LCS_length (X, Y) takes two sequences X = 〈x1, x2………..xn〉 and Y = 〈y1, y2………..yn〉 as 
 
inputs and find c[m, n] as the maximum length of the subsequence in X and Y. It stores c[i, j] and b[i, j] in 
tables c[m, n] and b[m, n] respectively, which simplifies the construction of optimal solution.  
 
AlgorithmLCS_LENGTH (X, Y) 
 
{ 
 

m=length [X] 
 

n=length [Y] 
 

for( i =1; i<=m; i++) 
 

c[i,0] = 0; 
 

for(j=0; j<n; j++) 
 

c[0, j]= 0; 
 

for(i=1; i< m; i++){ 
 

for(j = 1; j <= n; j++){ 
 

if(x[i] = = y[j]) { 
 

c[i, j] = 1 + c[i-1, j-1]; 
 

b[i,j] = ‘ ’; 
 

} 



 
 
 

else{ 
 

if(c[ i-1, j] ≥ c[i, j-1] ) 
 

c[i, j] = c[i-1, j]; 
 

b[i,j] = ‘’; 
 

else 
 

c[i,j] = c[i, j-1]; 
 

b[i, j] = ‘’ 
 

} 
 

return c and b ; 
 
}  
 
Algorithm 7.3 Algorithm for finding Longest common subsequence . 
 
 
 
Constructing an LCS 
 
 
 
The algorithm LCS_LENGTH returns c and b tables. The b table can be used to construct the LCS of X and Y 
quickly.  
 
AlgorithmPRINT_LCS (b, X, i, j) 
 
{ 
 

if (i == 0 || j == 0) 
 

return;  
 

if (b*i, j+ = = ‘ ‘) , 
 

PRINT_LCS (b, X, i-1, j-1) 
 

Printxi 
 

} 
 

else if (b[i, j+ = = ‘’) 
 

PRINT_LCS (b, X, i-1, j) 
 

else 
 

PRINT_LCS (b, X, i, j-1) 
 
} 



 
 
 
Algorithm 7.4 Algorithm to print the Longest common subsequence . 
 
 
 
Let us consider two sequences X = 〈C, R, O, S, S〉 and Y = 〈R, O, A, D, S〉 and the objective is to find the LCS 

and its length. The c and b table are computed by using the algorithm LCS_LENGTH for X and Y that is 

shown in Fig.7.5. The longest common subsequence of X and Y is 〈R, O, S〉 and the length of LCS is 3. 
 
 
 

Reliability Design Problem 
 

In this section, we present the dynamic programming approach to solve a problem with multiplicative 
constraints. Let us consider the example of a computer return in which a set of nodes are connected with 

each other. Let ri be the reliability of a node i.e. the probability at which the node forwards the packets 

correctly in ri. Then the reliability of the path connecting from one node s to  
k 

another node d is ri where k is the number of intermediate node. Similarly, we can also consider a 
i 1 

system with n devices connected in series, where the reliability of device i is ri. The reliability of the  
k 

system is ri . For example if there are 5 devices connected in series and the reliability of each device  
i 1  

is 0.99 then the reliability of the system is 0.99  0.99 0.99 0.99  0.99=0.951. Hence, it is desirable to 

connect multiple copies of the same devices in parallel through the use of switching circuits. The switching 

circuits determine the devices in any group functions properly. Then they make use of one such device at 

each stage. 
 

Let mi be the number of copies of device Di in stage i. Then the probability that all mi have malfunction 

i.e. (1-ri)
m

i.Hence, the reliability of stage i becomes 1-(1-ri)
m

i . Thus, if ri =0.99 and mi=2, the reliability of 
stage i is 0.9999. However, in practical situations it becomes less because the switching circuits are not 

fully reliable. Let us assume that the reliability of stage i in  i(mi), i≤n. Thus the reliability  
k 

of the system is i (mi ) .  
i 1 

 
 
 

Fig. 7.9 
 

The reliability design problem is to use multiple copies of the devices at each stage to increase 

reliability. However, this is to be done under a cost constraint. Let ci be the cost of each unit of device Di 
and let c be the cost constraint. Then the objective is to maximize the reliability under the condition that 

the total cost of the system mici will be less than c. 
 
