Unit-V
Exception Handling

Exception Hierarchy:

(.]4— library
java
L lang J‘i Package
f obj ect }: Super Class
P \ 4
Throwable]*\Super Class

¥ —:

!) class
Excepion
[Error]

\ 4

y
[User -Defined Exceptions] [Buj'n Exceptions]

[Checked Exception] [UnChecked Exception]

A\ 4

[Virtual Machine Error] [Comoiletime] [Lmiml Error][Linkaae Error]

Java: JAVA AP is a library contains the packages. These were developed by the JavaSoft
people of Sun MicroSystems Inc. used to import the classes in developing the programs.

Lang: lang is apackage included in javalibrary. And it is considered as a default package named
as language. Implicitly it isimported into every java programs.

Object: Object is a super class of all classes(user defined, pre-defined classes) directly or
indirectly. Becauseit isincluded in the lang package.

Throwable: Throwable is super class of errors and exceptions in java. Throwable is deriving
from the object class.

Error: Error isaclass. Thisis not handled. We known the error in program after the compilation
denoted by the java compiler. Always these were detected at compile time.

An error in aprogram is called bug. Removing errors from program is called debugging. There
are basically three types of errorsin the Java program:

» Compile time errors. Errors which occur due to syntax or format is called compile
time errors. These errors are detected by java compiler at compilation time. Desk
checking issolution for compile-time errors.

Example:
import java.io.*;
class Compile
{
static public void main(String args[])
{
System.out.printin("hello")
}

}
Output:

Compile.java:16 °;” expected
System.out.printin("hello")~

1 error

» Logica errors: These are the errors that occur due to bad logic in the program. These
errors are rectified by comparing the outputs of the program manually.

Example:

class Salary

{

public static void main(String argg[])

{
double sal=5000.00;

sal=sal* 15/100; //use:sal+=sal* 15/100;
System.out.printIn("incremented salary:"+sal);

}

}
Output: java Sdlary

Incremented salary: 750.0
Exception: An abnormal event in aprogram is called Exception.

» Exception may occur at compile time or at runtime.
> Exceptions which occur at compile time are called Checked exceptions.

Checked Exceptions:

» A checked exception is any subclass of Exception (or Exception itself), excluding class
RuntimeException and its subclasses.

» You should compulsorily handle the checked exceptions in your code, otherwise your
code will not be compiled. i.e you should put the code which may cause checked
exception in try block. "checked" means they will be checked at compiletime itself.

» There aretwo ways to handle checked exceptions. Y ou may declare the exception using
athrows clause or you may use the try..catch block.

» The most perfect example of Checked Exceptions is I0OException which should be
handled in your code Compulsorily or else your Code will throw a Compilation Error.

e.g.: ClassNotFoundException, NoSuchM ethodException, NoSuchFieldException etc
import java.io.*;
class Sample

{
void accept() throws |OException

{

BufferedReader br=new BufferedReader (new InputStreamReader(System.in));
System.out.print ("enter ur name: ");
String name=Dbr.readLine ();

System.out.println ("Hai "+name);

}
}

http://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html

class ExceptionNotHandle

{

public static void main (String args[])

{

Sample s=new Sample ();

s.accept ();

}
}

Output: javac ExceptionNotHandle.java

ExceptionNotHandle.java:16: unreported exception javaio.lOException must be caught or
declared to be thrown

s.accept();”

1 error

>

Exceptions which occur at run time are called Unchecked exceptions.

Unchecked Exceptions:

>

>
>
>

Unchecked exceptions are RuntimeException and any of its subclasses. Class Error and
its subclasses a so are unchecked.

Unchecked runtime exceptions represent conditions that, generally speaking, reflect
errorsin your program's logic and cannot be reasonably recovered from at run time.

With an unchecked exception, however, compiler doesn't force client programmers
either to catch the exception or declareit in athrows clause.

The most Common examples are ArraylndexOutOf BoundException,
NUIIPointerException ,ClassCastException

eg: ArraylndexOutOf BoundsException, ArithmeticException, NumberFormatException etc.

Example:

public class V

{

static public void main(String args[])

{

int d[]={1,2};

http://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ClassCastException.html

d[3]=99;

int a=5,b=0,c;

c=alb;
System.out.printin("cis:"+c);
System.out.printin("okay");

}

}
Output:

Exception in thread “main” java.lang. Arraylnde xOutOfBoundsException: 3
At V.main (V.java6)
Concepts of Exception Handling:

exception is an abnormal condition that arises during the execution of a program that disrupts the
normal flow of execution.

Error: When a dynamic linking failure or some other “hard” failure in the virtual machine occurs,
the virtual machine throws an Error.

Java exception handling is managed via by five keywords: try, catch, throw, throws, finally.

Try: Thetry block is said to govern the statements enclosed within it and defines the scope of
any exception associated with it. It detects the exceptions.

Catch: The catch block contains a series of legal Java statements. These statements are executed
if and when the exception handler isinvoked. It holds an exception.

Throw: To manually throw an exception ,use the keyword throw.

Throws: Any exception that is thrown out of a method must be specified as such by athrows
clause.

Finally: Any code that absolutely must be executed after atry block completesis put in afinally
block. After the exception handler has run, the runtime system passes control to the finally block.

General form of an exception handling:
try
{

//block of code to monitor for errors

}
catch(ExceptionType exOb)

{
Ilexception handler for ExceptionType

}

..
finally
{

/Iblock of code to be executed after try block ends
}

Example:
public class ExceptionDemo

{
public static void main(String argg])throws |OException

{
int subject[]={12,23,34,21};
try
{
System.out.printin(subject[2]);
System.out.printin("not okay");

}
catch(ArraylndexOutOf BoundException €)

{

System.out.printin("i caught the exception:"+e);

throw €

}
finally

{
System.out.printin("okay");

}
}

}
Output:

34

Not Okay

okay

Benefits of Exception Handling:

» Firgt, it allows you to fix the error.
» Second, it prevents the program from automatically terminating.
» Third, it adopts the robustness to program.

Termination or Resumptive Models:

The first question that arises, is how or, in particular, where to indicate resumption. Basically,
there are only two possibilities:

Firstly, the decision whether to resume or notcan be made at the raising point, i.e. by the raise
statement itself. Thisimplies that a language would have to offer two different raise statements:
one for the termination model and another one for resumption, i.e. where the handler aways
“returns” and resumes execution at the raising point.

The main advantage of this possibility is, that there is no doubt about the continuation of the
control flow. In particular, it is already known in the raising context, whether a handler will
resume or not.

But isthisfeasible?

Usually only after having tried to cure the cause of an exception, we can say, whether the attempt
was successful or not. Therefore, only the handler of an exception can decide, whether it could

cure the cause for an exception or not. this knowledge is essential, because resumption only
makes sense with the motivation to cure the cause for the exception before resuming normal
execution.

Therefore, we suggest, that the respective handler should indicate, whether to terminate or to
resume.

public void a() {

try { b(); }

catch (Exceptionlel) { }

catch (Exception2 €2) {

[* Try to cure the cause. */

if (error_is_curable)

resume new Solution("the solution");
else{ /*Clean up and proceed*
aswith termination./ } }

public void b () throws Exception2 {

Fig. 1. A simple resumption scenario demonstrating the new syntax.

Eub'l_ic e ool o £ D =aaks 1 E5 e i A T [D

e e e — 1l o o=
Bl T e e R e e e e 0 T e = B BT
- s el T e e s e e e R L e e e

e Il el

a:.’-..’;;si::.,:;—/’h .:1_1_)-5:"-
tial:/a—d-’y/r;‘!..i&’},{ -

Sy S, i ey)
— e i

Origimal Tyt —_——Y— T ranstformed Code

Figg . =2 Skoctol of thhe hbasic transformationmn of & = re— s comr e = ConStrinct
by The procommpyilaer.

Usage of try, catch, throw, throws, finally:

To guard against and handle a run-time error, simply enclose the code that you want to monitor
inside a try block. Immediately following the try block, include a catch clause that specifies the
exception type that you wish to catch. To illustrate how easily this can be done, the following
program includes a try block and a catch clause that processes the ArithmeticException
generated by the division-by-zero error:

class Exc2 {

public static void main(String argy[]) {

intd, &

try { // monitor ablock of code.

d=0;

a=42/d;

System.out.printin(" This will not be printed.");
} catch (ArithmeticException €) { // catch divide-by-zero error
System.out.printin("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output:
Division by zero.
After catch statement.

Notice that the call to printin() inside the try block is never executed. Once an exceptionis
thrown, program control transfers out of the try block into the catch block. Put differently, catch
is not “called,” so execution never “returns” to the try block from a catch. Thus, the line “This
will not be printed.” is not displayed. Once the catch statement has executed, program control
continues with the next line in the program following the entire try/catch mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to those
statements specified by the immediately preceding try statement. A catch statement cannot catch
an exception thrown by another try statement (except in the case of nested try statements,
described shortly).

Note: The statements that are protected by try must be surrounded by curly braces. (That is, they
must be within ablock.) Y ou cannot use try on a single statement.

The goa of most well-constructed catch clauses should be to resolve the exceptional condition
and then continue on as if the error had never happened. For example, in the next program each
iteration of the for loop obtains two random integers. Those two integers are divided by each
other, and the result is used to divide the value 12345. The final result is put into a. If ether
division operation causes a divide-by-zero error, it is caught, the value of ais set to zero, and the
program continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError {

public static void main(String argg[]) {
int a=0, b=0, c=0;

Random r = new Random();

for(int i=0; 1<32000; i++) {

try {

b = r.nextint();

¢ = r.nextint();

a=12345/ (blc);

} catch (ArithmeticException €) {
System.out.printin("Division by zero.");
a=0; // set ato zero and continue

}

System.out.printin("a " + a);

}

}

}

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a string
containing a description of the exception. You can display this description in a printin()

statement by simply passing the exception as an argument. For example, the catch block in the
preceding program can be rewritten like this:

catch (ArithmeticException €) {
System.out.printin("Exception: " + €);
a=0; // set ato zero and continue

}

When this version is substituted in the program, and the program is run, each divide-by-zero
error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of an
exception is valuable in other circumstances—particularly when you are experimenting with
exceptions or when you are debugging.

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To handle this
type of situation, you can specify two or more catch clauses, each catching a different type of
exception. When an exception is thrown, each catch statement is inspected in order, and the first
one whose type matches that of the exception is executed. After one catch statement executes,
the others are bypassed, and execution continues after the try/catch block. The following
example traps two different exception types:

/I Demonstrate multiple catch statements.
class MultiCatch {

public static void main(String argy[]) {
try {

int a= args.length;

System.out.printin("a=" + a);

intbh=42/4a;
intcf] ={1};
c[42] = 99;

} catch(ArithmeticException e) {
System.out.printin("Divide by O: " + €);
} catch(ArraylndexOutOf BoundsException €) {

System.out.printin("Array index oob: " + €);

}
System.out.printin("After try/catch blocks.");
}
}

This program will cause a division-by-zero exception if it is started with no command-line
arguments, since a will equal zero. It will survive the division if you provide a command-line
argument, setting a to something larger than zero. But it will cause an
ArraylndexOutOfBoundsException, since the int array ¢ has a length of 1, yet the program
attemptsto assign avalueto c[42].

Hereisthe output generated by running it both ways:

C:\>java MultiCatch

a=0

Divide by O: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch TestArg

a=1

Array index oob: java.lang.ArraylndexOutOf BoundsException:42
After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception subclasses
must come before any of their superclasses. This is because a catch statement that uses a
superclass will catch exceptions of that type plus any of its subclasses.

Thus, a subclass would never be reached if it came after its superclass. Further, in Java,
unreachable code is an error. For example, consider the following program:

[* This program contains an error. A subclass must come before its superclassin a series of catch
statements. If not, unreachable code will be created and a compile-time error will result.*/

class SuperSubCatch {

public static void main(String args]) {
try {

inta=0;

inth=42/a

} catch(Exception €) {

System.out.printIn(" Generic Exception catch.");

}

[* This catch is never reached because
ArithmeticException is a subclass of Exception. */
catch(ArithmeticException €) { // ERROR - unreachable

System.out.printin("Thisis never reached.");

}
}
}

If you try to compile this program, you will receive an error message stating that the second
catch statement is unreachable because the exception has aready been caught. Since
ArithmeticException is a subclass of Exception, the first catch statement will handle all
Exception-based errors, including ArithmeticException. This means that the second catch
statement will never execute. To fix the problem, reverse the order of the catch statements.

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of another try.
Each time a try statement is entered, the context of that exception is pushed on the stack. If an
inner try statement does not have a catch handler for a particular exception, the stack is unwound
and the next try statement’s catch handlers are inspected for a match. This continues until one of
the catch statements succeeds, or until al of the nested try statements are exhausted.

If no catch statement matches, then the Java run-time system will handle the exception. Here is
an example that uses nested try statements:

/I An example of nested try statements.
class NestTry {

public static void main(String argq[]) {

try {

int a= args.length;

/* 1f no command-line args are present,
the following statement will generate

adivide-by-zero exception. */

intb=42/&

System.out.printin("a=" + a);

try { // nested try block

[* 1f one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */
if(e==1) a=al(a-a); // division by zero

[* 1f two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

intcf] ={ 1};

c[42] = 99; // generate an out-of-bounds exception
}

} catch(ArraylndexOutOf BoundsException €) {
System.out.printin("Array index out-of-bounds: " + €);
}

} catch(ArithmeticException €) {
System.out.printin("Divide by O: " + €);

}

}

}

As you can see, this program nests one try block within another. The program works as
follows.When you execute the program with no command-line arguments, a divide-by-zero
exception is generated by the outer try block. Execution of the program with one command-line
argument generates a divide-by-zero exception from within the nested try block. Since the inner
block does not catch this exception, it is passed on to the outer try block, where it is handled. If
you execute the program with two command-line arguments, an array boundary exception is
generated from within the inner try block. Here are sample runs that illustrate each case:

C:\>javaNestTry

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>javaNestTry One

a=1

Divide by O: java.lang.ArithmeticException: / by zero

C:\>javaNestTry One Two

a=2

Array index out-of-bounds:

javalang.ArraylndexOutOf BoundsException:42

Nesting of try statements can occur in less obvious ways when method calls are involved.

For example, you can enclose a call to a method within atry block. Inside that method is another
try statement. In this case, the try within the method is still nested inside the outer try block,
which calls the method. Here is the previous program recoded so that the nested try block is
moved inside the method nesttry():

[* Try statements can be implicitly nested via
callsto methods. */

class MethNestTry {

static void nesttry(int a) {

try { // nested try block

[* 1f one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */
if(e==1) a=dal(a-a); // division by zero

[* 1f two command-line args are used,

then generate an out-of-bounds exception. */
if(a==2) {

intcf] ={ 1};

c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArraylndexOutOf BoundsException €) {

System.out.printin("Array index out-of-bounds: " + €);

}

}

public static void main(String argy[]) {
try {

int a= args.length;

/* 1f no command-line args are present,
the following statement will generate
adivide-by-zero exception. */
intb=42/&

System.out.printin("fa=" + a);
nesttry(a);

} catch(ArithmeticException €) {
System.out.printin("Divide by 0. " + €);

}
}

}
The output of this program isidentical to that of the preceding example.

throw

So far, you have only been catching exceptions that are thrown by the Java run-time system.
However, it is possible for your program to throw an exception explicitly, using the throw
statement. The genera form of throw is shown here:

throw Throwabl el nstance:

Here, Throwablelnstance must be an object of type Throwable or a subclass of Throwable.
Primitive types, such asint or char, as well as non-Throwable classes, such as String and Object,
cannot be used as exceptions.

There are two ways you can obtain a Throwabl e object:

» using aparameter in a catch clause,
» or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent statements
are not executed. The nearest enclosing try block is inspected to see if it has a catch statement
that matches the type of exception. If it does find a match, control is transferred to that statement.
If not, then the next enclosing try statement is inspected, and so on. If no matching catch is
found, then the default exception handler halts the program and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that catches the
exception rethrows it to the outer handler.

/I Demonstrate throw.

class ThrowDemo {

static void demoproc() {

try {

throw new NullPointerException("demao");

} catch(NullPointerException €) {
System.out.printIn(" Caught inside demoproc.");

throw €; // rethrow the exception

}

}

public static void main(String argd[]) {
try {

demoproc();

} catch(NullPointerException €) {
System.out.printin("Recaught: " + €);
}

}

}

This program gets two chances to deal with the same error. First, main() sets up an exception
context and then calls demoproc(). The demoproc()method then sets up another exception-
handling context and immediately throws a new instance of NullPointerException, which is
caught on the next line. The exception is then rethrown. Here is the resulting output:

Caught inside demoproc.

Recaught: javalang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay close
attention to thisline:

throw new Null PointerException("demao");

Here, new is used to construct an instance of NullPointerException. Many of Java’s built- in run-
time exceptions have at least two constructors. one with no parameter and one that takes a string
parameter. When the second form is used, the argument specifies a string that describes the
exception. This string is displayed when the object is used as an argument to print() or printin().
It can also be obtained by a call to getMessage(), which is defined by Throwable.

throws

If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You do this
by including a throws clause in the method’s declaration. A throws clause lists the types of
exceptions that a method might throw. This is necessary for all exceptions, except those of type
Error or RuntimeException, or any of their subclasses. All other exceptions that a method can
throw must be declared in the throws clause. If they are not, a compile-time error will result.

Thisisthe genera form of a method declaration that includes a throws clause:
type method-name(parameter-list) throws exception-list

{
// body of method

}

Here, exception-list is a commarseparated list of the exceptions that a method can throw.
Following is an example of an incorrect program that tries to throw an exception that it does not
catch. Because the program does not specify athrows clause to declare this fact, the program will
not compile.

/I This program contains an error and will not compile.
class ThrowsDemo {

static void throwOne() {

System.out.printIn(*Inside throwOne.");

throw new |llegal AccessException("demo");

}

public static void main(String argd[]) {

throwOne();

}

}

To make this example compile, you need to make two changes.

» First, you need to declare that throwOne() throws Illegal AccessException.
» Second, main() must define atry/catch statement that catches this exception.

The corrected example is shown here:

/I Thisisnow correct.

class ThrowsDemo {

static void throwOne() throws Illegal A ccessException {
System.out.printIn("Inside throwOne.");

throw new Illegal A ccessException("demao™);

}
public static void main(String argy[]) {

try {

throwOne();

} catch (I1legal AccessException €) {
System.out.printin("Caught " + €);

}

}

}

Hereis the output generated by running this example program:
inside throwOne

caught java.lang.lllegal A ccessException: demo

finally

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path that
aters the normal flow through the method. Depending upon how the method is coded, it is even
possible for an exception to cause the method to return prematurely. This could be a problem in
some methods. For example, if amethod opens afile upon entry and closes it upon exit, then you
will not want the code that closes the file to be bypassed by the exception-handling mechanism.
The finally keyword is designed to address this contingency.

finaly creates a block of code that will be executed after a try/catch block has completed
and before the code following the try/catch block.

The finally block will execute whether or not an exception is thrown. If an exception is
thrown, the finally block will execute even if no catch statement matches the exception.
Any time a method is about to return to the caler from inside a try/catch block, via an
uncaught exception or an explicit return statement, the finally clause is also executed just
before the method returns.

This can be useful for closing file handles and freeing up any other resources that might
have been allocated at the beginning of a method with the intent of disposing of them
before returning.

Thefinally clause is optional. However, each try statement requires at least one catch or a
finally clause.