Mathematically, we can write 
 

maximize i (mi ) 
1i n 



 

 

subject to �ci mi  £ c 
1i n 

 

mi  ³ 1 and 1 £ i £ n . 
 

We can assume that each ci>0 and so each mi must be in the range 1 £ mi  £ ui , where  
c + �  c   

  n   

 
j =1 and j ¹i 

j 

ui  =   . 
   

 
 

c
i 

 
The dynamic programming approach finds the optimal solution m1,m2…mn. An optimal sequence of 

decision i.e. a decision for each mi can result an optimal solution. 
 

n 

Let fn(c) be the maximum reliability of the system i.e. maximum i (mi ) , subject to the constraint  
 i 1 

�ci mi  £ c 

and 1 £ mi  £ xi ,  1  i  n . Let we take a decision on the value of mn from ,1,2… un}. Then 
1i n 

the  remaining  mn 1  i  n can  be  chosen  in  such  a  way  that   mi  for the  value  of  
1  i  n  n 1 can be maximized under the cost constraint c-cnmn. Thus the principle of optimality 

holds and we can write  

fn(c)= max j mj f j -1 x - mj c j  (8.1) 
1£mn £un  

We can generalized the equation 8.1 and we can write  

fj(x)= max  j m j f j 1 x  m j c j  (8.2) 
1m j u j  

 
It is clear that f0(x)=1 for all x, 0  x  c . Let S

i
 consists of tuples of the form (f,x) where f = fi(x). There 

is atmost one tuple for each different x that remits from a sequence of decisions on m1,m2…mn. If there 

are two tuples (f1,x1) and (f2,x2) such that f1 ≥ f2 and x1≤ x2 then (f2,x2) is said to be dominated tuple and 

discarded from S
i
. 

 
Let us design a three stage system with devices D1,D2 and D3. The costs are Rs 30,Rs 15 and Rs 20 

respectively. The cost constraint of the system is Rs 105. The reliability of the devices are 0.9, 0.8 and 0.5  

respectively. If stage i has mi devices in parallel then mi   1  1  ri 
m

i . We can write c1=30, c2 

=15,c3=20, c=105, r1=0.9, r2=0.8 and r3=0.5. We can calculate the value of ui, for 1  i  3 



 

 

 105  15  20 70  
x1 

   

  

   

  
 2   30    

    30   

x 105  30  20 55   3 
   

2  15        

     15  

x 105  30 15 60   3 
  

3  

20 
     

    20   
 

Then we start with S
0
={(1,0)}. We can obtain each S

i
 from S

i-1
 by trying out all possible values for mi 

and combining the resulting tuples together. 
 

S1 
={(0.9,30)} S1 

={(0.99,60)} S1 ={(0.9,30),(0.99,60)} 
1  2   

 
Considering 1 device at stage q, we can write S1

2
  as follows 

 

S1
2 ={(0.9 0.8,30+15),(0.99 0.8,60+15)} 

 
={(0.72,45),(0.792,75)} 

 

Considering 2 devices of D2 in stage 2, we can compute the reliability at stage 2 
 

2 m2 =1-(1-0.8)
2
=0.96 cost at stage 2=2 

15=30 Hence, we can write 

S 2 ={(0.9 0.96,30+30),(0.99 0.96,60+30)} 
2 

 
 
 
The tuple (0.9504, 90) is removed as it left only Rs 15 and the maximum cost of the third stage is 20. 

Now, we can consider 3 devices of D2 in stage 2 and compute the reliability at stage 2 is 
 

2 m2 =1-(1-0.8)
3
=1-0.008=0.992. 

 
Hence, we can write 
 

S3
2 ={(0.9 0.992,30+45),(0.99  0.992,60+45)} 

 
={(0.8928,75),(0.98208,105)} 

 

The tuple (0.98208,105) is discarded as there is no cost left for stage 3. Combining S1
2
 , S2

2
 and S3

2
 , we 

get 
 

S 2 ={(0.72,45),(0.792,75),(0.864,60),(0.8928,75)} 
 
The tuple (0.792,75) is discarded from S 

2
  as it is dominated by (0.864,60). 

 

Now, we can compute S1
3
 assuming 1 device at stage 3. 



 
 

 

S1
3 ={(0.72 0.5,45+20),(0.864  0.5,60+20),(0.8928 0.5,75+20)} 

 
={(0.36,65),(0.432,80),(0.4464,95)} 

 
If there are 2 devices at stage 3, then 
 

3 m3 =(1-(1-0.5)
2
)=0.75 

 

We can write S2
3
  as follows 

 

S2
3 ={(0.72 0.75,45+40),(0.864 0.75,60+40),(0.8928 0.75,75+40)} 

 
={(0.54,85),(0.648,100)} (tuple(0.8928  0.75,115) is discarded as cost 

constraint is 105). 
 
If there are 3 devices at stage 3 then 
 

3 m3 =(1-(1-0.5)
3
)=1-0.125=0.875 

 

Hence, we can write S3
3
 ={(0.72 0.875,45+60)}={(0.63,105)} 

 

Combining S1
3
 , S2

3
 and S3

3
 we can write S

3
 discarding the dominant tuples ass given below 

 

S
3
={(0.36,65),(0.432,80),(0.54,85),(0.648,100)} 

 
The best design has the reliability 0.648 and a cost of 100. Now, we can track back to find the number of 

devices at each stage. The tuple(0.648,100) is taken from S2
3
 that is with 2 devices at stage 2. Thus m3=2. 

The tuple (0.648,100) was derived from the tuple (0.864,60) taken from S2
2
 and computed with 

considering 2 devices at stage 2. Thus m2=2. The tuple (0.864,60) is derived from the tuple (0.9,30) taken 

from S1
1
 computed with 1 device at stage 1. Thus m1=1. 

 

Bellman Ford Algorithm 
 

In the previous chapter, it is observed that the Dijkstra’s algorithm finds the shortest path from one 

node to another node in a graph G = (V, E) where the weights of the links are positive. However, if there 

are some negative weight edges then dijkstra’s algorithm may fail to find the shortest path from one node 

to another. Hence, Bellman-ford algorithm solves the single source shortest paths problem in general case. 

Let us consider the graph G= (V, E) shown in Fig.7.10. Let us assume that node 1 is the source, node 2 and 

node 3 are destinations. Then by using Dijkstra’s algorithm, we can compute the shortest path to node 2 

and node 3 as 5 and 7 respectively whereas it is not actually the case. The shortest path from 1 to 3 is 123 

and the path length is 2. This can be computed by Bellman-ford algorithm. 
 

 
Before applying Bellman-ford algorithm, we assume that the negative weight edges are permitted but 

there should not be any negative weight cycle. This is necessary to answer that the shortest paths consists 
of a finite number of edges. In Fig.7.11 , the path from 1 to 3 is 121212…123 and the path 



 
 

 
length is −∞. When there are no negafve weight cycles, the shortest path between any two nodes in n-
node graph contains n−1 edges. 
 

Let dist
l
[u] be the length of the shortest path from source node v to the node u under the constraint 

that the shortest path contains at most l edges. The dist
1
[u]=cost[v,u+, for 1≤u≤n. As we discussed earlier, 

if there is no negative weight cycle then the shortest path contains atmostn−1 edges. Hence, dist
n-1

[u] in 

the length of the shortest path from v to u. Our goal is to compute dist
n-1

[u] and this can be done by using 
Dynamic programming approach. We can make the following observations 
 

(i) If the shortest path from v to u with at most k, k>1 edges has no more than k−1 edges, then 
dist

k
[u]= dist

k-1
[u]. 

(ii) If the shortest path from v to u with at most k, k>1 edges has exactly k edges, then it is made up 
 

of a shortest path from v to some vertex j followed by edge<j, u>. The path from v to j has k−1 
edges and its length is dist

k-1
[j]. All vertices i such that <i, u>E are the candidates of j. Since we 

are interested in a shortest path, the i that minimizes dist
k-1

[i]=cost[i,u] is the correct value for j. 