Here is an example program that shows three methods that exit in various ways, none without
executing their finally clauses:

// Demonstrate finally.

class FinallyDemo {

/I Through an exception out of the method.

static void procA() {

try {

System.out.printin("inside procA");

throw new RuntimeException("demao");

} finally {

System.out.printIn("procA's finally");

}
}

I/l Return from within atry block.

static void procB() {

try {

System.out.printin("inside procB");

return;

} finally {

System.out.printin("procB's finally");

}

}
/I Execute atry block normally.

static void procC() {

try {

System.out.printin("inside procC");

} finaly {
System.out.printin("procC's finally");
}

}

public static void main(String args]]) {
try {

procA();

} catch (Exception €) {
System.out.printIn(" Exception caught");
}

procB();

procC();

}

}

> Inthisexample, procA() prematurely breaks out of the try by throwing an exception.

> The finally clause is executed on the way out. procB()’s try statement is exited via a
return statement.

» The finally clause is executed before procB() returns. In procC(), the try
statementexecutes normally, without error. However, the finally block is still executed.

Hereis the output generated by the preceding program:
inside procA

procA’s finally

Exception caught

inside procB
procB’s finally
inside procC
procC’s finally

NOTE: If a finally block is associated with a try, the finally block will be executed upon
conclusion of thetry.

Built in Exceptions:

Exception Meaning
ClassNotFoundException Class not found.
CloneNotSupportedException |Attempt to clone an object that does not implemert the Cloneable

interface.
IlegalAccessException Azcess to 8 class (s denied.
InstantiationException Attempt to create an object of an abstract class or interface.
InterruptedException One thread has been interrupted by another thread.
MoSuchFieldException A reguested field does not exist.

MoSuchMethodException A reguested method does not exist.

TABLE 10-2 Jave'z Checked Exceptions Defined in java.lang

Exception Meaning

ArithmeticException ‘Arithmetic error, such as divideby-zero.

Arrayindex0ut0fBoundsException 'Arra].f index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClazsCastException | Invalid cast.

EnumCanstanthotPresentException IAn gttempt is made to use &n undefined enumeration value.

llegalArgumentException Illlegal argument used to invoke a method,

llegalMonitorStateException lllegal monitor operation, such s waiting on an unlocked
thread.

llegalStateE xception Erwironment or application is in incorrect state.

llegalThreadstateException IFIE guested operation not compatible with current thread
state.

Index0ut0fBoundsException 'Snme type of index is out-of-bounds.

MNegativedrraySizeException Iﬂrraj.f created with & negative size,

NullPoirterException 'Irwalid use of & null reference.

NumberFarmatException Invalid conversion of & string to & numeric format.

SecurityException IAttempt to violate security.

Stringindex0utOfBounds IAttempt to index outside the bounds of & string,

TypehotPresentException 'Type nat found.

UnsupportedOperationException |An unsupported operation was encountered.

TABLE 10-1 Java's Unchecked RuntimeException Subclazzes Defined in java.lang

Creating own Exception Sub Classes:

Although Java’s built-in exceptions

easy to do: just define a subclass of

handle most common errors, you will probably want to
create your own exception types to handle situations specific to your applications. This is quite
Exception (which is, of course, a subclass of Throwable).
Your subclasses don’t need to actually implement anything—it is their existence in the type

system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit those
methods provided by Throwable. Thus, all exceptions, including those that you create, have the
methods defined by Throwable available to them. They are shown in Table 10-3.

Method
Throwable filllnStackTrace|)

Throwable getCause()

String getlocalizedMVessage|)
String getMessage|)

Description
Returns & Throwable object that contains & completed
stack trace. This object can be rethrown.

Returns the exception that underlies the current

exception. If there is no underlying exception, null
iz returned.

_Heturns &g localized description of the exception.

Returns @ description of the exception.

StackTraceElement] | getStackTrace|)

Throwable initCause Throwable
causebx)

void printStackTrace|)

Returns an array that cortains the stack trace, one
glement at a time, as an array of StackTraceElement.
The method at the top of the stack is the last method
called before the exception was thrown. This method
iz found in the first element of the array. The
StackTraceElement class gives your program access
to information about each element in the trace, such

gs its method name.

Asspcigtes causebxe with the invoking exception a5 a
cause of the invoking exception. Returns a reference

|to the exc eption.

Displays the stack trace.

void printStackTrace|PrintStream
stream)

Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter
stream)

void setStackTrace| StackTraceElement

Sends the stack trace to the specified stream.

ISE'LE the stack trace to the elements passed in

elements. This method is for specialized applications,
not normal use.

elements| |)

String toString[) .Heturns a String object containing & description of the
exception. This method is called by printin{)} when
outputting & Throwable object.

TABLE 10-3 The Methods Defined by Throwable

Y ou may also wish to override one or more of these methods in exception classes that you create.

Exception defines four constructors. Two were added by JDK 1.4 to support chained exceptions,
described in the next section. The other two are shown here:

Exception()
Exception(String msg)

The first form creates an exception that has no description. The second form lets you specify a
description of the exception. Although specifying a description when an exception is created is
often useful, sometimes it is better to override toString(). Here’s why: The version of toString()
defined by Throwable (and inherited by Exception) first displays the name of the exception
followed by a colon, which is then followed by your description. By overriding toString(), you

can prevent the exception name and colon from being displayed. This makes for a cleaner output,
which is desirable in some cases.

The following example declares a new subclass of Exception and then uses that subclass to
signal an error condition in a method. It overrides the toString() method, allowing a carefully
tailored description of the exception to be displayed.

/I This program creates a custom exception type.
class MyException extends Exception {

private int detail;

MyException(int a) {

detail = &

}

public String toString() {

return "MyException[" + detail +"]";

}

}

class ExceptionDemo {

static void compute(int a) throws MyException {
System.out.printin("Called compute(" + a+")");
if(a>10)

throw new MyException(a);
System.out.printin("Normal exit");

}
public static void main(String args]]) {

try {

compute(1);

compute(20);

} catch (MyException e) {

System.out.printin("Caught " + €);

}
}

}

This example defines a subclass of Exception called MyException. This subclass is quite smple:
it has only a constructor plus an overloaded toString() method that displays the value of the
exception. The ExceptionDemo class defines a method named compute() that throws a
MyException object. The exception is thrown when compute()’s integer parameter is greater
than 10. The main() method sets up an exception handler for MyException, then calls compute(
) with alegal value (less than 10) and an illegal one to show both paths through the code. Here is
the result:

Called compute(1)
Normal exit

Called compute(20)
Caught MyException[20]
Chained Exceptions

Beginning with JDK 1.4, a new feature has been incorporated into the exception
subsystem:chained exceptions.

The chained exception feature allows you to associate another exception with an exception. This
second exception describes the cause of the first exception. For example, imagine a situation in
which a method throws an ArithmeticException because of an attempt to divide by zero.
However, the actual cause of the problem was that an 1/O error occurred, which caused the
divisor to be set improperly. Although the method must certainly throw an ArithmeticException,
since that is the error that occurred, you might also want to let the calling code know that the
underlying cause was an /O error. Chained exceptions let you handle this, and any other
situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to Throwable.
The constructors are shown here:

Throwable(Throwabl e causeExc)

Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is, causeExc is
the underlying reason that an exception occurred. The second form alows you to specify a
description at the same time that you specify a cause exception. These two constructors have aso
been added to the Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and initCause().

These methods are shown in Table 10-3 and are repeated here for the sake of discussion.
Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception. If there is no
underlying exception, null is returned. The initCause() method associates causeExc with the
invoking exception and returns a reference to the exception. Thus, you can associate a cause with
an exception after the exception has been created. However, the cause exception can be set only
once. Thus, you can call initCause() only once for each exception object.

Furthermore, if the cause exception was set by a constructor, then you can’t set it again using
initCause(). In general, initCause() is used to set a cause for legacy exception classes that don’t
support the two additional constructors described earlier. Here is an example that illustrates the
mechanics of handling chained exceptions:

String Handling in Java :

The String class is defined in the java.lang package and hence isimplicitly availableto all the
programsin Java. The String classis declared as final, which means that it cannot be subclassed.
It extends the Object class and implements the Serializable, Comparable, and CharSequence
interfaces.

Java implements strings as objects of type String. A string is a sequence of characters. Unlike
most of the other languages, Javatreats a string as a single value rather than as an array of
characters.

The String objects are immutable, i.e., once an object of the String classis created, the string it
contains cannot be changed. In other words, once a String object is created, the characters that
comprise the string cannot be changed. Whenever any operation is performed on a String object,
anew String object will be created while the original contents of the object will remain
unchanged. However, at any time, a variable declared as a String reference can be changed to
point to some other String object.

Why String isimmutable in Java

Though there could be many possible answer for this question and only designer of String class
can answer this, | think below three does make sense

1) Imagine StringPool facility without making string immutable, its not possible at all becausein
case of string pool one string object/litera e.g. "Test" has referenced by many reference variables
, S0 if any one of them change the value others will be automatically gets affected i.e. lets say

String A ="Test"
String B ="Test"

Now String B called "Test".toUpperCase() which change the same object into "TEST" , so A
will aso be"TEST" which is not desirable.

2) String has been widely used as parameter for many java classes e.g. for opening network
connection you can pass hostname and port number as stirng , you can pass database URL as
string for opening database connection, you can open any file by passing name of file as
argument to File 1/O classes.

In caseif String is not immutable, thiswould lead serious security threat , | mean some one can
access to any file for which he has authorization and then can change the file name either
deliberately or accidentally and gain access of thosefile.

3) Since String isimmutable it can safely shared between many threads, which is very
important for multithreaded programming.

String V's StringBuffer and StringBuilder
String

Strings. A String represents group of characters. Strings are represented as String objects
in java

Cresating Strings:

» We can declare a String variable and directly store a String literal using assignment
operator.

String str = "Hello";
» We can create String object using new operator with some data.
String s1 = new String ("Java');
» We can create a String by using character array al so.
chararr[] = {'p','r',)o",’g’,’r’,’a’,’m’ };
» We can create a String by passing array nameto it, as.
String s2 = new String (arr);
» We can create a String by passing array name and specifying which characters we need:

String s3 = new String (str, 2, 3);

Here starting from 2™ character atotal of 3 characters are copied into String s3.

String Class M ethods:

Method

Description

Stng concal (String Sir)

il length 1)

Concatenates calling String with sir,
Mote: - also used to do the same
Returns length of a Siring

char charAd (int index)

Returns the character at specified location (from 0 |

int compareTo
{String str)

Retums a negative value if calling String 15 265 than <ir, a pogitive
value if calling String is greater than stroor 0 if Strings are equal.

boolean equals
(String sir)

Retums true if calling String equals sir.

MNote: == operator compares the references of the stong objects. Tt
does not compare the contents of the objects. aquals () method
compares the contents. While comparing the strings, equals ()
method should be used as it yields the correct result.

boolean equalslegnorneCase
{String sir)

mame a5 above but ignores the case

boolean startsWith
{ String prefix)

Returns true of calling String starts with prefix

boolean ends'With
(String suffix)

Retums true if calling String ends with suffix

int indexOf [String str)

Returns first ocourrence of strin String.

int lastindexOMi String sir)

Returns last occurranee of str in the Siring.
MNote; Both the above methods return negative value, if st oot

tound in calling String. Counting stans from 0.

Sll'-i-l!L re_[iim:e {char
oldchar, char newchar)

returns a new Siring that is obtained by mﬂlaung all characters
oldehar in String with newehar.

E.lnng auhmmg
tint begnlndex)

relums a new String consisting of all characters from I:ne-'rm[m.iﬂ
until the end of the Sering

Slring Ruhlﬁng (int

reiums 4 new String consisting of all characters from beginlndex
1| until the endIndex.

"ﬁlnng toLowerCase f}

converts all characters into lowercase

siring toUpperCase ()

converts all characters into uppercase

String trim ()

eliminates all leading and trailing spaces

String represents a sequence of characters. It has fixed length of character sequence. Once a
string object has been created than we can't change the character that comprise that string. It is
immutable. This allows String to be shared. String object can be instantiated like any other object

String str = new String ("Stanford “);

str +="Lost!!";

Accessor methods: length(), charAt(i), getBytes(), getChars(istart,iend,gtarget[] ,itargstart),
split(string,delim), toCharArray(), valueOf(g,iradix), substring(iStart [,iEndindex)]) [returns up
to but not including iEndindex]

Modifier methods. concat(g), replace(cWhich, cReplacement), toL owerCase(), toUpperCase(),
trim().

Boolean test methods: contentEquals(g), endsWith(g), equals(g), equalslgnoreCase(g),
matches(g), regionMatches(i1,g2,i3,i4), regionMatches(blgnoreCase,i1,g2,i3,i4), startsWith(g)

Integer test methods: compareTo(g) [returns O if object equals parameter, -1 if object is before
parameter in sort order, +1 if otherwise], indexOf(g) [returns position of first occurrence of
substring g in the string, -1 if not found], lastindexOf(g) [returns position of last occurrence of
substring g in the string, -1 if not found], length().

Constructorsdefined in the String class

The String class defines several constructors. The most common constructor of the String classis
the one given below:

public String(String value)

This constructor constructs a new String object initialized with the same sequence of the
characters passed as the argument. In other words, the newly created String object is the copy of
the string passed as an argument to the constructor.

Other constructors defined in the String class are as follows:

public String()

This constructor creates an empty String object. However, the use of this constructor is
unnecessary because String objects are immutable.

public String(char[] value)

This constructor creates a new String object initialized with the same sequence of characters
currently contained in the array that is passed as the argument to it.

public String(char[] value, int startindex, int len)

This constructor creates a new String object initialized with the same sequence of characters
currently contained in the subarray. This subarray is derived from the character array and the two
integer values that are passed as arguments to the constructor. The int variable startindex
represents the index value of the starting character of the subarray, and the int variable len
represents the number of characters to be used to form the new String object.

public String(StringBuffer sbf)

This constructor creates a new String object that contains the same sequence of characters
currently contained in the string buffer argument.

public String(byte]] asciichars)

The array of bytes that is passed as an argument to the constructor contains the ASCII character

set. Therefore, this array of bytesisfirst decoded using the default charset of the platform. Then
the constructor creates a new String object initialized with same sequence of characters obtained
after decoding the array.

public String(byte[] asciiChars, int startindex, int len)

This constructor creates the String object after decoding the array of bytes and by using the
subarray of bytes.

Special String Operations

Finding the length of string

The String class defines the length() method that determines the length of a string. The length of
astring is the number of characters contained in the string. The signature of the length() method
isgiven below:

public int length()

String Concatenation using the + operator

The + operator is used to concatenate two strings, producing a new String object as the result.
For example,

String sale = "500";
String s="Our daily saleis’ + sale + "dollars";
System.out.printin(s);

This code will display the string "Our daily saleis 500 dollars’.
The + operator may also be used to concatenate a string with other data types. For example,
int sale = 500;

Strings="Our daily sdleis' + sde+ "dollars";
System.out.printin(s);

This code will display the string "Our daily saleis 500 dollars’. In this case, the variable saleis
declared asint rather than String, but the output produced is the same. Thisis because the int
value contained in the variable sale is automatically converted to String type, and then the +
operator concatenates the two strings.

String Comparison

The String class defines various methods that are used to compare strings or substrings within
strings. Each of them is discussed in the following sections:

Note: Since strings are stored as a memory address, the == operator can't be used for
comparisons. Use equals() and equalslgnoreCase() to do comparisons. A simple exampleis:

equals()

The equals() method is used to check whether the Object that is passed as the argument to the
method is equal to the String object that invokes the method. It returns true if and only if the
argument is a String object that represents the same sequence of characters as represented by the
invoking object. The signature of the equals() method is as follows:

public boolean equals(Object str)

equalsignoreCase()

The equalslgnoreCase() method is used to check the equality of the two String objects without
taking into consideration the case of the characters contained in the two strings. It returns true if
the two strings are of the same length and if the corresponding characters in the two strings are
the same ignoring case. The signature of the equalslgnoreCase() method is:

public boolean equal slgnoreCase(Object str)

compareTo()

The compareTo() method is used in conditions where a Programmer wants to sort alist of strings
in a predetermined order. The compareTo() method checks whether the string passed as an
argument to the method is less than, greater than, or equal to the invoking string. A string is

considered less than another string if it comes beforeit in aphabetical order. The signature of the
compareTo() method is asfollows:

public int compareTo(String str)

where, str is the String being compared to the invoking String. The compareTo() method returns
an int value as the result of String comparison. The meaning of these values are given in the
following table:

The String class a so has the compareTolgnoreCase() method that compares two strings without
taking into consideration their case difference. The signature of the method is given below:

public int compareTolgnoreCase(String str)
regionMatches()

The regionMatches() method is used to check the equality of two string regions where the two
string regions belong to two different strings. The signature of the method is given below:

public boolean regionMatches(int startindex, String str2, int startindex2, int len)

Thereis aso an overloaded version of the method that tests the equality of the substring ignoring
the case of charactersin the substring. Its signature is given below:

public boolean regionMatches(boolean ignoreCase, int startindex, String str2, int startindex2, int
len)

In both signatures of the method, startindex specifies the starting index of the substring within
the invoking string. The str2 argument specifies the string to be compared. The startindex2
specifies the starting index of the substring within the string to be compared. The len argument
specifies the length of the substring being compared. However, in the latter signature of the
method, the comparison is done ignoring the case of the charactersin the substring only if the
ignoreCase argument is true.

startsWith()

The startsWith() method is used to check whether the invoking string starts with the same
sequence of characters as the substring passed as an argument to the method. The signature of
the method is given below:

public boolean startsWith(String prefix)

Thereis also an overloaded version of the startswith() method with the following signature:
public boolean startsWith(String prefix, int startindex)

In both signatures of the method given above, the prefix denotes the substring to be matched
within the invoking string. However, in the second version, the startindex denotes the starting

index into the invoking string at which the search operation will commence.
endswith()

The endsWith() method is used to check whether the invoking string ends with the same
sequence of characters as the substring passed as an argument to the method. The signature of
the method is given below:

public boolean endsWith(String prefix)

Modifying a String

The String objects are immutable. Therefore, it is not possible to change the original contents of
astring. However, the following String methods can be used to create a new copy of the string
with the required modification:

substring()

The substring() method creates a new string that is the substring of the string that invokes the
method. The method has two forms:

public String substring(int startindex)
public String substring(int startindex, int endindex)

where, startindex specifies the index at which the substring will begin and endindex specifies the
index at which the substring will end. In the first form where the endindex is not present, the
substring begins at startindex and runstill the end of the invoking string.

Concat()

The concat() method creates a new string after concatenating the argument string to the end of
the invoking string. The signature of the method is given below:

public String concat(String str)

replace()

The replace() method creates a new string after replacing all the occurrences of a particular
character in the string with another character. The string that invokes this method remains
unchanged. The genera form of the method is given below:

public String replace(char old_char, char new_char)

trim()

The trim() method creates a new copy of the string after removing any leading and trailing
whitespace. The signature of the method is given below:

public String trim(String str)

toUpperCase()

The toUpperCase() method creates a new copy of astring after converting all the lowercase
letters in the invoking string to uppercase. The signature of the method is given below:

public String toUpperCase()
toLowerCas«()

The toLowerCase() method creates a new copy of astring after converting all the uppercase
letters in the invoking string to lowercase. The signature of the method is given below:

public String toLowerCase()
Searching Strings

The String class defines two methods that facilitate in searching a particular character or
sequence of charactersin astring. They are asfollows:

IndexOf ()

The indexOf() method searches for the first occurrence of a character or asubstring in the
invoking string. If amatch is found, then the method returns the index at which the character or
the substring first appears. Otherwise, it returns -1.

The indexOf() method has the following signatures:

public int indexOf(int ch)

public int indexOf(int ch, int startindex)
public int indexOf(String str)

public int indexOf(String str, int startindex)

lastIndexOf ()

The lastindexOf() method searches for the last occurrence of a character or a substring in the
invoking string. If amatch isfound, then the method returns the index at which the character or
the substring last appears. Otherwise, it returns—1.