Dist
k
[u]= dist k -1[u], min dist k 1i cos ti,u 

min  i,u E 

 
The Bellman ford algorithm is presented in Algorithm 7.6.  
 

 

AlgorithmBELLMAN FORD(v,cost,dist,n) 
 
//v is the source, cost is the adjacency matrix representing the cost of edges, dist stores the distance to all 
nodes, n is the number of nodes// 
 
{ 
 
1 for(i=1;i<=n; i++) 
 
2   dist[i]=cost[v][i]; 
 
3   for(k=2; k<= n-1; k++){ 
 
4for each u such that k ≠ v and (j, u)E 
 
5 if(dist[u]>dist[j]+cost[j][u]) 
 
6 dist[u]=dist[j]+cost[j][u]; 
 
7 }//end for k 
 
}  
 
Algorithm 7.6 Bellman FordAlgorithm. 
 
 
 
The Bellman ford algorithm starts with computing the path from source to each node i in v. Since there are 
n nodes in a graph, the path to any node can contain atmostn-1 nodes. Then for each node u, remaining n-

2 nodes are required to be examined. If <j, u>E then the condition dist[u] is compared 



 
 

 
with dist[j] + cost[j][u]. If dist[u] is greater than dist[j]+dist[j][u] then dist[u] is updated to dist[j]+cost[j][u]. 

 

Let us consider the example network shown in Fig. 7.12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The example graph and its adjacency matric 

 
The time complexity of Bellman ford algorithm is O(ne). The lines 1-2 takes O(n) time. If the matrix is 
stored in an adjacency list then lines 4-6 takes O(e) time. Hence, the lines 3-7 takes O(ne) time. Therefore, 
the several time of Bellman ford algorithm is O(ne).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stepwise working procedure of Bellman Ford Algorithm 



 
 
 
 

 

Assembly Line Scheduling  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assembly lines for automobile manufacturing factory 
 
 
 
An automobile company has two assembly lines as shown in Fig.7.13.The automobile chassis enters an 
assembly line and goes through all stations of the assembly line and complete auto exists at the end of the 

assembly line. Each assembly line has n stations and the j
th

 station of i
th

 line is denoted as Sij. The time 

required at station Sij is aij and the time required to travel from one station to the next station is 
negligible. Normally, the chassis enters in a line goes through all the stations of the same line. However, in 
overload situations, the factory manager has the flexibility to switch partially completed auto from a 
station of one line to the next station of other line. The time required to transfer the partially completed 

auto from station Sij to the other line is tij; where i=1,2 and j=1,2…n-1. Now the objective to choose some 
station from line 1 and some station from line 2 so that the total time to manufacture an auto can be 
minimized. 
 

If there are many stations in the assembly lines the brute force search takes much time to determine 

the stations through which the auto can be assembled. There are 2
n
 possible ways to chose stations from 

the assembly line. Thus determining the fastest way for assembling the auto takes O(2
n
) time, which is 

infeasible when n is large. This problem can be efficiently solved by dynamic programming technique. 

 
The first step of dynamic programming technique is to characterize the structure of an optimal 

solution. Since, there are 2 assembly lines with stations in each line, the computation of time to move to 

the 1
st

 station of any assembly line is straight forward. However, there are two choices for j=2,3… n in 

each assembly line. First, the chassis may come from station S1,j-1 and then directly move to S1,j since the 
time to move from one station to the next station in the same assembly line is negligible. The second 

choice is the chassis can come from station S2,j-1 and then been transferred to station S1,j with a transfer 

time t2,j-1. Let the fastest way through station S1,j is through station S1,j-1. Then there must be a fastest 

way through from the starting point through station S1,j-1. Similarly, if there is a fastest way through 

station S2,j-1 then the chassis must have taken a fastest way from the starting point through station S2,j-1. 



 
 

 
Thus the optimal solution to the problem can be found by solving optimal solution of the sub-problems 

that in the fastest way to either S1,j-1 or S2,j-1. This is referred as optimal structure of assembly line 
scheduling problem. 
 

If we find the fastest way to solve assembly line scheduling problem through station j-1 on either line 

1 or line 2. Thus the fastest way through station S1,j is either 
 

 the fastest way to S1, j-1 and then directly through station S1,j.
 the fastest way to S2,j-1 and a transfer from line 2 to line 1 and then through station S1,j. 

Similarly, the fastest way through station S2,j is


 the fastest way to S2,j-1 and then directly through station S2,j.
 the fastest way to S1,j-1, a transfer time from station 1. 

Let fi[j] be the fastest possible time to get a chassis from the starting point through station Si,j of the 
assembly line i. Then chassis directly goes to the first station of each line. 
 

f1 1  e1   a1,1 
 

f 2 1  e2   a2,1 
 

Now, we can compute fi[j], 2<j≤n and 1≤i≤2 as 
 

f1[j]=min{f1[j-1] + a1,j, f2[j-1] + t2,j-1 + a1,j } 
 

f2[j]=min{f2[j-1] + a2,j, f1[j-1] + t1,j-1 + a2,j } 
 
If the chassis goes all the way through station n either line 1 or line 2 and then exits, we have 
 

f1n

e1  a1,1  if n  1 

min f1 n 1  a1,n , f2 n 1 t2,n1 , a1,n Otherwise 

f2 n

e2  a1,1  if n  1 

min f2 n 1  a2,n , f1n 1 t1,n1 , a1,n  Otherwise  
Let the fastest time to get the chassis all the way through the factory is denoted by f

*
. Then 

 

f
*
= min{f1[n] + x1, f2[n] + x2 } 

 
Now, we can compute the stations through which the chassis must move to deliver the end product at 

minimum time. This can be calculated with a backward approach. Let l
*
 denote the line whose station n is 

used in a fastest way through the entire process. If f1[n] + x1<f2[n] + x2 then l
*
=1 else l

*
=2. Then let us 

denote li[j] be the line number 1 or 2 whose station j-1 is used in a fastest way through station Si,j. li[1] is 

not required to be calculated since there is no station proceeding to station Si,1. 
 

If f1[j-1] + a1,j ≤f2[j-1]+t2,j-1 + a1,j then l1[j]=1.Otherwise, l1[j]=2. Similarly, if f2[j-1]+ a2,j≤ f1[j-1]+t1,j-1 + 

a2,j then l2[j]=2. Otherwise, l2[j]=1. The algorithm for assembly line scheduling problem is presented in 
Algorithm7.7. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Illustration of assembly line scheduling procedure. 

 
 
 

f1[1] = e1 + a1,1 = 2 + 4 = 6 f2[1] = e2 + a2,1 = 3 + 7 = 10 

f1[2] = min{f1[1] + a1,2, f2[1] + t2,1 + a1,2 } 
 

= min{6 + 7, 10 + 2 + 7} =13 
 

f2[2] = min{f2[1] + a2,2, f1[1] + t1,1 + a2,2 } 
 

= min{10 + 2, 6 + 2 + 2} =10 
 
 
 
The time required at all the stations of both theassembly lines are shown above. The minimum time 
required to assemble an auto is 33. The assembly lines through which the complete auto is assembled is 
shown above. 
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Lecture – 21 Disjoint Set Data Structure 
 
In computing, a disjoint-set data structure, also called a union–find data structure or merge– 

find set, is a data structure that keeps track of a set of elements partitioned into a number of 

disjoint (non-overlapping) subsets. 
 
It supports the following useful operations: 

 

 Find: Determine which subset a particular element is in. Find typically returns an item 

from this set that serves as its "representative"; by comparing the result of


two Find operations, one can determine whether two elements are in the same subset. 


 Union: Join two subsets into a single subset.


 Make Set, which makes a set containing only a given element (a singleton), is generally 

trivial. With these three operations, many practical partitioning problems can be solved.
 
In order to define these operations more precisely, some way of representing the sets is needed. 

One common approach is to select a fixed element of each set, called its representative, to 

represent the set as a whole. Then, Find(x) returns the representative of the set that x belongs to, 

and Union takes two set representatives as its arguments. 
 