The lastindexOf() method has the following signatures:

public int lastindexOf(int ch)

public int lastindexOf (int ch, int startindex)
public int lastindexOf (String str)

public int lastindexOf (String str, int startindex)

Program : Write a program using some important methods of String class.
/[program using String class methods

class StrOps

{ public static void main(String args[])

{ String strl ="When it comesto Web programming, Javais#1.";
String str2 = new String (strl);

String str3 = "Java strings are powerful.";

int result, idx; char ch;

System.out.printin ("Length of strl: " + strl.length ());
/I display strl, one char at atime.

for(int i=0; i < strl.length(); i++)

System.out.print (strl.charAt (i));

System.out.printin ();

if (strl.equals(str2))

System.out.println ("strl equals str2");

else

System.out.println ("strl does not equal str2");

if (strl.equals(str3))

System.out.println ("strl equals str3");

else

System.out.println ("strl does not equal str3");

result = strl.compareTo (str3);

if(result == 0)

System.out.println ("strl and str3 are equa");

elseif(result < 0)

System.out.println ("strl isless than str3");

else

System.out.println ("strl is greater than str3");

str2 ="One Two Three One"; // assign anew string to str2
idx = str2.indexOf ("One");

System.out.printin ("Index of first occurrence of One: " + idx);
idx = str2.lastindexOf (" One");

System.out.printin ("Index of last occurrence of One: " + idx);

e CAWIHDOWS\system32\cnd. exe

D:sJQR> javac Strlps.java

D:vJOR>java Strlps
Length of stri: 46
ihen it comes to Webh programming, Java is #1.

strl equals ste2

strl does not equal strd

strl is greater than strd

Index of first occurrence of One: @
Index of last occurrence of One: 14

D:~JqR»>

StringBuffer

StringBuffer: StringBuffer objects are mutable, so they can be modified. The methods that
directly manipulate data of the object are available in StringBuffer class.

Cresating StringBuffer:

» We can create a StringBuffer object by using new operator and pass the string to the
object,as. StringBuffer sb = new StringBuffer ("Kiran");

» We can create a StringBuffer object by first allotting memory to the StringBuffer
object using new operator and later storing the String into it as:

StringBuffer sb = new StringBuffer (30);

In general a StringBuffer object will be created with a default capacity of 16 characters. Here,
StringBuffer object is created as an empty object with a capacity for storing 30 characters. Even
if we declare the capacity as 30, it is possible to store more than 30 charactersinto StringBuffer.

To store characters, we can use append () method as:
Sb.append (“Kiran”);

This represents growable and writeable character sequence. It is mutable in nature. StringBuffer
are safe to be used by multiple thread as they are synchronized but this brings performance
penalty.

It defines 3-constructor:

« StringBuffer(); //initial capacity of 16 characters

« StringBuffer(int size); //Theinitial size

* StringBuffer(String str);

StringBuffer str = new StringBuffer ("Stanford ");
str.append("Lost!!");

stringBuffer Class Methods:

Method Description
StnngBufTer append (x) x may be inl. Aoat, double. char, Stang or StnngBuffer. It will be
sppended to calling StringBuffer
StnngBufTer insent (int | x may be int, foat, double, char, Sinng or StringBuffer. It will be
offsel, x) mserted mio the StringBufler at offset
SmingBuffer delete (inf | Removes characters from sian o end
start, it end)
StringBufTer revene () Reverses character sequence in the StringBuffer
Stnng toStrng () Converts StnngBuffer imto a String
int length () Retums length of the StringBuifer

Program : Write a program using some important methods of StringBuffer class.
Il program using StringBuffer class methods
import javaio.*;
class Mutable
{ public static void main(String[] args) throws IOException
{ /I to accept datafrom keyboard
BufferedReader br=new BufferedReader (new InputStreamReader (System.in));
System.out.print ("Enter sur name: ");
String sur=br.readLine ();
System.out.print ("Enter mid name: ");
String mid=br.readLine ();
System.out.print ("Enter last name: ");
String last=br.readLine ();
/I create String Buffer object
StringBuffer sb=new StringBuffer ();
I append sur, last to sb
sh.append (sur);
sh.append (last);
Il insert mid after sur
int n=sur.length ();
sh.insert (n, mid);
/I display full name

System.out.printin ("Full name = "+sb);

System.out.printin ("In reverse ="+sh.reverse ());

}
}

Output:

ct CAWINDOWSsystem3?icmd .exe

D:“JQR>javac Mutable.java

D:~JQR>java Mutahle
Enter sur name : Chandera
Enter mid name : Sekhar

Enter last name = Azad
Full name = Chandra Sekhar Azad
In reverse =dazf rahkef ardnahC

D=~ JQR>_

Accessor methods: capacity(), charAt(i), length(), substring(iStart [,iEndindex)])

Modifier methods. append(g), delete(il, i2), deleteCharAt(i), ensureCapacity(),
getChars(srcBeg, srcEnd, target[], targetBeg), insert(iPosn, g), replace(il,i2,gvalue), reverse(),
setCharAt(iposn,), setLength(),toString(g)

So the basic differences are.....

1. String isimmutable but StringBuffer is not.

2. String is not threadsafe but StringBuffer is thread safe

3. String has concat() for append character but StringBuffer has append() method

4. while you create String like String str = new String(); it create 2 object 1 on heap and 1 on
String Constant pool and that refered by str but in StringBuffer it Create 1 object on heap

StringBuilder

StringBuilder classisintroduced in Java 5.0 version. This classis an aternative to the existing
StringBuffer class. If you look into the operations of the both the classes, thereis no difference.
The only difference between StringBuilder and StringBuffer isthat StringBuilder classis not
synchronized so it gives better performance. Whenever there are no threading issues, its
preferable to use StringBuilder. StringBuffer class can be replaced by StringBuilder with a
simple search and replace with no compilation issue.

Accessor methods: capacity(), length(), charAt(i), indexOf(g), lastindexOf(Q)

Modifier methods: append(g), delete(il, i2), insert(iPosn, g), getChars(i), setCharAt(iposn, c),
substring(), replace(il,i2,gvalue), reverse(), trimToSize(g), toString(g)

java.lang
Class StringBuilder
java.lang.Object

L java.lang.StringBuilder
All Implemented I nterfaces:

Seriadlizable, Appendable, CharSequence

public final class StringBuilder
extends Object
implements Serializable, CharSequence

A mutable sequence of characters. This class provides an APl compatible with StringBuffer, but
with no guarantee of synchronization. This class is designed for use as a drop-in replacement for
StringBuffer in places where the string buffer was being used by a single thread (as is generally
the case). Where possible, it is recommended that this class be used in preference to StringBuffer
asit will be faster under most implementations.

The principal operations on a StringBuilder are the append and insert methods, which are
overloaded so as to accept data of any type. Each effectively converts a given datum to a string
and then appends or inserts the characters of that string to the string builder. The append method
always adds these characters at the end of the builder; the insert method adds the characters at a
specified point.

For example, if z refers to a string builder object whose current contents are "start”, then the
method call z.append("l€") would cause the string builder to contain "startle", whereas z.insert(4,
"le") would alter the string builder to contain "starlet".

In generdl, if sb refersto an instance of a StringBuilder, then sh.append(x) has the same effect as
sh.insert(sh.length(), x). Every string builder has a capacity. As long as the length of the
character sequence contained in the string builder does not exceed the capacity, it is not
necessary to allocate a new interna buffer. If the internal buffer overflows, it is automatically
made larger.

Instances of StringBuilder are not safe for use by multiple threads. If such synchronization is
required then it is recommended that StringBuffer be used.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuffer.html

Constructor Summary

StringBuilder ()
Constructs a string builder with no charactersin it and an initial capacity of 16 characters.

StringBuilder (CharSequence seq)
Constructs a string builder that contains the same characters as the specified
CharSequence.

StringBuilder (int capacity)
Constructs a string builder with no charactersin it and an initial capacity specified by the
capacity argument.

StringBuilder (String str)
Constructs a string builder initialized to the contents of the specified string.

Method Summary

StringBuilder append(boolean b)
Appends the string representation of the boolean argument to the
sequence.

StringBuilder append(char ¢)
Appends the string representation of the char argument to this sequence.

StringBuilder append(char[] str)
Appends the string representation of the char array argument to this
sequence.

StringBuilder append(char|] str, int offset, int [en)
Appends the string representation of a subarray of the char array argument
to this sequence.

StringBuilder append(CharSequence s)
Appends the specified character sequence to this Appendable.

StringBuilder | 5 hend(CharSequence s, int start, int end)

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#StringBuilder%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#StringBuilder%28java.lang.CharSequence%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#StringBuilder%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#StringBuilder%28java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28boolean%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28char%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28char[]%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28char[],%20int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.CharSequence%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.CharSequence,%20int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html

Appends a subsequence of the specified CharSequence to this sequence.

StringBuilder append(double d)
Appends the string representation of the double argument to this sequence.

StringBuilder append(float f)
Appends the string representation of the float argument to this sequence.

StringBuilder append(int i)
Appends the string representation of the int argument to this sequence.

StringBuilder | append(long Ing)
Appends the string representation of the long argument to this sequence.

StringBuilder append(Object obj)
Appends the string representation of the Object argument.

StringBuilder append(String str)
Appends the specified string to this character sequence.

StringBuilder append(StringBuffer sb)
Appends the specified StringBuffer to this sequence.

StringBuilder appendCodePoint(int codePoint)
Appends the string representation of the codePoint argument to this
sequence.

int capacity()
Returns the current capacity.

char char At(int index)
Returns the char value in this sequence at the specified index.

int codePointAt(int index)
Returns the character (Unicode code point) at the specified index.

int codePointBefor e(int index)
Returns the character (Unicode code point) before the specified index.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28double%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28float%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28long%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.Object%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.StringBuffer%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuffer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#appendCodePoint%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#capacity%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#charAt%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#codePointAt%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#codePointBefore%28int%29

int |codePointCount(int beginindex, int endindex)
Returns the number of Unicode code pointsin the specified text range of
this sequence.

StringBuilder delete(int start, int end)
Removes the characters in a substring of this sequence.

StringBuilder deleteChar At(int index)
Removes the char at the specified position in this sequence.

void ensur eCapacity(int minimumCapacity)
Ensures that the capacity is at |east equal to the specified minimum.

void |getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
Characters are copied from this sequence into the destination character
array dst.

int indexOf(String str)
Returns the index within this string of the first occurrence of the specified
substring.

int indexOf(String str, int fromindex)
Returns the index within this string of the first occurrence of the specified
substring, starting at the specified index.

StringBuilder insert(int offset, boolean b)
Inserts the string representation of the boolean argument into this
sequence.

StringBuilder (insert(int offset, char c)
Inserts the string representation of the char argument into this sequence.

StringBuilder insert(int offset, char[] str)
Inserts the string representation of the char array argument into this
sequence.

StringBuilder insert(int index, char[] str, int offset, int len)
Inserts the string representation of a subarray of the str array argument
into this sequence.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#codePointCount%28int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#delete%28int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#deleteCharAt%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#ensureCapacity%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#getChars%28int,%20int,%20char[],%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#indexOf%28java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#indexOf%28java.lang.String,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20boolean%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20char%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20char[]%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20char[],%20int,%20int%29

StringBuilder

insert(int dstOffset, CharSeguence s)

StringBuilder

Inserts the specified CharSequence into this sequence.

insert(int dstOffset, CharSequence s, int start, int end)

StringBuilder

Inserts a subsequence of the specified CharSequence into this sequence.

insert(int offset, double d)

StringBuilder

Inserts the string representation of the double argument into this sequence.

insert(int offset, float f)

StringBuilder

Inserts the string representation of the float argument into this sequence.

insert(int offset, int i)

StringBuilder

Inserts the string representation of the second int argument into this
sequence.

insert(int offset, long 1)

StringBuilder

Inserts the string representation of the long argument into this sequence.

insert(int offset, Object ohj)

StringBuilder

Inserts the string representation of the Object argument into this character
sequence.

insert(int offset, String str)

int

int

Inserts the string into this character sequence.

lastl ndexOf (String str)

Returns the index within this string of the rightmost occurrence of the
specified substring.

lastl ndexOf (String str, int fromindex)

Returns the index within this string of the last occurrence of the specified
substring.

int |length()

int

Returns the length (character count).

offsetByCodePoints(int index, int codePointOffset)

Returns the index within this sequence that is offset from the given index

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20java.lang.CharSequence%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20java.lang.CharSequence,%20int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20double%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20float%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20long%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20java.lang.Object%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#lastIndexOf%28java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#lastIndexOf%28java.lang.String,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#length%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#offsetByCodePoints%28int,%20int%29

by codePointOffset code points.

StringBuilder replace(int start, int end, String str)
Replaces the charactersin a substring of this sequence with charactersin
the specified String.

StringBuilder reverse()
Causes this character sequence to be replaced by the reverse of the
sequence.

void |setChar At(int index, char ch)
The character at the specified index is set to ch.

void setl ength(int newLength)
Sets the length of the character sequence.

CharSequence | subSeguence(int start, int end)
Returns a new character sequence that is a subsequence of this sequence.

String |substring(int start)
Returns a new String that contains a subsequence of characters currently
contained in this character sequence.

String |substring(int start, int end)
Returns a new String that contains a subsequence of characters currently
contained in this sequence.

String |toString()
Returns a string representing the data in this sequence.

void |trimT oSize&()
Attempts to reduce storage used for the character sequence.

Methodsinherited from class java.lang.Object

clone, equds, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#replace%28int,%20int,%20java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#reverse%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#setCharAt%28int,%20char%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#setLength%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#subSequence%28int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#substring%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#substring%28int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#toString%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#trimToSize%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#clone%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#finalize%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#getClass%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#hashCode%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#notify%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#notifyAll%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#wait%28long%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#wait%28long,%20int%29

Methodsinherited from interface java.lang.Char Sequence

charAt, length, subSequence

Constructor Detail

StringBuilder

public StringBuilder ()
Constructs a string builder with no charactersin it and an initial capacity of 16 characters.

StringBuilder

public StringBuilder (int capacity)
Constructs a string builder with no charactersin it and an initial capacity specified by the
capacity argument.

Parameters:
capacity - theinitial capacity.

Throws: NegativeArraySizeException - if the capacity argument is less than O.

StringBuilder

public StringBuilder (String str)
Constructs a string builder initialized to the contents of the specified string. Theinitia

capacity of the string builder is 16 plus the length of the string argument.
Parameters:
str - the initial contents of the buffer.

Throws. NullPointerException - if str is null

StringBuilder

public StringBuilder (CharSequence seq)
Constructs a string builder that contains the same characters as the specified

CharSequence. Theinitial capacity of the string builder is 16 plus the length of the
CharSequence argument.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html#charAt%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html#length%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html#subSequence%28int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NegativeArraySizeException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html

Parameters:
seq - the sequence to copy.

Throws: NullPointerException - if seqisnull

Method Detail

append

public StringBuilder append(Object obyj)
Appends the string representation of the Object argument.

The argument is converted to a string asif by the method String.valueOf, and the
characters of that string are then appended to this sequence.

Parameters:
obj - an Object.

Returns: areference to this object.

append

public StringBuilder append(String str)
Appends the specified string to this character sequence.

The characters of the String argument are appended, in order, increasing the length of this
sequence by the length of the argument. If str is null, then the four characters "null™" are
appended.

Let n be the length of this character sequence just prior to execution of the append
method. Then the character at index k in the new character sequence is equal to the
character at index k in the old character sequence, if k is less than n; otherwise, it is equal
to the character at index k-n in the argument str.

Parameters:
str - astring.

Returns: areference to this object.

append

public StringBuilder append(StringBuffer sh)

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuffer.html

Appends the specified StringBuffer to this sequence.

The characters of the StringBuffer argument are appended, in order, to this sequence,
increasing the length of this sequence by the length of the argument. If sbis null, then the
four characters "null" are appended to this sequence.

Let n be the length of this character sequence just prior to execution of the append
method. Then the character at index k in the new character sequence is equal to the
character at index k in the old character sequence, if k is less than n; otherwise, it is equal
to the character at index k-n in the argument sb.

Parameters:
sb - the StringBuffer to append.

Returns: areference to this object.

append

public StringBuilder append(CharSequence s)
Description copied from interface: Appendable

Appends the specified character sequence to this Appendable.

Depending on which class implements the character sequence csg, the entire sequence
may not be appended. For instance, if csg is a CharBuffer then the subsequence to append
is defined by the buffer's position and limit.

Specified by:
append in interface Appendable
Parameters:

s - The character sequence to append. If csq is null, then the four characters "null” are
appended to this Appendable.

Returns: A reference to this Appendable

Throws:. IndexOutOf BoundsException

append

public StringBuilder append(CharSequence s,int start, int end)
Appends a subsequence of the specified CharSequence to this sequence.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html#append%28java.lang.CharSequence%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/nio/CharBuffer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html#append%28java.lang.CharSequence%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html

Characters of the argument s, starting at index start, are appended, in order, to the
contents of this sequence up to the (exclusive) index end. The length of this sequence is
increased by the value of end - start.

Let n be the length of this character sequence just prior to execution of the append
method. Then the character at index k in this character sequence becomes equal to the
character at index k in this sequence, if k is less than n; otherwise, it is equal to the
character at index k+start-n in the argument s.

If sis null, then this method appends characters as if the s parameter was a sequence
containing the four characters "null".

Specified by:

append in interface Appendable

Parameters:

s - the sequence to append.

start - the starting index of the subsequence to be appended.
end - the end index of the subsequence to be appended.
Returns: areference to this object.

Throws: IndexOutOfBoundsException - if start or end are negative, or start is greater
than end or end is greater than s.length()

append

public StringBuilder append(char|] str)
Appends the string representation of the char array argument to this sequence.

The characters of the array argument are appended, in order, to the contents of this
sequence. The length of this sequence increases by the length of the argument.

The overall effect is exactly asif the argument were converted to a string by the method
String.valueOf(char[]) and the characters of that string were then appended to this
character sequence.

Parameters:
str - the characters to be appended.

Returns. areference to this object.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html#append%28java.lang.CharSequence,%20int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#valueOf%28char[]%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.String%29

append

public StringBuilder append(char[] str, int offset, int len)
Appends the string representation of a subarray of the char array argument to this
sequence.

Characters of the char array str, starting at index offset, are appended, in order, to the
contents of this sequence. The length of this sequence increases by the vaue of len.

The overall effect is exactly asif the arguments were converted to a string by the method
String.valueOf(char[],int,int) and the characters of that string were then appended to this
character sequence.

Parameters:

str - the characters to be appended.

offset - the index of the first char to append.
len - the number of charsto append.

Returns: areference to this object.

append

public StringBuilder append(boolean b)
Appends the string representation of the boolean argument to the sequence.

The argument is converted to a string asif by the method String.valueOf, and the
characters of that string are then appended to this sequence.

Parameters:
b - aboolean.

Returns: areference to this object.

append

public StringBuilder append(char c)
Appends the string representation of the char argument to this sequence.

The argument is appended to the contents of this sequence. The length of this sequence
increases by 1.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#valueOf%28char[],%20int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

The overall effect is exactly asif the argument were converted to a string by the method
String.valueOf(char) and the character in that string were then appended to this character
sequence.

Specified by:

append in interface Appendable
Parameters:

c- achar.

Returns: areference to this object.

append

public StringBuilder append(int i)
Appends the string representation of the int argument to this sequence.

The argument is converted to a string asif by the method String.valueOf, and the
characters of that string are then appended to this sequence.