Example :  
 
 

 

Make Set creates 8 singletons.  
 
 

 

After some operations of Union, some sets are grouped together. 
 
Applications : 
 

 partitioning of a set


 Boost Graph Library to implement its Incremental Connected Components functionality.


 implementing Kruskal's algorithm to find the minimum spanning tree of a graph.
 

• Determine the connected components of an undirected graph. 
 

CONNECTED-COMPONENTS(G)  
1. for each vertex vÎV[G]  
2. do MAKE-SET(v)  
3. for each edge (u,v) ÎE[G]  
4. doif FIND-SET(u) ¹ FIND-SET(v)  
5. then UNION(u,v) 

 
 
 
SAME-COMPONENT(u,v) 

1. if FIND-SET(u)=FIND-SET(v)  
2. thenreturn TRUE  
3. elsereturn FALSE 



 
 
 
 

 

Lecture 22 - Disjoint Set Operations, Linked list Representation 
 

• A disjoint-set is a collection ={S1, S2,…, S k} of distinct dynamic sets. 
 

• Each set is identified by a member of the set, called representative. 
 
Disjoint set operations 
 

– MAKE-SET(x): create a new set with only x. assume x is not already in some 

other set. 
 

– UNION(x,y): combine the two sets containing x and y into one new set. A new 

representative is selected. 
 

–   FIND-SET(x): return the representative of the set containing x. 
 
Linked list Representation 
 

• Each set as a linked-list, with head and tail, and each node contains value, next node 

pointer and back-to-representative pointer. 
 

• Example: 
 

• MAKE-SET costs O(1): just create a single element list. 
 

• FIND-SET costs O(1): just return back-to-representative pointer.  



 
 

 

UNION Implementation 
 

• A simple implementation: UNION(x,y) just appends x to the end of y, updates all back-to-
representative pointers in x to the head of y. 

 
• Each UNION takes time linear in the x’s length. 

 
• Suppose n MAKE-SET(xi) operations (O(1) each) followed by n-1 UNION 

 
–UNION(x1, x2), O(1), 

 
–   UNION(x2, x3), O(2), 

 
–   ….. 

 
–   UNION(xn-1, xn), O(n-1) 

 
• The UNIONs cost 1+2+…+  n-1=(n

2
) 

 

So 2n-1 operations cost (n
2
), average (n) each 

 

 

Lecture 23 - Disjoint Forests  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
• Three operations 

 
–   MAKE-SET(x): create a tree containing x.  O(1) 

 
– FIND-SET(x): follow the chain of parent pointers until to the root. O(height of x’s 

tree) 
 

–   UNION(x,y): let the root of one tree point to the root of the other.  O(1) 
 

• It is possible that n-1 UNIONs results in a tree of height n-1. (just a linear chain of n 
nodes). 

 
• So n FIND-SET operations will cost O(n

2
). 



 
 
 

Union by Rank & Path Compression 
 

• Union by Rank: Each node is associated with a rank, which is the upper bound on the 
height of the node (i.e., the height of subtree rooted at the node), then when UNION, let 
the root with smaller rank point to the root with larger rank. 

 
• Path Compression: used in FIND-SET(x) operation, make each node in the path from x 

to the root directly point to the root. Thus reduce the tree height.  



 
 
 

Lecture 24 - Graph Algorithm - BFS and DFS 
 
In graph theory, breadth-first search (BFS) is a strategy for searching in a graph when search is 
limited to essentially two operations: 
(a) visit and inspect a node of a graph;  
(b) gain access to visit the nodes that neighbor the currently visited node. 
 

 The BFS begins at a root node and inspects all the neighboring nodes.
 Then for each of those neighbor nodes in turn, it inspects their neighbor nodes which were 

unvisited, and so on.
 Compare BFS with the equivalent, but more memory-efficient.

 
Historical Background 
 

 BFS was invented in the late 1950s by E. F. Moore, who used to find the shortest path out 
of a maze,

 discovered independently by C. Y. Lee as a wire routing algorithm (published 1961).
 