Parameters:
i -anint.
Returns: areference to this object.

append

public StringBuilder append(long Ing)
Appends the string representation of the long argument to this sequence.

The argument is converted to a string asif by the method String.valueOf, and the
characters of that string are then appended to this sequence.

Parameters:
Ing - along.

Returns. areference to this object.

append

public StringBuilder append(float f)
Appends the string representation of the float argument to this sequence.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#valueOf%28char%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html#append%28char%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Appendable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

The argument is converted to a string asif by the method String.valueOf, and the
characters of that string are then appended to this string sequence.

Parameters:
f - afloat.

Returns: areference to this object.

append

public StringBuilder append(double d)

Appends the string representation of the double argument to this sequence.

The argument is converted to a string asif by the method String.valueOf, and the
characters of that string are then appended to this sequence.

Parameters:
d - adouble.

Returns: areference to this object.

appendCodePoint

public StringBuilder appendCodePoint(int codePoint)

delete

Appends the string representation of the codePoint argument to this sequence.

The argument is appended to the contents of this sequence. The length of this sequence
increases by Character.charCount(codePoint).

The overal effect is exactly asif the argument were converted to a char array by the
method Character.toChars(int) and the character in that array were then appended to this
character sequence.

Parameters:
codePoint - a Unicode code point

Returns. areference to this object.

public StringBuilder delete(int start,int end)

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Character.html#charCount%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Character.html#toChars%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#append%28char[]%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

Removes the charactersin a substring of this sequence. The substring begins at the
specified start and extends to the character at index end - 1 or to the end of the sequence
if no such character exists. If start is equal to end, no changes are made.

Parameters:

start - The beginning index, inclusive.
end - The ending index, exclusive.
Returns: This object.

Throws: StringlndexOutOfBoundsException - if start is negative, greater than length(),
or greater than end.

deleteChar At

public StringBuilder deleteChar At(int index)
Removes the char at the specified position in this sequence. This sequence is shortened

by one char.

Note: If the character at the given index is a supplementary character, this method does
not remove the entire character. If correct handling of supplementary charactersis
required, determine the number of charsto remove by calling

Character.charCount(thi sSequence.codePointAt(index)), where thisSequence is this
sequence.

Parameters:
index - Index of char to remove
Returns: This object.

Throws: StringlndexOutOfBoundsException - if the index is negative or greater than or
equal to length().

replace

public StringBuilder replace(int start, int end,String str)
Replaces the charactersin a substring of this sequence with charactersin the specified

String. The substring begins at the specified start and extends to the character at index
end - 1 or to the end of the sequence if no such character exists. First the charactersin the
substring are removed and then the specified String isinserted at start. (This sequence
will be lengthened to accommodate the specified String if necessary.)

Parameters:

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html

insert

start - The beginning index, inclusive.

end - The ending index, exclusive.

str - String that will replace previous contents.
Returns:

This object.

Throws:

StringIndexOutOf BoundsException - if start is negative, greater than length(), or greater
than end.

public StringBuilder insert(int index,char[] str,int offset, int len)

insert

Inserts the string representation of a subarray of the str array argument into this sequence.
The subarray begins at the specified offset and extends len chars. The characters of the
subarray are inserted into this sequence at the position indicated by index. The length of
this sequence increases by len chars.

Parameters:

index - position at which to insert subarray.

str - A char array.

offset - the index of the first char in subarray to be inserted.
len - the number of charsin the subarray to be inserted.
Returns: This object

Throws:

StringlndexOutOf BoundsException - if index is negative or greater than length(), or
offset or len are negative, or (offset+len) is greater than str.length.

public StringBuilder insert(int offset,Object obj)

Inserts the string representation of the Object argument into this character sequence.

The second argument is converted to astring asif by the method String.valueOf, and the
characters of that string are then inserted into this sequence at the indicated offset.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html

insert

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

obj - an Object.

Returns: areference to this object.

Throws: StringlndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int offset, String str)

insert

Inserts the string into this character sequence.

The characters of the String argument are inserted, in order, into this sequence at the
indicated offset, moving up any characters originally above that position and increasing
the length of this sequence by the length of the argument. If str is null, then the four
characters "null" areinserted into this sequence.

The character at index k in the new character sequence is equal to:

« thecharacter a index k in the old character sequence, if k is less than offset

o thecharacter at index k-offset in the argument str, if kis not less than offset but is
less than offset+str.length()

o thecharacter at index k-str.length() in the old character sequence, if kisnot less
than offset+str.length()

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

str - astring.

Returns: areference to this object.

Throws:. StringlndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int offset,char[] str)

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

insert

Inserts the string representation of the char array argument into this sequence.

The characters of the array argument are inserted into the contents of this sequence at the
position indicated by offset. The length of this sequence increases by the length of the
argument.

The overall effect is exactly asif the argument were converted to a string by the method
String.valueOf(char[]) and the characters of that string were then inserted into this
character sequence at the position indicated by offset.

Parameters:

offset - the offset.

str - acharacter array.

Returns: areference to this object.

Throws: StringlndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int dstOffset,CharSequence s)

insert

Inserts the specified CharSequence into this sequence.

The characters of the CharSequence argument are inserted, in order, into this sequence at
the indicated offset, moving up any characters originally above that position and
increasing the length of this sequence by the length of the argument s.

The result of this method is exactly the same asiif it were an invocation of this object's
insert(dstOffset, s, 0, s.length()) method.

If sisnull, then the four characters "null" are inserted into this sequence.
Parameters:

dstOffset - the of fset.

S - the sequence to be inserted

Returns. areference to this object.

Throws: IndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int dstOffset,CharSequence s, int start, int end)

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#valueOf%28char[]%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html

insert

Inserts a subsequence of the specified CharSequence into this sequence.

The subsequence of the argument s specified by start and end are inserted, in order, into
this sequence at the specified destination offset, moving up any characters originally
above that position. The length of this sequenceisincreased by end - start.

The character at index k in this sequence becomes equal to:

o thecharacter at index k in this sequence, if k isless than dstOffset

o thecharacter at index k+start-dstOffset in the argument s, if k is greater than or
equal to dstOffset but isless than dstOffset+end-start

o thecharacter at index k-(end-start) in this sequence, if k is greater than or equal to
dstOffset+end-start

The dstOffset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

The start argument must be nonnegative, and not greater than end.

The end argument must be greater than or equal to start, and less than or equal to the
length of s.

If sisnull, then this method inserts characters asif the s parameter was a sequence
containing the four characters "null".

Parameters:

dstOffset - the offset in this sequence.

s - the sequence to be inserted.

start - the starting index of the subsequence to be inserted.
end - the end index of the subsequence to be inserted.
Returns: areference to this object.

Throws:

IndexOutOf BoundsException - if dstOffset is negative or greater than this.length(), or
start or end are negative, or start is greater than end or end is greater than s.length()

public StringBuilder insert(int offset, boolean b)

Inserts the string representation of the boolean argument into this sequence.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

insert

The second argument is converted to astring asif by the method String.valueOf, and the
characters of that string are then inserted into this sequence at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

b - aboolean.

Returns: areference to this object.

Throws: StringlndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int offset,char)

insert

Inserts the string representation of the char argument into this sequence.

The second argument is inserted into the contents of this sequence at the position
indicated by offset. The length of this sequence increases by one.

The overal effect is exactly asif the argument were converted to a string by the method
String.valueOf(char) and the character in that string were then inserted into this character
seguence at the position indicated by offset.

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

c- achar.

Returns. areference to this object.

Throws: IndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int offset,int i)

Inserts the string representation of the second int argument into this sequence.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#valueOf%28char%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#insert%28int,%20java.lang.String%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

insert

The second argument is converted to astring asif by the method String.valueOf, and the
characters of that string are then inserted into this sequence at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

i -anint.

Returns: areference to this object.

Throws: StringlndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int offset,long I)

insert

Inserts the string representation of the long argument into this sequence.

The second argument is converted to a string asif by the method String.valueOf, and the
characters of that string are then inserted into this sequence at the position indicated by
offset.

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

| - along.

Returns: areference to this object.

Throws: StringlndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int offset,float f)

Inserts the string representation of the float argument into this sequence.

The second argument is converted to astring asif by the method String.valueOf, and the
characters of that string are then inserted into this sequence at the indicated offset.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

insert

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

f - afloat.

Returns: areference to this object.

Throws: StringlndexOutOfBoundsException - if the offset isinvalid.

public StringBuilder insert(int offset,double d)

Inserts the string representation of the double argument into this sequence.

The second argument is converted to astring asif by the method String.valueOf, and the
characters of that string are then inserted into this sequence at the indicated offset.

The offset argument must be greater than or equal to 0, and less than or equal to the
length of this sequence.

Parameters:

offset - the offset.

d - adouble.

Returns: areference to this object.

Throws: StringlndexOutOfBoundsException - if the offset isinvalid.

indexOf

public int indexOf(String str)

Returns the index within this string of the first occurrence of the specified substring. The
integer returned is the smallest value k such that:

this.toString().startsWith(str, k)
istrue.
Parameters:

str - any string.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html

Returns:

if the string argument occurs as a substring within this object, then the index of the first
character of thefirst such substring is returned; if it does not occur as asubstring, -1 is
returned.

Throws: NullPointerException - if strisnull.

indexOf

public int indexOf(String str, int fromindex)
Returns the index within this string of the first occurrence of the specified substring,

starting at the specified index. The integer returned is the smallest value k for which:

k >= Math.min(fromIndex, str.length()) & &
this.toString().startsWith(str, k)

If no such value of k exists, then -1 is returned.
Parameters:

str - the substring for which to search.

fromindex - the index from which to start the search.

Returns:

the index within this string of the first occurrence of the specified substring, starting at
the specified index.

Throws: NullPointerException - if strisnull.

lastl ndexOf

public int lastl ndexOf(String str)
Returns the index within this string of the rightmost occurrence of the specified substring.

The rightmost empty string " is considered to occur at the index value this.length(). The
returned index is the largest value k such that

this.toString().startswith(str, k)
istrue.

Parameters:

str - the substring to search for.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html

Returns:

if the string argument occurs one or more times as a substring within this object, then the
index of the first character of the last such substring is returned. If it does not occur as a
substring, -1 is returned.

Throws: NullPointerException - if strisnull.

lastl ndexOf

public int lastI ndexOf(String str, int fromindex)
Returns the index within this string of the last occurrence of the specified substring. The

integer returned is the largest value k such that:

k <= Math.min(fromIndex, str.length()) & &
this.toString().startsWith(str, k)

If no such value of k exists, then -1 is returned.

Parameters:

str - the substring to search for.

fromindex - the index to start the search from.

Returns:

the index within this sequence of the last occurrence of the specified substring.

Throws: NullPointerException - if strisnull.

reverse

public StringBuilder reverse()
Causes this character sequence to be replaced by the reverse of the sequence. If there are

any surrogate pairs included in the sequence, these are treated as single characters for the
reverse operation. Thus, the order of the high-low surrogates is never reversed. Let n be
the character length of this character sequence (not the length in char values) just prior to
execution of the reverse method. Then the character at index k in the new character
sequence is equal to the character at index n-k-1 in the old character sequence.

Note that the reverse operation may result in producing surrogate pairs that were unpaired
low-surrogates and high-surrogates before the operation. For example, reversing
"\uDCO00\WD800" produces "\uD800\UDCOQ" which isavalid surrogate pair.

Returns: areference to this object.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html

toString

public String toString()
Returns a string representing the data in this sequence. A new String object is allocated

and initialized to contain the character sequence currently represented by this object. This
String is then returned. Subsequent changes to this sequence do not affect the contents of
the String.

Specified by:
toString in interface CharSequence

Returns: astring representation of this sequence of characters.
length

public int length()
Returns the length (character count).

Specified by:
length in interface CharSegquence

Returns: the length of the sequence of characters currently represented by this object

capacity

public int capacity()
Returns the current capacity. The capacity is the amount of storage available for newly

inserted characters, beyond which an allocation will occur.

Returns: the current capacity

ensureCapacity

public void ensur eCapacity(int minimumCapacity)
Ensures that the capacity is at least equal to the specified minimum. If the current

capacity isless than the argument, then anew internal array is allocated with greater
capacity. The new capacity isthe larger of:

e The minimumCapacity argument.
e Twicethe old capacity, plus 2.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html#toString%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html#length%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html

If the minimumCapacity argument is nonpositive, this method takes no action and simply
returns.
Parameters:

minimumCapacity - the minimum desired capacity.
trimT oSize

public void trimT oSize()
Attempts to reduce storage used for the character sequence. If the buffer islarger than

necessary to hold its current sequence of characters, then it may be resized to become
more space efficient. Calling this method may, but is not required to, affect the value
returned by a subsequent call to the capacity() method.

setL ength

public void setL ength(int newL ength)
Sets the length of the character sequence. The sequence is changed to a new character

sequence whose length is specified by the argument. For every nonnegative index k less
than newL ength, the character at index k in the new character sequence is the same as the
character at index k in the old sequence if kisless than the length of the old character
sequence; otherwise, it isthe null character \uOOOO'. In other words, if the newLength
argument is less than the current length, the length is changed to the specified length.

If the newLength argument is greater than or equal to the current length, sufficient null
characters ('\u0000") are appended so that length becomes the newL ength argument.

The newLength argument must be greater than or equal to 0.

Parameters.
newL ength - the new length

Throws: IndexOutOf BoundsException - if the newLength argument is negative.

char At

public char char At(int index)
Returns the char value in this sequence at the specified index. Thefirst char valueis at

index 0, the next at index 1, and so on, asin array indexing.

The index argument must be greater than or equal to 0, and less than the length of this
sequence.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#capacity%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html

If the char value specified by the index is a surrogate, the surrogate value is returned.
Specified by:

charAt in interface CharSequence

Parameters:

index - the index of the desired char value.

Returns: the char value at the specified index.

Throws: IndexOutOf BoundsException - if index is negative or greater than or equal to
length().

codePointAt

public int codePointAt(int index)
Returns the character (Unicode code point) at the specified index. Theindex refersto

char values (Unicode code units) and ranges from 0 to length() - 1.

If the char value specified at the given index is in the high-surrogate range, the following
index is less than the length of this sequence, and the char value at the following index is
in the low-surrogate range, then the supplementary code point corresponding to this
surrogate pair is returned. Otherwise, the char value at the given index is returned.

Parameters:
index - the index to the char values
Returns: the code point value of the character at the index

Throws: IndexOutOfBoundsException - if the index argument is negative or not less
than the length of this sequence.

codePointBefore

public int codePointBefor e(int index)
Returns the character (Unicode code point) before the specified index. The index refersto

char values (Unicode code units) and ranges from 1 to length().

If the char value at (index - 1) isin the low-surrogate range, (index - 2) is not negative,
and the char value at (index - 2) isin the high-surrogate range, then the supplementary
code point value of the surrogate pair is returned. If the char value at index - 1isan
unpaired low-surrogate or a high-surrogate, the surrogate value is returned.

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Character.html#unicode
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html#charAt%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#length%28%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringBuilder.html#length%28%29

Parameters:
index - the index following the code point that should be returned
Returns: the Unicode code point value before the given index.

Throws: IndexOutOf BoundsException - if the index argument islessthan 1 or greater
than the length of this sequence.

codePointCount

public int codePointCount(int beginindex,int endindex)
Returns the number of Unicode code pointsin the specified text range of this sequence.

The text range begins at the specified beginindex and extends to the char at index
endindex - 1. Thusthe length (in chars) of the text range is endlndex-beginindex.
Unpaired surrogates within this sequence count as one code point each.

Parameters:

beginindex - the index to the first char of the text range.

endindex - the index after the last char of the text range.

Returns: the number of Unicode code pointsin the specified text range

Throws: IndexOutOf BoundsException - if the beginindex is negative, or endindex is
larger than the length of this sequence, or beginindex is larger than endindex.

offsetByCodePoints

public int offsetByCodePoints(int index, int codePointOff set)
Returns the index within this sequence that is offset from the given index by

codePointOffset code points. Unpaired surrogates within the text range given by index
and codePointOffset count as one code point each.

Parameters:

index - the index to be offset
codePointOffset - the offset in code points
Returns. the index within this sequence
Throws:

IndexOutOf BoundsException - if index is negative or larger then the length of this
sequence, or if codePointOffset is positive and the subsequence starting with index has

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html

fewer than codePointOffset code points, or if codePointOffset is negative and the
subsequence before index has fewer than the absolute value of codePointOffset code
points.

getChars

public void getChar s(int srcBegin, int srcEnd,char|] dst,int dstBegin)
Characters are copied from this sequence into the destination character array dst. The first
character to be copied is at index srcBegin; the last character to be copied is at index
srcEnd-1. The total number of characters to be copied is srcEnd-srcBegin. The characters
are copied into the subarray of dst starting at index dstBegin and ending at index:

dstbegin + (srcEnd-srcBegin) - 1
Parameters:

srcBegin - start copying at this offset.

srcEnd - stop copying at this offset.

dst - the array to copy the data into.

dstBegin - offset into dst.

Throws: NullPointerException - if dst is null.

IndexOutOf BoundsException - if any of the following istrue:

srcBegin is negative

dstBegin is negative

the srcBegin argument is greater than the srcEnd argument.
srcEnd is greater than this.length().
dstBegin+srcEnd-srcBegin is greater than dst.length

setChar At

public void setChar At(int index, char ch)
The character at the specified index is set to ch. This sequence is altered to represent a

new character sequence that isidentical to the old character sequence, except that it
contains the character ch at position index.

The index argument must be greater than or equal to 0, and less than the length of this
sequence.

Parameters:

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html

index - the index of the character to modify.
ch - the new character.

Throws: IndexOutOf BoundsException - if index is negative or greater than or equal to
length().

substring

public String substring(int start)
Returns a new String that contains a subsequence of characters currently contained in this

character sequence. The substring begins at the specified index and extends to the end of
this sequence.

Parameters:
start - The beginning index, inclusive.
Returns: The new string.

Throws: StringlndexOutOfBoundsException - if start isless than zero, or greater than
the length of this object.

subSequence

public CharSequence subSequence(int start, int end)
Returns a new character sequence that is a subsequence of this sequence.

An invocation of this method of the form

sh.subSequence(begin, end)
behaves in exactly the same way as the invocation

sh.substring(begin, end)
This method is provided so that this class can implement the CharSequence interface.

Specified by:

subSequence in interface CharSequence
Parameters:

start - the start index, inclusive.

end - the end index, exclusive.

Returns:

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html#subSequence%28int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/CharSequence.html

the specified subsequence.

Throws: IndexOutOf BoundsException - if start or end are negative, if end is greater than
length(), or if start is greater than end

substring

public String substring(int start, int end)
Returns anew String that contains a subsequence of characters currently contained in this

sequence. The substring begins at the specified start and extends to the character at index
end - 1.

Parameters:

start - The beginning index, inclusive.
end - The ending index, exclusive.
Returns: The new string.

Throws: StringlndexOutOfBoundsException - if start or end are negative or greater than
length(), or start is greater than end.

Analyzing a string token-by-token

Tokenization in Java consists of two separate issues: the case where tokenization ison a
character-by-character basis, and the case where tokenization is done on the basis of a separator
character. The former case is well-supported in the Java platform, by way of the StringT okenizer
class. The latter must be approached algorithmically.

Analyzing a string character -by-char acter

You will use:

* a String with your input in it

* a char to hold individual chars

» a for-loop

* the String.charAt() method

» the String.length() method

* the String.indexOf() method

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/StringIndexOutOfBoundsException.html

The method String.charAt() returns the character at an indexed position in the input string. For
example, the following code fragment analyzes an input word character-by-character and prints
out amessage if the input word contains a coronal consonant:

/I the next two lines show construction of a String with a constant

String input = new String ("mita’");

String coronals = new String("sztdSZ");

int index;

char tokenizedinput;

/I the String.length() method returns the length of a String. you

I subtract 1 from the length because String indices are zero-based.
for (index = 0; index < input.length() - 1; index++) {
tokenizedinput = input.charAt(index);

/I String.indexOf() returns -1 if the string doesn't contain the character
Il in question. if it doesn't return -1, then you know that it

// does contain the character in question.

if (coronals.indexOf(tokenizedinput) !=-1){
System.out.print("The word <");

System.out.print(input);

System.out.print(" contains the coronal consonant <);
System.out.print(tokenizedl nput);

System.out.printin(">.");

}

}

This produces the output The word contains the corona consonant .

Analyzing a string word-by-word

Y ou will use:

» the StringTokenizer class

* the StringTokenizer.hasMoreTokens() method
* the StringTokenizer.nextToken() method

» a while-loop

/I make anew String object
String input = new String("im ani le?acmi maani*);

/I make anew tokenizer object. note that you passit the
/I string that you want parsed

StringT okenizer tokenizer = new StringTokenizer(input);
Il StringTokenizer.hasMoreTokens() returns true as long as
/I theres more datain it that hasn't yet been given to you
while (tokenizer.hasMoreTokens()) {

/I StringTokenizer.nextToken() returns the

/I next token that the StringTokenizer is holding.

/I (of course, the first time you call it, that

/I will be the first token in theinput. :-))

String currentToken = tokenizer.nextToken();

/I ...and now you can do whatever you like with

/I that token!

checkForCoronal Consonants(currentToken);

Exploring java.util:

Contains the collections framework, legacy collection classes, event model, date and time
facilities, internationalization, and miscellaneous utility classes (a string tokenizer, arandom-
number generator, and a bit array).

Interface Type Implementation Classes
Set <T= HashSe<T=
LinkedHash&er=T=
List <T> Stack<T=

Limkedlig=T=>
ArmayList<T>

Veetor=T=
Queue <T> LinkedList<T=>
Map<T= HashMap=K. V>

Hashiable<k W=

Interface Summary

Collection<E> Theroot interface in the collection hierarchy.

A comparison function, which imposes a total ordering on some collection

m r<r> .
Comparato of objects.

An object that implements the Enumeration interface generates a series of

Enumeration<E>)
elements, one at atime.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Enumeration.html

EventListener

For mattable

Iterator <E>

List<E>

Listlterator<E>

Map<K,V>

Map.Entry<k V>

Observer

ueue<gE>

RandomAccess

Set<E>

SortedM ap<K,V>

SortedSet<E>

Class Summary

A tagging interface that all event listener interfaces must extend.

The Formattable interface must be implemented by any class that needs to
perform custom formatting using the 's' conversion specifier of Formatter.

An iterator over acollection.

An ordered collection (also known as a sequence).

An iterator for lists that allows the programmer to traverse thelist in either
direction, modify thelist during iteration, and obtain the iterator's current
position in the list.

An object that maps keys to values.

A map entry (key-value pair).

A class can implement the Observer interface when it wants to be informed
of changesin observable objects.

A collection designed for holding elements prior to processing.

Marker interface used by List implementations to indicate that they support
fast (generally constant time) random access.

A collection that contains no duplicate elements.

A map that further guarantees that it will be in ascending key order, sorted
according to the natural ordering of its keys (see the Comparable interface),
or by a comparator provided at sorted map creation time.

A set that further guarantees that its iterator will traverse the set in ascending
element order, sorted according to the natural ordering of its elements (see
Comparable), or by a Comparator provided at sorted set creation time.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EventListener.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formattable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ListIterator.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.Entry.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Observer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/RandomAccess.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Set.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SortedMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SortedSet.html

AbstractCollection<E>

AbstractL ist<E>

AbstractM ap<K ,V>

AbstractQueue<E>

AbstractSequentialList<E>

AbstractSet<E>

ArrayList<E>

Arrays

Calendar

Collections

Currency

This class provides a skeletal implementation of the Collection
interface, to minimize the effort required to implement this
interface.

This class provides a skeletal implementation of the List interface
to minimize the effort required to implement thisinterface backed
by a"random access' data store (such as an array).

This class provides a skeletal implementation of the Map
interface, to minimize the effort required to implement this
interface.

This class provides skeletal implementations of some Queue
operations.

This class provides a skeletal implementation of the List interface
to minimize the effort required to implement this interface backed
by a"sequential access' data store (such asalinked list).

This class provides a skeletal implementation of the Set interface
to minimize the effort required to implement thisinterface.

Resizable-array implementation of the List interface.

This class contains various methods for manipulating arrays (such
as sorting and searching).

This class implements a vector of bits that grows as needed.

The Calendar classis an abstract class that provides methods for
converting between a specific instant in time and a set of calendar
fieldssuch as YEAR, MONTH, DAY _OF MONTH, HOUR, and
so on, and for manipulating the calendar fields, such as getting the
date of the next week.

This class consists exclusively of static methods that operate on or
return collections.

Represents a currency.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractCollection.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractQueue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractSequentialList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Arrays.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/BitSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Calendar.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Calendar.html#fields
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Calendar.html#fields
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Calendar.html#fields
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Currency.html

Date

Dictionary<K V>

EnumMap<K extends
Enum<K> V>

EnumSet<E extends
Enum<E>>

EventL istener Proxy

EventObject

For mattableFlags

Formatter

GregorianCalendar

HashMap<K, V>

HashSet<E>

Hashtable<K V>

IdentityHashM ap<K V>

LinkedHashM ap<K V>

The class Date represents a specific instant in time, with
millisecond precision.

The Dictionary classis the abstract parent of any class, such as
Hashtable, which maps keys to values.

A speciaized Map implementation for use with enum type keys.

A specialized Set implementation for use with enum types.

An abstract wrapper class for an EventListener class which
associates a set of additional parameters with the listener.

Theroot class from which all event state objects shall be derived.

FomattableFlags are passed to the Formattable.formatTo() method
and modify the output format for Formattabl es.

Aninterpreter for printf-style format strings.

GregorianCalendar is a concrete subclass of Calendar and
provides the standard calendar system used by most of the world.

Hash table based implementation of the Map interface.

This class implements the Set interface, backed by a hash table
(actually aHashMap instance).

This class implements a hashtable, which maps keysto values.
This class implements the Map interface with a hash table, using
reference-equality in place of object-equality when comparing

keys (and values).

Hash table and linked list implementation of the Map interface,
with predictable iteration order.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Dictionary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EnumMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EnumMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EnumSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EnumSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Set.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EventListenerProxy.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EventObject.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormattableFlags.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formattable.html#formatTo%28java.util.Formatter,%20int,%20int,%20int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formattable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/GregorianCalendar.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/HashSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Hashtable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IdentityHashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedHashMap.html

LinkedHashSet<E>

LinkedL ist<E>

ListResour ceBundle

Observable

PriorityQueue<E>

Properties

Pr opertyPer mission

PropertyResour ceBundle

Random

Resour ceBundle

Scanner

SimpleTimeZone

Stack<E>

Hash table and linked list implementation of the Set interface, with
predictable iteration order.

Linked list implementation of the List interface.
ListResourceBundle is an abstract subclass of ResourceBundlie
that manages resources for alocale in a convenient and easy to use

list.

A Locale object represents a specific geographical, political, or
cultural region.

This class represents an observable object, or "data" in the model-
view paradigm.

An unbounded priority gueue based on a priority heap.

The Properties class represents a persistent set of properties.

This classisfor property permissions.

PropertyResourceBundle is a concrete subclass of
ResourceBundle that manages resources for alocale using a set of

static strings from a property file.

An instance of this classis used to generate a stream of
pseudorandom numbers.

Resource bundles contain local e-specific objects.

A simpletext scanner which can parse primitive types and strings
using regular expressions.

SimpleTimeZone is a concrete subclass of TimeZone that
represents a time zone for use with a Gregorian calendar.

The Stack class represents a last-in-first-out (L1FO) stack of
objects.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedHashSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ListResourceBundle.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Observable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PriorityQueue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PropertyPermission.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PropertyResourceBundle.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Random.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ResourceBundle.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Scanner.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SimpleTimeZone.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Stack.html

StringT okenizer

Timer T ask

TimeZone

TreeM ap<K (V>

TreeSet<E>

UuuibD

Vector<E>

WeakHashM ap<K, V>

Enum Summary

The string tokenizer class alows an application to break a string
into tokens.

A facility for threads to schedule tasks for future executionin a
background thread.

A task that can be scheduled for one-time or repeated execution by
aTimer.

TimeZone represents a time zone offset, and also figures out
daylight savings.

Red-Black tree based implementation of the SortedMap interface.

This class implements the Set interface, backed by a TreeMap
instance.

A class that represents an immutable universally unique identifier
(UUID).

The Vector class implements a growable array of objects.

A hashtable-based Map implementation with weak keys.

For matter .BigDecimalL ayoutForm

Exception Summary

This exception may be thrown by methods that
have detected concurrent modification of an

ConcurrentM odificationException

DuplicateFor matFlagsException

object when such modification is not
permissible.

Unchecked exception thrown when duplicate

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/StringTokenizer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Timer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TimerTask.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Vector.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/WeakHashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.BigDecimalLayoutForm.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ConcurrentModificationException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/DuplicateFormatFlagsException.html

EmptyStack Exception

For matFlagsConver sionM ismatchException

For matter ClosedException

I llegal For mat CodePoint Exception

I llegal For matConver sionException

I llegal For matException

I llegal For matFlagsException

I llegal For matPr ecisionException

Illegal For matWidthException

I nputM ismatchException

flags are provided in the format specifier.

Thrown by methods in the Stack classto
indicate that the stack is empty.

Unchecked exception thrown when a conversion
and flag are incompatible.

Unchecked exception thrown when the
formatter has been closed.

Unchecked exception thrown when a character
with an invalid Unicode code point as defined
by Character.isVaidCodePoint(int) is passed to
the Formatter.

Unchecked exception thrown when the
argument corresponding to the format specifier
Is of an incompatible type.

Unchecked exception thrown when a format
string contains an illegal syntax or aformat
specifier that isincompatible with the given
arguments.

Unchecked exception thrown when an illegal
combination flagsis given.

Unchecked exception thrown when the precision
Is anegative value other than -1, the conversion
does not support a precision, or thevalueis
otherwise unsupported.

Unchecked exception thrown when the format
width is a negative value other than -1 or is
otherwise unsupported.

Thrown by a Scanner to indicate that the token
retrieved does not match the pattern for the
expected type, or that the token is out of range

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EmptyStackException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormatFlagsConversionMismatchException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormatterClosedException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatCodePointException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Character.html#isValidCodePoint%28int%29
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatConversionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatFlagsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatPrecisionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatWidthException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/InputMismatchException.html

I nvalidPr oper tiesFor mat Exception

M issingFor matAr gqumentException

MissingFor matWidthException

M issingResour ceException

NoSuchElementException

TooM anyL istener sException

UnknownFor matConver sionException

UnknownFor matFlagsException

for the expected type.

Thrown to indicate that an operation could not
compl ete because the input did not conform to
the appropriate XML document type for a
collection of properties, as per the Properties
specification.

Unchecked exception thrown when thereis a
format specifier which does not have a
corresponding argument or if an argument index
refers to an argument that does not exist.

Unchecked exception thrown when the format
width is required.

Signals that a resource is missing.

Thrown by the nextElement method of an
Enumeration to indicate that there are no more
elements in the enumeration.

The TooManyL istenersException Exception is
used as part of the Java Event model to annotate
and implement a unicast specia case of a
multicast Event Source.

Unchecked exception thrown when an unknown
conversion is given.

Unchecked exception thrown when an unknown
flagis given.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/InvalidPropertiesFormatException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingFormatArgumentException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingFormatWidthException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingResourceException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TooManyListenersException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UnknownFormatConversionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UnknownFormatFlagsException.html

ClassHierarchy

o javalang.Object
o javautil.AbstractCollection<E> (implements java.util.Collection<E>)
o javautil.AbstractList<E> (implements java.util.List<E>)
o javautil.AbstractSequentialList<E>
o javadutil.LinkedL ist<E> (implements java.lang.Cloneable,
javauutil.List<E>, java.util.Queue<E>, java.io.Seridizable)
o javautil.ArrayL ist<E> (implements java.lang.Cloneable,
javauutil.List<E>, java.util.RandomA ccess, java.io.Serializable)
o javautil.Vector<E> (implements java.lang.Cloneable,
javauutil.List<E>, java.util.RandomA ccess, java.io.Serializable)
o javautil.Stack<E>
o javautil. AbstractQueue<E> (implements java.util.Queue<E>)
o javautil.PriorityQueue<E> (implements java.io.Serializable)
o javautil.AbstractSet<E> (implements java.util.Set<E>)
o javautil.EnumSet<E> (implementsjava.lang.Cloneable,
javaio.Serializable)
o javautil.HashSet<E> (implementsjava.lang.Cloneable,
javaio.Serializable, java.util.Set<E>)
o javautil.LinkedHashSet<E> (implements
javalang.Cloneable, java.io.Serializable, java.util.Set<E>)
o javautil.TreeSet<E> (implements java.lang.Cloneable,
javaio.Serializable, java.util.SortedSet<E>)
java.util. AbstractM ap<K,V> (implements java.util. Map<K,V>)
o javautil.EnumMap<K,V> (implements java.lang.Cloneable,
javaio.Serializable)
o javautil.HashMap<K,V> (implements java.lang.Cloneable,
java.util.Map<K,V>, java.io.Serializable)
o javautil.LinkedHashM ap<K,V> (implements
java.util.Map<K,V>)
o javadutil.ldentityHashM ap<K,V> (implements java.lang.Cloneable,
java.util.Map<K,V>, java.io.Serializable)
o javautil.TreeMap<K,V> (implementsjava.lang.Cloneable,
javaio.Seriaizable, java.util.SortedM ap<K,V>)
o javautil.WeakHashM ap<K,V> (implements java.util.Map<K,V>)
java.util.Arrays
javauutil.BitSet (implements java.lang.Cloneable, java.io.Seriaizable)
javautil.Calendar (implementsjava.lang.Cloneable, javalang.Comparable<T>,
javaio.Serializable)
o javautil.GregorianCalendar
java.util.Collections
javautil.Currency (implements java.io.Serializable)
java.util.Date (implements java.lang.Cloneabl e, java.lang.Comparable<T>,
javaio.Serializable)
javauutil.Dictionary<K,V>

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractCollection.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractSequentialList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/RandomAccess.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Vector.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/RandomAccess.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Stack.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractQueue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PriorityQueue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Set.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EnumSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/HashSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Set.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedHashSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Set.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/AbstractMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EnumMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedHashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IdentityHashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SortedMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/WeakHashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Arrays.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/BitSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Calendar.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/GregorianCalendar.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Currency.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Dictionary.html

o javautil.Hashtable<K,V> (implements java.lang.Cloneable,
java.util.Map<K,V>, java.io.Serializable)
o javautil.Properties
java.util.EventL istener Proxy (implements java.util.EventListener)
java.util.EventObj ect (implements java.io.Seriaizable)
java.util.For mattableFlags
java.util.Formatter (implementsjavaio.Closeable, javaio.Flushable)
java.util.L ocale (implements java.lang.Cloneable, java.io.Serializable)
javautil.Observable
java.security.Per mission (implements java.security.Guard, java.io.Serializable)
o javasecurity.BasicPermission (implementsjava.io.Serializable)
o javautil.PropertyPermission
java.util.Random (implements java.io.Serializable)
java.util.Resour ceBundle
o javautil.ListResourceBundle
o javautil.PropertyResourceBundle
java.util.Scanner (implements java.util.lterator<E>)
javautil.StringT okenizer (implements java.util.Enumeration<E>)
javalang.Throwable (implements java.io.Serializable)
o javalang.Exception
o javaio.lOException
o javautil.InvalidPropertiesFor matException
o javalang.RuntimeException
o javautil.ConcurrentM odificationException
o javautil.EmptyStack Exception
o javalang.lllegalArgumentException
o javautil.lllegalFor matException
o javautil.DuplicateFor matFlagsException
o javautil.FormatFlagsConversionMismatc
hException
o javautil.lllegalFor matCodePointExceptio
n
o javautil.lllegalFormatConver sionExceptio
n
javautil.lllegal For matFlagsException
java.util.lllegal For matPr ecisionException
javauutil.lllegal For matWidthException
javautil.MissingFor matAr gumentExcepti
on
java.util.MissingFor matWidthException
o javautil.UnknownFor matConversionExce
ption
o javautil.UnknownFor matFlagsException
o javalang.lllegalStateException
o javautil.Formatter ClosedException
o javautil.MissingResour ceException

O O O O

o

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Hashtable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EventListenerProxy.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EventListener.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EventObject.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormattableFlags.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Closeable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Flushable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Observable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/security/Permission.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/security/Guard.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/security/BasicPermission.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PropertyPermission.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Random.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ResourceBundle.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ListResourceBundle.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/PropertyResourceBundle.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Scanner.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/StringTokenizer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Enumeration.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Throwable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/InvalidPropertiesFormatException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ConcurrentModificationException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EmptyStackException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IllegalArgumentException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/DuplicateFormatFlagsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormatFlagsConversionMismatchException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormatFlagsConversionMismatchException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormatFlagsConversionMismatchException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatCodePointException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatCodePointException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatCodePointException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatConversionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatConversionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatConversionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatFlagsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatPrecisionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/IllegalFormatWidthException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingFormatArgumentException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingFormatArgumentException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingFormatArgumentException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingFormatWidthException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UnknownFormatConversionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UnknownFormatConversionException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UnknownFormatFlagsException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/FormatterClosedException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/MissingResourceException.html

o javautil.NoSuchElementException
o javautil.InputMismatchException
o javautil.TooManyL istener sException

javautil.Timer
javautil.Timer Task (implements java.lang.Runnable)
java.util.TimeZone (implements java.lang.Cloneable, java.io.Serializable)
o javautil.SimpleTimeZone
java.util.UUID (implements java.lang.Comparable<T>, java.io.Serializable)

Interface Hierarchy

java.util.Compar ator <T>
javautil. Enumer ation<E>
java.util . EventL istener
java.util.For mattable
javalang.lterable<T>
o javautil.Collection<E>
o javautil.List<E>
o javautil.Queue<E>
o javautil.Set<E>
o javautil.SortedSet<E>
o javadtil.lterator<E>
javautil.Listlterator <E>
o javautil.Map<K,vV>
java.util.SortedM ap<K,V>
o javautil.Map.Entry<K,v>
o javautil.Observer
o javautil.RandomA ccess

O O O O ©

Enum Hierarchy

o javalang.Object
o javalang.Enum<E> (implements java.lang.Comparable<T>, java.io.Serializable)
o javautil.Formatter.BigDecimalL ayoutForm

I ntroduction

The Java 2 platform includes a collections framework. A collection is an object that represents a
group of objects (such as the familiar Vector class). A collections framework is a unified
architecture for representing and manipulating collections, allowing them to be manipulated
independently of the details of their representation.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/InputMismatchException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TooManyListenersException.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Timer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TimerTask.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Runnable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SimpleTimeZone.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Enumeration.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/EventListener.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formattable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Set.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ListIterator.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/SortedMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Map.Entry.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Observer.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/RandomAccess.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Enum.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.BigDecimalLayoutForm.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Vector.html

In order to handle group of objects we can use array of objects. If we have a class called Employ
with members name and id, if we want to store details of 10 Employees, create an array of object
to hold 10 Employ details.