Example  
 
 
 
 
 
 
 
 
 
A BFS search will visit the nodes in the following order: A, B, C, E, D, F, G 
 
BFS Algorithm 
 
The algorithm uses a queue data structure to store intermediate results as it traverses the graph, 

as follows: 

 
1. Enqueue the root node 

 
2. Dequeue a node and examine it  

 If the element sought is found in this node, quit the search and return a result.
 Otherwise enqueue any successors (the direct child nodes) that have not yet 

been discovered.


3. If the queue is empty, every node on the graph has been examined – quit the search 

and return "not found". 
 

4. If the queue is not empty, repeat from Step 2. 



 
 

 

Applications 
 
Breadth-first search can be used to solve many problems in graph theory, for example: 

 
 Copying Collection, Cheney's algorithm

 Finding the shortest path between two nodes u and v (with path length measured by 

number of edges)

 Testing a graph for bipartiteness


 (Reverse) Cuthill–McKee mesh numbering


 Ford–Fulkerson method for computing the maximum flow in a flow network

 Serialization/Deserialization of a binary tree vs serialization in sorted order, allows the 

tree to be re-constructed in an efficient manner.

 
Pseudo Code 

 
Input: A graph G and a root v of G  
 
1 procedure BFS(G,v) is 
 
2 create a queue Q 
 
3 create a set V 
 
4 add v to V  
5 enqueuev onto Q  
6 whileQ is not empty loop 
 
7 t ← Q.dequeue()  
8 ift is what we are looking for then 
 
9 returnt 
 
10 end if 
 
11 for all edges e in G.adjacentEdges(t) loop 
 
12 u ← G.adjacentVertex(t,e)  
13 ifu is not in Vthen 
 
14 add u to V 

15 enqueueu onto Q  
16 end if 
 
17 end loop 
 
18 end loop 
 
19 return none  
20 end BFS 



 
 
 
 
 
Time and space complexity  
 
The time complexity can be expressed as   [3] since every vertex and every edge will    

be explored in the worst case. Note: 
   

may vary between 
     

and 
   

, depending  

 

 

  

  

   

 

 

       

on how sparse the input graph is.                
 
When the number of vertices in the graph is known ahead of time, and additional data structures are 

used to determine which vertices have already been added to the queue, the space complexity can 
 
be expressed as  where  is the cardinality of the set of vertices. If the graph is   
represented by an Adjacency list it occupies [4] space in memory, while anAdjacency   
matrix representation occupies .   
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data 
structures. One starts at the root(selecting some arbitrary node as the root in the case of a 
graph) and explores as far as possible along each branch beforebacktracking. 
 
Historical Background 
A version of depth-first search was investigated in the 19th century by French mathematician  
Charles Pierre Trémaux 
 
Example  
 
 
 
 
 
 
 
 
 
 
 
A DFS search will visit the nodes in the following order: A, B, D, F, E, C, G 
 
Pseudo Code 
 
Input: A graph G and a vertex v of G 
 
Output: All vertices reachable from v labeled as discovered 
 
A recursive implementation of DFS  

 
1 procedure DFS(G,v): 
 
2 label v as discovered  
3 for all edges from v to winG.adjacentEdges(v) do 
 
4 if vertex w is not labeled as discovered then   
5 recursively call DFS(G,w)  



 
 

 
A non-recursive implementation of DFS  

 
1 procedure DFS-iterative(G,v): 
 
2 let S be a stack  
3 S.push(v)  
4 whileS is not empty 
 
5 v ← S.pop()  
6 ifv is not labeled as discovered: 
 
7 label v as discovered 

8 for all edges from v to winG.adjacentEdges(v) do 

9 S.push(w)  
 
Applications 

 
 Finding connected components.


 Topological sorting.


 Finding the bridges of a graph.


 Generating words in order to plot the Limit Set of a Group.


 Finding strongly connected components.


 Planarity testing


 Solving puzzles with only one solution, such as mazes. (DFS can be adapted to find 

all solutions to a maze by only including nodes on the current path in the visited set.)

 Maze generation may use a randomized depth-first search.


 Finding bi-connectivity in graphs.



·   