Employ ob [] = new Employ [10];

We cannot store different class objects into same array.

Inserting element at the end of array is easy but at the middle is difficult.

After retriving the elements from the array, in order to process the elements we dont
have any methods

Collection Object:

A collection object is an object which can store group of other objects.

A collection object has a class called Collection class or Container class.

All the collection classes are available in the package called 'java.util’ (util stands for
utility).

Group of collection classesis called a Collection Framework.

A collection object does not store the physical copies of other objects; it stores references
of other objects.

The primary advantages of a collections framework are that it:

Reduces programming effort by providing useful data structures and algorithms so you
don't have to write them yourself.

I ncreases perfor mance by providing high-performance implementations of useful data
structures and algorithms. Because the various implementations of each interface are
interchangeable, programs can be easily tuned by switching implementations.
Providesinteroper ability between unrelated APIs by establishing a common language
to pass collections back and forth.

Reducesthe effort required to learn APIs by eliminating the need to learn multiple ad
hoc collection APIs.

Reducesthe effort required to design and implement APIs by eliminating the need to
produce ad hoc collections APIs.

Fosters softwar e reuse by providing a standard interface for collections and algorithms
to manipulate them.

The collections framework consists of ;

Collection Interfaces - Represent different types of collections, such as sets, lists and
maps. These interfaces form the basis of the framework.

General-purpose I mplementations - Primary implementations of the collection
interfaces.

e Legacy Implementations - The collection classes from earlier releases, Vector and
Hashtable, have been retrofitted to implement the collection interfaces.

e Special-purpose Implementations - Implementations designed for use in special
situations. These implementations display nonstandard performance characteristics, usage
restrictions, or behavior.

e Concurrent Implementations - Implementations designed for highly concurrent use.

o Wrapper Implementations - Add functionality, such as synchronization, to other
implementations.

« Convenience | mplementations - High-performance "mini-implementations” of the
collection interfaces.

e Abstract Implementations - Partial implementations of the collection interfaces to
facilitate custom implementations.

e Algorithms - Static methods that perform useful functions on collections, such as sorting
alist.

e Infrastructure - Interfaces that provide essential support for the collection interfaces.

e Array Utilities- Utility functions for arrays of primitives and reference objects. Not,
strictly speaking, a part of the Collections Framework, this functionality was added to the
Java platform at the same time and relies on some of the same infrastructure.

Collection Interfaces

There are nine collection interfaces. The most basic interface is Collection. Five interfaces
extend Collection: Set, List, SortedSet, Queue, and BlockingQueue. The other three collection
interfaces, Map, SortedM ap, and ConcurrentMap do not extend Collection, as they represent
mappings rather than true collections. However, these interfaces contain collection-view
operations, which allow them to be manipulated as collections.

All of the modification methods in the collection interfaces are labeled optional. Some
implementations may not perform one or more of these operations, throwing a runtime exception
(UnsupportedOperationException) if they are attempted. Implementations must specify in their
documentation which optional operations they support. Several terms are introduced to aid in this
specification:

e Collectionsthat do not support any modification operations (such as add, remove and
clear) arereferred to as unmodifiable. Collections that are not unmodifiable are referred
to modifiable.

o Collectionsthat additionally guarantee that no change in the Collection object will ever
be visible are referred to as immutable. Collections that are not immutable are referred to
as mutable.

o Liststhat guarantee that their size remains constant even though the elements may change
are referred to as fixed-size. Lists that are not fixed-size are referred to as variable-size.

o Liststhat support fast (generaly constant time) indexed element access are known as
random access lists. Lists that do not support fast indexed element access are known as

sequential access lists. The RandomA ccess marker interface is provided to allow liststo
advertise the fact that they support random access. This allows generic algorithms to alter
their behavior to provide good performance when applied to either random or sequential
accesslists.

Some implementations may restrict what elements (or in the case of Maps, keys and values) may
be stored. Possible restrictions include requiring el ements to:

e Beof aparticular type.
e Benon-null.
e Obey some arbitrary predicate.

Attempting to add an element that violates an implementation's restrictions results in a runtime
exception, typicaly a ClassCastException, an Illegal ArgumentException or a
NullPointerException. Attempting to remove or test for the presence of an element that violates
an implementation's restrictions may result in an exception, though some "restricted collections’
may permit this usage.

Collection I mplementations

Classes that implement the collection interfaces typically have names of the form
<Implementation-style><Interface>. The general purpose implementations are summarized in the
table below:

I mplementations

Hash Resizable Balanced Linked |Hash Table+ Linked

Table Array Tree List List
Set |HashSet TreeSet LinkedHashSet
Interfaces| List ArrayList LinkedList
Map HashMap TreeMap LinkedHashMap

The general-purpose implementations support al of the optional operations in the collection
interfaces, and have no restrictions on the elements they may contain. They are unsynchronized,
but the Collections class contains static factories called synchronization wrappers that may be
used to add synchronization to any unsynchronized collection. All of the new implementations

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/RandomAccess.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/HashSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedHashSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/LinkedHashMap.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Collections.html#synchronizedCollection%28java.util.Collection%29

have fail-fast iterators, which detect illegal concurrent modification, and fail quickly and cleanly
(rather than behaving erratically).

e The AbstractCollection, AbstractSet, AbstractList, AbstractSequentialList and
AbstractMap classes provide skeletal implementations of the core collection interfaces, to
minimize the effort required to implement them. The API documentation for these classes
describes precisely how each method isimplemented so the implementer knows which
methods should be overridden, given the performance of the "basic operations’ of a
specific implementation.

e Set: A Set represents a group of elements (objects) arranged just like an array. The set
will grow dynamically when the elements are stored into it. A set will not alow
duplicate elements.

o List: Listsarelike sets but allow duplicate values to be stored.

e Queue: A Queue represents arrangement of elements in FIFO (First In First Out) order.
This means that an element that is stored asa first element into the queue will be
removed first from the queue.

e Map: Maps store elements in the form of key vaue pairs. If the key is provided
its corresponding value can be obtained.

Retrieving Elements from Collections: Following are the ways to retrieve any element from a
collection object:

o Using Iterator interface.
e Using Listlterator interface.
e Using Enumeration interface.

Iterator Interface: Iterator is an interface that contains methods to retrieve the elements one by
one from a collection object. It retrieves elementsonly in forward direction. It has 3 methods:

Methad Description
iHJU[I:‘_-i:'III hasMexti} | This method irlu:ll;._'.iun:.if'ﬂl:: erator has more :_[r;m-:nlr-.
| element next{) This method retums the naxrt element in the iterator.,
void remover) This method removes the last clement from the collection
retuimed by the terator.

Listlterator Interface: Listlterator is an interface that contains methods to retrieve the elements
from a collection object, both in forward and reverse directions. It can retrieve the elements in
forward and backward direction. It has the following important methods:

_ Moethed
boolean hasMexi)

L‘ms:riplinn
This method refwns ue if the Ligiliemsior has more elemenis
when traversing the list in forwand direction.

element nexi

This method retems the next element.

soud remavel)

This mathod removes the list [ast element that was retumed by the
next (b or previous () methods.

boolean hasPrevious()

Thiz method reterns true if the Listherator has more elements
when traversing the list in reverse direction.

element previousy)

This method retums the previous element in the list

Enumeration Interface: Thisinterface is useful to retrieve elements one by one like Iterator. It

has 2 methods.

Method

Description

boolein hashMoreElements!)

This method 1est: Enumeration bas any more elements,

element nextElement()

_This returns the next element that is available in Enumeration.

HashSet Class: HashSet represents a set of elements (objects). It does not guarantee the order of
elements. Also it does not alow the duplicate elements to be stored.

» Wecan writethe HashSet class as: class HashSet<T>
» Wecan createthe object as:. HashSet<String> hs = new HashSet<String> ();

The following constructors are available in HashSet:

e HashSet();

o HashSet (int capacity); Here capacity represents how many elements can be stored into
the HashSet initialy. This capacity may increase automatically when more number of
elementsis being stored.

HashSet Class Methods:

Method

Description

boolean add{ohj)

This method adds an element obj to the HashSet. It retums true if the
| element is added to the HashSet, elsc it retums false. If the same

element is already available in the HashSet, then the present element is

ot added.

baolean removelobi)

This method removes the element obj from the HashSet if it is
present, It retums true if the element 18 removed successiully

otherwise false,

void clean)

This removes all the elements from the HashSet

boolean containsiobj)

This returns true if the HashSet contains the specified element obj.

boolean isEmpiv |

This returns true if the HashSet contatns no elements.

int size()

This rétums the number of elements present in the HashSel,

Program : Write a program which shows the use of HashSet and Iterator.
//HashSet Demo
import java.util.*;
classHS
{ public static void main(String argg[])
{ llcreate aHashSet to store Strings
HashSet <String> hs = new HashSet<String> ();
//Store some String elements
hs.add ("India");
hs.add ("America");
hs.add ("Japan”);
hs.add ("China");
hs.add ("America");
IIview the HashSet
System.out.printin ("HashSet =" + hs);
/ladd an Iterator to hs
Iterator it = hs.iterator ();
/[display element by element using Iterator
System.out.printin ("Elements Using Iterator: ");
while (it.hasNext())
{ String s= (String) it.next ();
System.out.printin(s);
}
}

}
Output:

¢y CAAWINDOWS sy stem3 2 wemd .exe
D:sJQR>javac HS.java

D:~JQR>java HE
HazhSet = [America, China. Japan. Indial

Elements lUsing Iterator:

LinkedHashSet Class: This is a subclass of HashSet class and does not contain any
additional members on its own. LinkedHashSet internally uses a linked list to store the
elements. It is ageneric class that has the declaration:

class LinkedHashSet<T>

Stack Class: A stack represents a group of elements stored in LIFO (Last In First Out)
order.

Thismeans that the element which is stored as a last element into the stack will be
the first element to be removed from the stack. Inserting the elements (Objects) into
the stack is called push operation and removing the elements from stack is called pop
operation. Searching for an element in stack is called peep operation. Insertion and deletion
of elements take place only from one side of the stack, called top of the stack. We can write a
Stack class as:

class Stack<E>

e.g.. Stack<Integer> obj = new Stack<Integer> ();

Stack Class Methods:
Method Description
boolean empty(| this method tests whether the stack is empty or not. [f the stack is
gmpy then true is returned otherwize false
element peeki) this method retums the top most object from the swack without
removing i
element pop() this method pops the lop-most element from the stack and retums it. |

element pushielement oby) | tis method pushes an element ob) onlo the wp of the stack and
retums that element.

int scarch({Object obj) This methed retums the position of an element obj from the top of
the stack. I the element (object) is not found in the stack then it
reiums - 1.

Program : Write aprogram to perform different operations on a stack.
/Ipushing, popping, searching elementsin a stack

import java.io.*;

import java.util .*;

class Stackl

{

int top=-1,st[]=new int[5];
void push(int el)

{

st[++top]=él;

}

int pop()

{

return(st[top--]);

}

void display()

{
System.out.printIn("\nStack elements from top to bottom\n");
for(int i=top;i>=0;i--)
System.out.printin(st[i]);
}

boolean isFull()

{

return(top==5-1);

}

boolean isEmpty()

{

return(top==-1);

}

}

class Stack

{
public static void main(String a[])

{
Scanner sc=new Scanner(System.in);
Stackl s=new Stack1();
int el=0,ch=1,
while(ch!=4)
{
System.out.printIn("\n1.PUSH\n2.POP\N3.DISPLAY \n4.EXIT");
System.out.printin("ENTER YOUR CHOICE");
ch=sc.nextInt();
switch(ch)
{
case L:if(s.isFull())
System.out.printIn("\nstack is full");
else
{
System.out.printIn("Enter element”);
el=sc.nextInt();
s.push(el);
} break;
case 2:if(s.isEmpty())
System.out.printIn("\nstack is empty");

ese

{
el=s.pop();

System.out.printin("\nDeleted element = "+¢l);
} break;
case 3:if(s.isEmpty())
System.out.printin("\nstack is empty");
else
s.display();
break;
case 4:break;

default: System.out.printIn("\nEnter correct choice");

}

}
}
}

LinkedList Class: A linked list contains a group of elements in the form of nodes. Each
node will have three fields- the data field contatins data and the link fields contain
references to previous and next nodes.A linked list iswritten in the form of:

class LinkedList<E>
we can create an empty linked list for storing String type elements (objects) as:
LinkedList <String> Il = new LinkedList<String> ();

LinkedList Class methods:

Method

Description

boolean add (element obj)

This method adds an element 1o the hnked List It retwms true if the
element is added successiully.

void add(int position,
element obj)

Thiz method insents an element obj into the linked list at a specified
position.

void addFirst{element ohj)

Thiz method adds the element obj at the first position of the linked
list.

voud addLast(element abj)

This method adds the element ob) at the last position of the hinked
list.

element removeFirst ()

This method removes the Orst element from the linked list and
returms 1.

element removelast ()

This method removes the last element from the linked hst and
relurms .

element remove [int
posilion)

This method removes an element at the specified position in the
linked list.

void elear ()

This method removes all the slements from the linked list.

element el (int position)

This method retums the element at the specified positon n the
binked st

element getFirst ()

This methed retums the first clement from the list,

element getlast ()

This method returns the last element from the bist,

clement set(int position,

This method replaces the clement at the specified position in the list

elemnent obj) with the specified element obj,
int size () Fetums number of elements in the linked list.
int indexOF (Object obj) This method returns the ndex of the first occurrence of the

specified element in the list, or -1 if the List does not contain the |
glement.

int lastindexOf (Ohject
ohjl

This method retums the index of the last occumence of the specified
element in the hist, or -1 if the list does not contain the clement

Obgect[] toArray()

This method convents the linked hst into an array of Object class
type. All the elements of the linked list will be stored into the array
in the same sequence.

Note: In case of LinkedList counting starts from 0 and we start counting from 1.

Program : Write a program that shows the use of LinkedList class.

import java.util.*;
//Linked List

class LinkedDemo

{ public static void main(String arg[])

{ LinkedList <String> Il = new LinkedList<String>();

ll.add ("Asid");

[l.add ("North America);

Il.add ("South America');

Il.add ("Africa');

[l.addFirst ("Europe");

[l.add (1,"Austraia");

Il.add (2,"Antarctica’);

System.out.printin ("Elementsin Linked Listis: " + Il);

System.out.println ("Size of the Linked Listis: " + |l.siz&());

= CIAWINDOWS sy stem32lcnd.exe
D=~JQR>javac LinkedDemo.java

D=~JQR>java LinkedDemo

Elements in Linked List iz : [Europe. Australia. Antarctica. Asia. Morth Americal
- South America. Africal

Size of the Linked List is = 7

D:=~.JQR>

ArrayList Class. An ArrayList is like an array, which can grow in memory
dynamically.

ArrayList is not synchronized. This means that when more than one thread acts
simultaneously on the ArrayList object, the results may be incorrect in some cases.

ArrayList class can be written as. class ArrayList <E>

We can create an object to ArrayList as. ArrayList <String> arl = new ArrayList<String> ();

ArrayList Class Methods:
I Method Descriplion
boolean add (element ob)) | This method appends the specitied element to the end of the
ArmavList [F the element is added successlully then the method
refums lrue.

void addiint posilion, This method nsecis the specified element at the specilied positiom
element obj) | in the ArrayList,
clement remove(int This method removes the element at the specified position in the
posIIoNn) ArmavList and remrns it

bonlean remove (Object This method removes the first occurrence of the specified element |

bl

[ohj from the AmavList, it is preseni.

wind elear ()

| This method removes all the elements from the ArrayList.

element serfint position,

bowlean contaims (Ohject
__obj)

element get (int position)

int size 1)

_element oby) |

| This method replaces an element af the specified position in the

AmayList with the specified element obj. .

| This methad rewms true if the AmayList contains the specified

| element obj. s e S
This nethod retums the element available a1 the specified position

| in the ArrayList,

| Returns number of elements in the ArrayLisy

int mdexOf (Ohject obj)

| This method retums the index of the first occurrence of the
| specified element m the list, or =1 1f the hst does not contam the
[element

int lastindexOf (Object
obil

I This method retums the index of the last occumrence of the specified
element in the list, or =1 if the list does net contan the element.

Ohject[] toArmay ()

[hiz method convens the AmayLlist into an aray of Object class
[tvpe, All the elements of the ArravList will be stored mito the ammay
| in the same saquence.

Program : Write a program that shows the use of ArrayL.ist class.

import java.util.*;
/[ArrayList Demo

class ArrayListDemo

{ public static void main(String args[])

{ ArrayList <String> a = new ArrayList<String>();

a.add ("Asia");

al.add ("North America');
al.add ("South America');
a.add ("Africa");

al.add ("Europe");

a.add (1,"Austraia");
al.add (2,"Antarctica');

System.out.print ("Size of

the Array Listis: " + a.size());

System.out.print ("\nRetrieving elementsin ArrayList using Iterator :");

Iterator it = al.iterator ();
while (it.hasNext ())

System.out.print (it.next () + "\t");

CAWTHDOWSsystem32icmd . exe

D:~JQR>javac ArrayListDemo.java

D:~JQR>java

Morth America

ArrayListDemo
Size of the Array List is:
Retrieving elements in ArraylList wsing Iterator
South America

?
tAsia Australia

Africa Europe

Vector Class: Similar to ArrayList, but Vector is synchronized. It means even if severa
threads act on Vector object simultaneously, the results will be reliable.

Vector class can bewritten as. class Vector <E>

We can create an object to Vector as: Vector <String> v = new Vector<String> ();

Vector Class M ethods;

Method

Description

boolean add{ element obj)

This method appends the specified element 1o the end of the Vector
If the element is added successiully then the method relums rue

vold add (int position,
element ahj)

[his method inserts the specified element at the specified positioin
in the Veclor

element remove [1nl

This method removes the ¢lement at the specified position in the

~ position | Vector and retums it. _ _ _
boolean remove (Ohject This method removes the Grst occurrence of the specified element
abj obj from the Vector, if it 18 presenl

sond elear ()

This method removes all the elements vom the Veclor.

element set {int position,
clement obj)

This method replaces an element ai the specified position in the
Vector with the specified element oby.

baalenn contans (Ohject

abj b

This method retums true if the Vector containg the specified
element ohj.

element get {int position)

This method retums the element available at the specified position
in the Vecior

et st ()

Beiums number of elements m the Yector,

10 WREER LT (LIDECT O) 11IS Metnon refums mneg edex o7 me TSt OoSrence ol e
specihied element 10 the Vector, or =1 i the Vector does not contain
the element.

int lastIndexOf {Object This mathod returns the index of the last occurrence of the specified
obj) | element in the Yector, or -1 if the Vector does not comtain the

glement,
Ofjeci[] toArray () Thiz method converts the Vecior into an array of Object class tvpe.

All the elemenis of the Vector will be stored into the aray in the
SArme ﬁﬂl'.il.[l.‘nL'L'.

Int capacity () This method returns the current capacity of the Vector
Program : Write a program that shows the use of Vector class.
import java.util.*;
IV ector Demo
class VectorDemo
{ public static void main(String argg[])
{ Vector <Integer>v = new Vector<Integer> ();
int x[] = {10,20,30,40,50} ;
//When x[i] is stored into v below, x[i] values are converted into Integer Objects
//and stored into v. Thisis auto boxing.
for (inti = O; i<x.length; i++)
v.add(x[i]);
System.out.println ("Getting Vector elements using get () method: ");
for (inti =0; i<v.size(); i++)
System.out.print (v.get (i) + "\t");
System.out.printIn ("\nRetrieving elementsin Vector using Listlterator :");
Listlterator lit = v.listlterator ();
while (lit.hasNext ())
System.out.print (lit.next () +"\t");
System.out.println ("\nRetrieving elementsin reverse order using Listlterator :");
while (lit.hasPrevious ())

System.out.print (lit.previous () + "\t");

D:~JQR>java UectorDemo

Getting Vector elements using get <> method:
18 2A 3a 4

Retrieving
168 20 30 4@

Retrieving elements in reverse order wsing Listlterator =

38 28 18

elements in Uector uwsing ListIterator :

HashMap Class: HashMap is a collection that stores elements in the form of key-vaue
pairs. If key is provided later its corresponding value can be easily retrieved from the
HAshMap. Key should be unique. HashMap is not synchronized and hence while using
multiple threads on HashMap object, we get unreliable results.

We can write HashMap class as. class HashMap<K, V>

For example to store a String as key and an integer object as its value, we can
create the

HashMap as. HashMap<String, Integer> hm = new HashMap<String, Integer> ();

The default initial capacity of this HashMap will be taken as 16 and the load factor as 0.75.
Load factor represents at what level the HashMap capacity should be doubled. For
example, the product of capacity and load factor = 16 * 0.75 = 12. This represents that after
storing 12th key-value pair into the HashMap, its capacity will become 32.

HashMap Class M ethods:

Method

Description

value put { kev, value)

This method stores key-value pair into the HashMap

value pet (Object key)

This method retums the corresponding value when key is given. If
the kev does not have a value associated with it, then it retums null.

met<k keysel{]

Collection <W= values()

This method, when applizd on a HashMap converis if into a s2i
where only keys will be stored.

This method, when applied on a HashMap object returns all the
values of the HashMap into a Collection object.

value remove (Object key)

This method removes the key and corresponding value from the

HashMap.
vord clear {1 This method removes all the key-value pairs from the map. |
boolean isEmpty () fhis method retums true if there are no key-value pairs in the
HashMap.

ing s12e (|

Ihis method retwrns number of key-value pairs in the HashMap.

Program : Write a program that shows the use of HashMap class.

/[HashMap Demo

import java.util.*;

class HashMapDemo

{ public static void main(String args[])

{ HashMap<Integer, String> hm = new HashMap<Integer, String> ();
hm.put (new Integer (101),"Naresh");
hm.put (new Integer (102),"Rajesh");
hm.put (new Integer (103)," Suresh");
hm.put (new Integer (104),"Mahesh");
hm.put (new Integer (105),"Ramesh");
Set<Integer> set = new HashSet<Integer>();
set = hm.keySet();

System.out.println (set);

cn CiIWIHDOWSisystem32vemd .exe

D=~JQR>javac HashMapDemo.java

D=“~JQR>java HaszhMapDemo
[182,. 1893, 161, 1684, 16851

D=~ JQR >

Hashtable Class: Hashtable is a collection that stores elements in the form of key-vaue
pairs. If key is provided later its corresponding value can be easily retrieved from the
HAshtable. Keys should be unique. Hashtable is synchronized and hence while using
multiple threads on Hashtable object, we get reliable results.

We can write Hashtable class as: class Hashtable<K ,V>

For example to store a String as key and an integer object as its value, we can
create the

Hashtableas. Hashtable<String, Integer> ht = new Hashtable<String, Integer> ();

The default initial capacity of this Hashtable will be taken as 11 and the load factor as 0.75.
Load factor represents at what level the Hashtable capacity should be doubled. For

example, the product of capacity and load factor = 11 * 0.75 = 8.25. This represents that
after storing 8th key-value pair into the Hashtabl e, its capacity will become 22.

Hashtable Class M ethods:

Method

Description

value putikey, value)
value getiObiject key)

This methed stores key-value pair into the Hashtable. |
This method retums the corresponding value when key is given, I
the key does not have a value associated with i, then it refums null.

Set<k= keysel()

This method, when gpplied on a Hashtable converts it into a set |
where only kevs will be stored,

Collection =%> values()

This method, when applied on a Hashtable object returns all the |
values of the Hashtable into a Collection object.

value removelOhject kev)

This method removes the key and corresponding valug from the
Hashtable.

void clearl)

This method removes all the kev-value pairs from the Hashrable,

boolean 1sEmpiyi)

This method reurns truee F there are no kevevalue pars o the
Hashiahle,

it size)

This miethod retums number ol I:;e:r'-valu: pa:ir.t in the Hashtable,

Program : Write aprogram that shows the use of Hashtable class.

//Hashtable Demo

import java.util.*;

class HashtableDemo

{ public static void main(String argd[])

{

Hashtable<Integer, String> ht = new Hashtable<Integer, String> ();

ht.put (new Integer (101),"Naresh");

ht.put (new Integer (102),"Rajesh”);

ht.put (new Integer (103)," Suresh”);

ht.put (new Integer (104),"Mahesh");

ht.put (new Integer (105),"Ramesh");

Enumeration e = ht.keys ();

while (e hasMoreElements ())

{

Integer i1 = (Integer) e.nextElement ();

System.out.printin (i1 + "\t" + ht.get (i1));

i Lo e D)

L adrLe De o

Arrays Class. Arrays class

provides methods to perform certain operations on any

single dimensional array. All the methods of the Arrays class are static, so they can be
caled in theform of Arrays.methodname ().

Arrays Class M ethods:

Method

Description

statie voud sort (array)

This method sorts all the elements of an armay info ascending
order. This method intemally uses QuickSort algorithm

SLALIC ﬂlll. sort I:H!Tﬁ_}'. H
star, int end)

This method sorts the elements in the mnge from start to end
within an array inte ascending order,

atatic int binarvSearch
(array, clement)

[his method searches for an element in the amay and retums its
position number, IF the element is not found i the aray. it retums
a negative value, Note that this method acts only on an array
which 15 sorted in ascending erder. This method intemally uses
BinarySearch algorithm,

static boolean equals
farray |, arrayv2)

[his method retums true if two amrays, that 1s array] and array2
are equal, olherwise false.

static array copyOf (source-
array, int n}

This method copies n elements from the source-array into another
array and retums the array,

statie void Al {array, value)

This method fills the amay with the specified value. It means that
all the elements in the array will receive that value

Program : Write a program to sort given numbers using sort () method of Arrays Class.
import java.util.*;
/[Arrays Demo
class ArraysDemo
{ public static void main(String args[])
{

int x[] = {40,50,10,30,20} ;

Arrays.sort(x);

for (int i=0;i<x.length;i++)

System.out.print(x[i] + "\t");

= CIUWYIHDO WS systemF 2w md e xe
D=~ JdR> jJowoc Arr-ogsDemo o goss o

r=an e e o
e] 4168

D =~ JOR > jawa A
L e 2
D =~ JOR>

StringTokenizer: The StringTokenizer class is useful to break a String into small pieces
called tokens. We can create an object to StringTokenizer as:

StringTokenizer st = new StringTokenizer (str, "delimeter");

StringTokenizer Class M ethods:

Method Description
String nexiToken() Retums the next token from the StrmgTokenieer
boolean hashioreTokensd) | Retums true if ioken is available and retums false il nol available
it couni Tokenst) Eeturns the number of fokens available.

Program : Write a program that shows the use of StringTokenizer object.
/[cutting the String into tokens
import java.util.*;
class STDemo
{
public static void main(String argg[])
{ /ltakeaString
String str = "Javais an OOP Language”;
//brake wherever a space isfound
StringTokenizer st = new StringTokenizer (str,” ");
/Iretrieve tokens and display
System.out.printin ("Thetokens are: ");
while (st.hasMoreTokens ())
{
String s = st.nextToken ();

System.out.printin (s);

D:z~JJR>javac STDemo.java
D=~JQR>java STDemo

The tokens are:

Calendar: This class is useful to handle date and time. We can create an object to Caendar
classas: Caendar cl = Calendar.getinstance ();

Calendar Class M ethods:

Method [rescription

ml et Constant) This method réturns the value of the given Calendar constant
Examples of Constants are Calendar. DATE. Calendar. MONTH,
Calendar. YEAR, Calendar MINUTE, Calendar, SECOND,
Calendar. Houi

viid set(int field, int value) | This method sets the given field in Calendar Object to the given
value. For example, cl.setiCalendar DATE 15);

Strng toStnngi) This method retums the Stnong representation of the Calendar
abiject,

bhoolean equalsiOhject obj) | This method compares the Calendar object with another ohject obj
and returns trug if they are same, otherwise false.

Program : Write aprogram to display System time and date.
/[To display system time and date
import java.util.*;
class Cdl
{ public static void main(String args[])
{ Calendar cl = Calendar.getlnstance ();
//IRetrieve Date
int dd = cl.get (Calendar.DATE);
int mm = cl.get (Calendar. MONTH);
++mm;
int yy = cl.get (Calendar.Y EAR);
System.out.println ("Current Dateis: " +dd + "-" + mm +"-" +yy);
//IRetrieve Time
int hh = cl.get (Cadendar. HOUR);
int mi = cl.get (Calendar.MINUTE);
int ss = cl.get (Calendar.SECOND);

System.out.println ("Current Timeis: " + hh+":" + mi +":" +s3);

Cal.java

Cal
iz = 9182811
is = 4:31:42

Date Class. Date Class is aso useful to handle date and time. Once Date class object is
created, it should be formatted using the following methods of DateFormat class of java.text
package.We can create an object to Date classas. Date dd = new Date ();

Once Date class object is created, it should be formatted using the methods of DateFormat
class of java.text package.

DateFormat class M ethods:
o DateFormat fmt = DateFormat.getDatel nstance(formatconst, region);

This method is useful to store format information for date value into DateFormat object fmt.
o DateFormat fmt = DateFormat.getTimel nstance(formatconst, region);

This method is useful to store format information for time value into DateFormat object fmt.
o DateFormat fmt = DateFormat.getDateTimel nstance(formatconst, formatconst, region);

This method is useful to store format information for date value into DateFormat object fmt.

Formateonst | Example {region=Lacale.UK)

DaeFormat. FULL 03 seplember 2007 [9:43:14 O'Clock GMT + 05:30
DateFormat. LONG 03 september 2007 [9:43:14 GMT — 05:30
DateFormat, MEDILUM 03-sep-07 19:43:14

DiateFormat, SHORT | D3/09/0T 19:43

Program : Write a program that shows the use of Date class.
/IDisplay System date and time using Date class

import java.util.*;

import java.text.*;

class MyDate

{

public static void main(String argd[])
{ Dated=new Date ();
DateFormat fmt = DateFormat.getDateTimel nstance (DateFormat. MEDIUM,
DateFormat. SHORT, Locale.UK);
String str = fmt.format (d);

System.out.println (str);

o CIAWIHNDOWS sy stem32\cmd . exe

D:~JQR>javac MyDate. java

D=~JQR>java HuDate
B9 —-0ct-20811 16:45

D :=~.JQR>

Design Goals

The main design goal wasto produce an API that was reasonably small, both in size, and, more
importantly, in "conceptual weight." It was critical that the new functionality not seem alien to
current Java programmers; it had to augment current facilities, rather than replacing them. At the
same time, the new API had to be powerful enough to provide all the advantages described
above.

To keep the number of core interfaces small, the interfaces do not attempt to capture such subtle
distinctions as mutability, modifiability, and resizability. Instead, certain callsin the core
interfaces are optional, allowing implementations to throw an UnsupportedOperationException
to indicate that they do not support a specified optional operation. Of course, collection
implementers must clearly document which optional operations are supported by an
implementation.

To keep the number of methods in each core interface small, an interface contains a method only
if either:

1. Itisatruly fundamental operation: abasic operationsin terms of which others could be
reasonably defined,

2. Thereisacompelling performance reason why an important implementation would want
to overrideit.

It was critical that all reasonable representations of collections interoperate well. Thisincluded
arrays, which cannot be made to implement the Collection interface directly without changing
the language. Thus, the framework includes methods to allow collections to be dumped into
arrays, arrays to be viewed as collections, and maps to be viewed as collections.

MULTI THREADING

Multi Threading:

Java Language Classes
The javalang package contains the collection of base types (language types) that are always
imported into any given compilation unit. This is where you'll find the declarations of Object

(the root of the class hierarchy) and Class, plus threads, exceptions, wrappers for the primitive
datatypes, and avariety of other fundamental classes.

Throwable
Boolean
Thread
Group
i @ @
@

Sting

This picture illustrates the classes in java.lang, excluding all the exception and error classes.

Note the Boolean, Character, and Number classes--these classes are "wrapper” classes for the
primitive types. Y ou use these classes in applications where the primitive types must be stored as
objects. Note also the Throwable class--thisis the root class for al exceptions and errors.

Simply put, a thread is a program's path of execution. Most programs written today run as a
single thread, causing problems when multiple events or actions need to occur at the same time.
Let's say, for example, a program is not capable of drawing pictures while reading keystrokes.
The program must give its full attention to the keyboard input lacking the ability to handle more
than one event at atime. The ideal solution to this problem is the seamless execution of two
or mor e sections of a program at the sametime. Threads allow usto do this.

Multiprogramming is a rudimentary form of parallel processing in which several programs are
run at the same time on a uniprocessor.Since there is only one processor, there can be no true
simultaneous execution of different programs. Instead, the operating system executes part of one
program, then part of another, and so on. To the user it appears that all programs are executing at
the sametime.

Multitasking, in an operating system, is alowing a user to perform more than one computer task
(such as the operation of an application program) at atime. The operating system is able to keep
track of where you are in these tasks and go from one to the other without losing information

Multithreading is the ability of a program to manage its use by more than one thread at a time
.Dispatchable atomic units of the program are executing simultaneously.

Multithreaded applications deliver their potent power by running many threads concurrently
within a single program. From a logical point of view, multithreading means multiple lines of a
single program can be executed at the same time, however, it is not the same as starting a
program twice and saying that there are multiple lines of a program being executed at the same
time. In this case, the operating system is treating the programs as two separate and distinct
processes.

Uses of Threads:

Threads are used in designing serverside programs to handle multiple clients at atime.
Threads are used in games and animations.

We can reduce the idle time of processor.

Performance of processor isimproved.

Reduces interferences between execution and user interface.

YVVVYY

TheMain Thread

When a Java program starts up, one thread begins running immediately. Thisis usualy called the
main thread of your program, because it is the one that is executed when your program begins.

The main thread is important for two reasons:
* It is the thread from which other “child” threads will be spawned.

 Often, it must be the last thread to finish execution because it performs various shutdown
actions.

Although the main thread is created automatically when your program is started, it can be
controlled through a Thread object. To do so, you must obtain a reference to it by calling the
method currentThread(), which is a public static member of Thread. Its genera form is shown
here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a reference to
the main thread, you can control it just like any other thread.

Let’s begin by reviewing the following example:
Program : Write a program to know the currently running Thread
/[Currently running thread

class Current

{

public static void main(String argg[])

{

System.out.printin ("Thisisfirst statement");
Thread t = Thread.currentThread ();
System.out.printin ("Current Thread: " + t);
System.out.printin ("Its name: " + t.getName ());

System.out.printin ("Its priority:" + t.getPriority ());

e IGH java Garrent

IThia 1is Filwst sCtatemeEnt

Ciirraent Thread: Thesmadlmain.S . imeinl
Iva dvaupeiz 5 Pea i

It priseitpth

Differ ences between multi threading and multitasking:

MULTI THREADING MULTI TASKING

1). More than one thread running 1). More than one process running

simultaneously simultaneously

2). Its part of a program 2). lts a program.

3).itisalight-weight process. 3). It isaheavy-weight process.

4). Threads are divided into sub threads 4). Processis divided into threads.

5). Within the process threads are 5). Inter process communication is difficulty

communi cated.

6). Context switching between threadsis 6). Context switching between processis costly

cheaper.

7). Itis controlled by Java(JVM) 7). It is controlled by operating System.

8).It isa specialized form of multi tasking 8). Itisageneralized form of multi threading.

9). Example: java’s automatic garbage 8). Program compilation at command prompt

collector. window and preparing documentation at MS-
Office.

What is Garbage Collection?

Garbage Collection in computer science is aform of automatic memory management. The
garbage collector, or just collector, attempts to reclaim garbage, or memory occupied by objects
that are no longer in use by the program. Garbage collection does not traditionally manage
limited resources other than memory that typical programs use, such as network sockets,
database handles, user interaction windows, and file and device descriptors.

History:
Garbage collection was invented by John McCarthy around 1959 to solve problemsin Lisp.

Basic principle of Garbage Collection:
The basic principles of garbage collection are:

» Find dataobjectsin a program that cannot be accessed in the future
e Reclaim the resources used by those objects

It iskind of interesting to know how the objects without reference are found. Java normally finds
al the objects that have reference and then regards rest of the objects are reference less — which
isin fact avery smart way of finding the unreferenced java objects.

Types of Java Garbage Collector sGarbage Collection Algorithms:
On J2SE 5.0 and above, one can normally find the following types of Java Garbage collectors
that the programmers can normally choose to do a garbage collection through JVM Parameters.

The Serial Collector:
e JVM Option Parameter: -XX:+UseSerial GC
The Throughput Collector or The Parallel Collector:

e JVM Option Parameter: -XX:+UseParallel GC
e Young Generation GC done in parallel threads
e Tenured Generation GC donein serid threads.

Parallel Old Generation Collector:

e JVM Option Parameter: -XX:+UseParallelOldGC

e Certain phases of an ‘Old Generation’ collection can be performed in parallel, speeding
up aold generation collection.

The Concurrent L ow Pause Collector:

e JVM Option Parameter -Xincgc or -XX:+UseConcMarkSweepGC
e The concurrent collector is used to collect the tenured generation and does most of the
collection concurrently with the execution of the application. The application is paused
for short periods during the collection.
« A parallel version of the young generation copying collector is used with the concurrent
collector.
e The concurrent low pause collector is used if the option -XX:+UseConcMarkSweepGC is
passed on the command line.
o -XX:+UseConcMarkSweepGC -X X:+UseParNewGC
o Selectsthe Concurrent Mark Sweep collector.
o Thiscollector may deliver better response time properties for the application (i.e.,
low application pause time).
o Itisaparald and mostly-concurrent collector and and can be a good match for
the threading ability of an large multi-processor systems.

Theincremental (sometimes called train) low pause collector:

JVM Option Parameter: -XX:+UseTrainGC

This collector has not changed since the J2SE Platform version 1.4.2 and is currently not under
active development.

It will not be supported in future rel eases.

Note that -XX:+UseParallel GC should not be used with -XX:+ UseConcMarkSveepGC .
The argument parsing in the J2SE Platform starting with version 1.4.2 should only alow lega

combination of command line options for garbage collectors, but earlier releases may not detect
al illega combination and the results for illegal combination are unpredictable.

Benefits of Garbage Collection:
Garbage collection frees the programmer from manually dealing with memory deallocation. Asa
result, certain categories of bugs are eliminated or substantially reduced:

« Dangling pointer bugs, which occur when a piece of memory is freed while there are still
pointersto it, and one of those pointersis then used. By then the memory may have been
re-assigned to another use, with unpredictable results.

o Double free bugs, which occur when the program tries to free aregion of memory that
has already been freed, and perhaps already been allocated again.

e Certain kinds of memory leaks, in which a program fails to free memory occupied by
objects that will not be used again, leading, over time, to memory exhaustion.

Disadvantages of Garbage Collection:

o Consumes computing resources in deciding what memory is to be freed, reconstructing
facts that may have been known to the programmer often leading to decreased or uneven
performance.

« Interaction with memory hierarchy effects can make this overhead intolerable in
circumstances that are hard to predict or to detect in routine testing.

« The moment when the garbage is actually collected can be unpredictable, resulting in
stalls scattered throughout a session.

« Memory may leak despite the presence of a garbage collector, if references to unused
objects are not themselves manually disposed of. Thisis described as alogical memory
leak.The belief that garbage collection eliminates all leaks leads many programmers not
to guard against creating such leaks.

« Invirtua memory environments, it can be difficult for the garbage collector to notice
when collection is needed, resulting in large amounts of accumulated garbage, along,
disruptive collection phase, and other programs’ data swapped out.

o Garbage collectors often exhibit poor locality (interacting badly with cache and virtual
memory systems), occupy more address space than the program actually uses at any one
time, and touch otherwise idle pages.

o Garbage collectors may cause thrashing, in which a program spends more time copying
data between various grades of storage than performing useful work.

Thread Life Cycle:

Thread States (Life-Cycle of a Thread): The life cycle of a thread contains severa states. At any
time the thread falls into any one of the states.

o T
I’J Harn)
b by
T —&leeping lnteryvg| expires e — e
| Start
e T
\ e e Motily ull_..[/} Ready H‘|
\'| r o Bad S e 3
: r/ Walting j;—".ﬁm_v e Lot e
"'-... b r— ——7Assign a Processor . h"-\l
- - e Blocked
\"-.. TES——— l.'l-lﬂl“lll}f Expires 1 __d.rr‘q,& i _J‘,.J
T A lsue D" — R
“',. “"M.H P Runmning Ty " B
"‘-.1. — __P--‘}““'“—— ___.__.-.I::L'__d_- 1Ay Covmvpeled i
(Sleeping \':u___---" T
3 A v Complete
ff Dl ks

N o

Fig: Thread Life Cycle

The thread that was just created is in the born state.

The thread remains in this state until the threads start method is called. This causes the

thread to enter the ready state.

The highest priority ready thread enters the running state when system assigns a

processor to the thread i.e., the thread begins executing.

When a running thread calls wait the thread enters into awaiting state for the

particular object on which wait was called. Every thread in the waiting state for a given

object becomes ready on a call to notify all by another thread associated with that object.

» When a sleep method is called in a running thread that thread enters into the
suspended (sleep) state. A sleeping thread becomes ready after the designated sleep
time expires. A sleeping thread cannot use a processor even if oneis available.

» A thread enters the dead state when its run () method completes (or) terminates
for any reason. A dead thread is eventually be disposed of by the system.

» One common way for a running thread to enter the blocked state is when the thread issues

an input or output request. In this case a blocked thread becomes ready when the input or

output waits for completes. A blocked thread can’t use a processor even if one is

available.

YV VWV VY

Creating Threads:

We know that in every java program, there is amain thread available already. Apart from this
main thread, we can also create our owen threads in a program. The following steps should be

used.
>

>

Write a class that extends Thread class or implements Runnable interface this is
available in lang package.

Class Myclass extends Thread (or)

Class Myclass implements Runnable

Write public void run () method in that class. This is the method by default executed by
any thread.

Public void run()

{
}

Create an object to my class, so that the run() method is available for execution.
Myclass obj=new Myclass();
Create athread and attach it to the object.
Thread t=new Thread(obj);
or

Satements;

To create a Thread, we can use the following forms:

Thread t1 = new Thread ();
Thread t2 = new Thread (obj);
Thread t3 = new Thread (obj, "thread-name”);
Start running the threads.
t.start();

Syntactical code for creating and running the thread:
Class Myclass extends Thread (or)
Class Myclass implements Runnable

{

Public void run()

{

Statements,

}

}

Class Demo

{

Public static void main(String argg[])throws InterruptedException
{

Myclass obj=new Myclass();

Thread t=new Thread(obyj);
t.start();

}

}

Thread Class M ethods:

To know the currently running thread: ~ Thread t = Thread.currentThread ();

To start athread: t.start ();

To stop execution of athread for aspecifictime: Thread.sleep (milliseconds);

To get the name of the thread: Sring name = t.getName ();

To set the new name to the thread: t.setName ("New Name");

To get the priority of the thread: int priority = t.getPriority();

To set the priority of the thread: t.setPriority (int priority);

Thread priorities can change from 1 to 10. We can aso use the following constants to
represent priorities:. Thread. MAX_PRIORITY valueis 10

VVVYYVVYY

Thread.MIN_PRIORITY valueis1
Thread.NORM_PRIORITY valueis5

> Totestif athread is till alive: t.isAlive () returnstrue/false

» Towait till athread dies: tjoin ();

» Tosend anotification to awaiting thread: obj.notify ();

» To send notification to all waiting threads. obj.notifyAll ();

» Towalit till the obj isreleased (till notification is sent): obj.wait ();

Method

Description

final boolean isdlivel)

final boolean isDaemon|)

boolean isinterrupted|)

final void join()
throws InterruptedException
final void join(long milliseconds)
throws InterruptedException
final void join(long milliseconds,
int nanoseconds)
throws InterruptedException

Returns true if the thread is still active. Otherwise,

it returns false.

Returns true if the thread i & daemon thread.

Otherwise, it returns false.

Returns true if the thread is interrupted.
Otherwise, it returns false.

\Waits until the thread terminates.

‘Waits up to the specified number of milliseconds
for the thread on which it is called to terminate.

Waits up to the specified number of milliseconds
plus nanoseconds for the thread on which it is
called to terminate.

void run()

Begins execution of & thread.

void setContextClassloaderClassloader of) | Sets the class loader that will be used by the
invoking thread to ol

final void setDeemon(boolean stats) Flags the thread as & daemon thread.

static void Sets the default uncaught exception handler to &.
setDefaultUncaughtExceptionHandler|
Thread. UncaughtExceptionHandler)

final void setMName(String threadName) Sets the name of the thread to that specified by

threadName.

final void setPriority(int oriority) [Sets the priorty of the thread to that specified by
priority.

void | Sets the imvoking thread's default uncaught

setUncaughtExceptionHandler|
Thread. UncaughtExceptionHandler)

static void sleep(long milliseconds)
throws InterruptedException

static void sleep(long milliseconds,
int nenoseconds)
throws InterruptedException

void start() [Starts execution of the thread.

exception handler to s.

Suspends execution of the thread for the specified
number of milliseconds.

Suspends execution of the thread for the specified
number of milliseconds plus nanoseconds.

String toString() Returns the string equivalent of a thread.
static void yield() The calling thread yields the CPU to another thread.

Program : Writea program to create and run a Thread.
/[creating and running a Thread
class MyThread extends Thread
{ publicvoid run ()
{ for (inti=0;i<100;i++)

{
System.out.print (i + "\t");
}
}
}

class TDemo
{ public static void main(String argg[])
{ MyThread obj = new MyThread ();
Thread t = new Thread (obj);
t.start ();

D=“JQR>javac TDemo.java

D:=~J3R>java TDemo
2 1 2

18
2d
34
449
=15}
6a
rdal
415]
74

D=\JQR>

As a result, the numbers will be displayed starting from 1 to 99 using a for loop. If u want to
terminate the program in the middle, u can press Ctrl+C from the keyboard. This leads to
abnormal program termination. It means the entire program is terminated, not just the thread.

If we want to terminate only the thread that is running the code inside run() method, we should
devise our own mechanism.if we press Ctrl+C, we are abnormally terminating the program. This
is dangerous. Abnormal program termination may cause loss of data and lead to unreliable
results. So,we should terminate the thread only, not the program.hown can we terminate the
thread smoothly is the question now.

Terminating the thread:

A thread will terminate automatically when it comes out of run() method. To terminate the
thread on our own logic. For the following steps can be used

1.Create the Boolean type variable and initialize it to false.
Boolean stop=falseg;

3.Let us assume that we want to terminate the thread when the user presses <Enter> key. So,
when the user presses that button, make the Boolean type variable as true.

Sop=true;

3.Check this variable in run() method and when it is true, make the thread return from the run()
method.

Public void run()
{
If(stop==true) return;
}
Program to showing how to terminate the thread by pressing the enter button
import java.io.*;
class MyThread implements Runnable
{
boolean stop=falseg;

public void run ()

{
for (inti = 0;i<=100000;i++)
{
System.out.print (i + "\t");
if(stop==true) return; //come out of run
}
}

class TDemo

{
public static void main(String argg[]) throws | OException
{
MyThread obj = new MyThread ();
Thread t = new Thread (obj);
t.start ();//stop the thread when enter key is pressed
System.in.read();
obj.stop=true;
}
}
Output:
0 1 2.

100 101 702...
Press <Enter> to stop the thread at any time.

What is the difference between ‘extends thread’ and ‘implements Runnable’ ? which one is
advantageous?

‘extends thread’ and ‘implements Runnable’-both are functionally same. But when we write
extends Thread, there is no scope toextend another class, as multiple inheritance is not supported
injava

Class MyClass extends Thread,AnotherClass //invalid
If we write implements Runnable, then still there is scope to extend another class.
Class MyClass extends Another Class implements Runnable //valid

This is definitely advantageous when the programmer wants to use threads and also wants to
access the features of another class.

Singletasking using a thread:

A thread can be employed to execute onetask at atime. Suppose there are 3 tasks to be executed.
We can create a thread and pass the 3 tasks one by one to the thread. For this purpose, we can
write all these tasks separately in separate methods; taskl(), task2(), task3(). Then these methods
should be called from run() method, one by one. Remember, a thread executes only the code
inside the run() method. It can never execute other methods unless they are called from run().

Note: public void run() method is executed by the thread by defauilt.
/Isingle tasking using athread
class MyThread implements Runnable

{
public void run()
{
Ilexecutes tasks one by one by calling the methods.
task1();
task2();
task3();
}
void task1()
{
System.out.printin("thisis task1");
}
void task2()
{
System.out.printin("thisis task2");
}
void task3()
{
System.out.printn("this is task3");
}
}
classSin
{

public static void main(String args[])

MyThread obj=new MyThread();
Thread t1=new Thread(obj);
tl.start();

}

Output: java Sin

Thisistask1()

Thisistask2()

Thisistask3()

In this program, asingle thread t1 is used to execute three tasks.
Multi Tasking Using Threads:

In multi taskin, several tasks are executed at a time. For this purpose, we need more than one
thread. For example, to perform 2 tasks, we can take 2 threads and attach them to the 2 tasks.
Then those tasks are simultaneously executed by the two threads. Using more than one thread is
called ‘multi threading’.

Program : Write a program to create more than onethread.
/lusing more than one thread is called Multi Threading
class Thestre extends Thread
{ String str;
Theatre (String str)
{ this.str =str;
}
public void run()
{ for(inti=1;i<=10;i++)
{ System.out.println (str +" : " +1);
try
{ Thread.sleep (2000);

}
catch (InterruptedExceptionie) { ieprintStackTrace(); }
}
}
}

class TDemol
{ public static void main(String args[])

{ Theatre obj1 = new Theatre ("Cut Ticket");
Theatre obj2 = new Theatre ("Show Chair");
Thread t1 = new Thread (obj1);

Thread t2 = new Thread (obj2);
tl.start ();
t2.start ();

I RN T ! T Y e e N o o 10 1

3 ol g) [oB R J_F o L e R L

In the preceding example, we have used 2 threads on the 2 objects of TDemol class. First we
have taken a String variable str in Theatre class. Then we passed two strings- cut ticket and show
chair into that variable from TDemol class. When t1. start () is executed, it starts execution run
() method code showing cut ticket. Note that in run () method, we used: Thread. sleep (2000) is
a static method in Thread class, which is used to suspend execution of a thread for some
specified milliseconds. Since this method can throw InterruptedException, we caught it in catch
block. When Thread t1 is suspended immediately t2. start () will make the thread t2 to execute
and when it encounters Thread.deep(2000), it will suspend for specified time meanwhile t1 will

get executed respectively. In this manner, both the threads are simultaneously
executed.synchronizing threads, daemon threads, thread groups.

Multiple Threads Acting on Single Object:

First letus see why 2 threads shouldshare same object(samerun()method). We write an object to
represent one task. If there is a different task,we take another object. When two people (threads)
want to perform sametask then they need same object (run () method) to be executed each
time. Take the case of rallway reservation. Every day several people want reservation of
a berth for them. The procedure to reserve the berth is same for all the people. So we need
some object with same run () method to be executed repeatedly for all the people (threads).

Let us think that only one berth is available in a train and two passengers (threads) are
asking for that berth in two different counters. The clerks at different counters sent a request to
the server to allot that berth to their passengers. Let us see now to whom that berth is all otted.

Program : Write a program to create multiple threads and make the threads to act on
single obj ect.

/[Thread unsafe —Two threads acting on same object.
class Reserve implements Runnable
{ llavailable berths are 1

int available = 1,

int wanted;

/laccept wanted berths at runtime

Reserve (int i)
{

wanted =i,
}

public void run()

{/Idisplay available berths

System.out.println ("Number of berths available: " + available);
/it available berths more thanwanted betrhs

if (available >= wanted)

{//get the name of the passenger

String name = Thread.currentThread ().getName ();

System.out.printin (wanted + " berths aloted to: " + name);

try

{
Thread.dleep (2000); // wait for priniting the ticket

available = available - wanted,
/lupdate the no.of available berths
} catch (InterruptedException i€)
{ ieprintStackTrace(); }
}
else

{ System.out.println ("Sorry, no berths available");

}
}
}
class UnSafe
{
public static void main(String args[])
{
Reserve obj = new Reserve (1);
Thread t1 =new Thread (obj);
Thread t2 = new Thread (obyj);
tl.setName ("First Person™);
t2.setName (" Second Person™);
tl.start ();
t2.start ();
}

Output: java UnSafe

Number of berths available:1

1 berth is allotted to First person
Number of berths available:1

1 berth is allotted to Second person

Please observe the output in the preceding program. It isabsurd. It has alotted the same berth
to both the passengers. Since both the threads are acting on the same object simultaneously,
then theresult is unreliable.

What isthe solution for this problem?

Ans: Thread Synchronization

Synchronizing Threads or Thread Synchronization or Thread Safe: When a
thread is acting on an object preventing other threads from acting on the same object is
called Thread Synchronization or Thread Safe. The object on which the threads are synchronized
is called ‘synchronized object’.

The Object on which the Threads are synchronized is called synchronized object or
Mutex (Mutually Exclusive Lock).Synchronized object is like a locked object, locked on a
thread. It is like a room with only one door. A person has entered the room and locked form it
from behind. The second person who wants to enter the room should wait till the first person
comes out. In this way, a thread also locks the object after entering it. Then the next thread
cannot enter it till the first thread comes out. This means the object is locked mutually on
threads. So, this object is called ‘mutex’.

Thread synchronization is done in two ways:
» Using synchronized block we can synchronize a block of statements.
e.g.: synchronized (obj)
{

statements;

}

Here, object represents the object to be locked or synchronized. The statements inside the
synchronized block are all available to only one thread at atime. They are not available to more
than one thread simultaneously.

» To synchronize an entire method code we can use synchronized word before method
name

e.g.. synchronized void method ()

{
s,

}

Now the statements inside the method are not available to more than one thread at a time. This
method code is synchronized.

Writea program to thread synchronization by using synchronized block.
/[Thread synchronization- Two threads acting on same object
/IMultiple Threads acting on single object
class Reserve implements Runnable
{ intavailable=1;

int wanted;

Reserve (int i)

{ wanted =1;

}

public void run()

{ synchronized (this)

{ System.out.printin ("Number of berths available: " + available);
if (available >= wanted)

{ String name = Thread.currentThread ().getName ();
System.out.println (wanted + " berths aloted to: " + name);
try
{ Thread.dleep (2000); // wait for priniting the ticket

available = available - wanted;
}
catch (InterruptedException i€)
{ ieprintStackTrace(); }

ese

{ System.out.println ("Sorry, no berths available");

}
}
}
}

class Safe
{ public static void main(String args[])
{ Reserveobj = new Reserve (1),

Thread t1 =new Thread (ob));
Thread t2 = new Thread (obyj);
tl.setName ("First Person™);
t2.setName (" Second Person™);
tl.start ();
t2.start ();

+ CWINDOWSsystem d Acommand, com

DGR :3'.5-1!.'.1|: safe. J'_ﬁu.-i

D2 QR java Safe

Humher of herthz availahle: 1

1 herths alloted to: First Peezon
Humher of beriths availahls: 8
sorry, no berths available

D s JOR Y

Write a program to thread synchronization by using synchronized keyword before the
method name

[** Write a Java program that creates three threads. First thread displays “Good
Morning” every one second, the second thread displays “Hello” every two seconds and the
third thread displays “Welcome” every threeseconds. */

class A extends Thread

{

synchronized public void run()
{

try

{

while(true)

{

sleep(10);
System.out.printIn("good morning");
}

}
catch(Exception €)

{
}
}
}

class B extends Thread

{

synchronized public void run()
{

try

{

while(true)

{

sleep(20);
System.out.printin("hello");
}

}

catch(Exception €)

{ }

}

}

class C extends Thread

{

synchronized public void run()
{

try

{

while(true)

{

sleep(30);
System.out.printIn("welcome");
}

}

catch(Exception €)

{ }

}

}

class ThreadDemo

{
public static void main(String args[])

{

A t1=new A();
B t2=new B();
C t3=new C();
tl.start();
t2.start();
t3.start();

}

}

Output:

Press Cntrl+C to exit
Good morning

Hello

Good morning
Welcome

Good morning

Hello

Good morning

Good morning

Hello

Inter Thread Communication:

Thread Communication: In some cases two or more threads should communicate with each
other. One thread output may be send as input to other thread. For example, a consumer thread is
waiting for a Producer to produce the data (or some goods). When the Producer thread compl etes
production of data, then the Consumer thread should take that data and useit.

In producer class we take a StringBuffer object to store data, in this case; we take some numbers
from 1 to 5. These numbers are added to StringBuffer object. Until producer completes placing
the data into StringBuffer the consumer has to wait. Producer sends a notification immediately
after the data production is over.

[** Write a Java program that correctly implements producer consumer problem using the
concept of interthread communication.*/

/ljava program for producer and consumer--inter thread communication
class Producer implements Runnable
{
Threadlt;
Producer(Threadl t)
{
this.t=t;
new Thread(this,"Producer").start();
}

public void run()

{
inti=0;
while (true)

{
t.put(i++);

}

class Consumer implements Runnable
{
Threadl t;
Consumer(Threadl t)
{
this.t=t;

new Thread(this,"Consumer").start();

public void run()

{
int i=0;
while (true)
{
t.get();
}
}
}
class ProducerConsumer
{
public static void main(String[] args)
{
Threadl t=new Threadl();
System.out.printIn(" Press Control+c to exit");
new Producer(t);
new Consumer (t);
}
}
Output:

Press Control+C to exit
Put:0

Get:0

Put:1

Getl

Deamon Threads:

Daemon threads are sometimes called "service" threads that normally run at a low priority and
provide a basic service to a program or programs when activity on a machine is reduced. An
example of a daemon thread that is continuously running is the garbage collector thread. This
thread, provided by the JVM, will scan programs for variables that will never be accessed again
and free up their resources back to the system. A thread can set the daemon flag by passing atrue
boolean value to the setDaemon() method. If a false boolean value is passed, the thread will
become a user thread. However, this must occur before the thread has been started.

A deamon thread is a thread that executes continuously. Daemon threads are service providers
for other threads or objects. It generally provides a background processing.

» Tomakeathread t as a deamon thread, we can use setDeamon() method as:
t.setDeamon(true);
» Toknow if athread is deamon or not, isDeamon is useful.
boolean x=t.isDaemon().
Write a example program for setting a thread as a daemon thread
public class DaemonDemo extends Thread

{

public void run()
{
for(int i=0;i<5;i++)
System.out.printin(this.getName()+" :"+i);
}
public static void main(String args[])
{
DaemonDemo d1=new DaemonDemo();
DaemonDemo d2=new DaemonDemo();

d1.setName("Daemon thread");

d2.setName("Normal thread");
dl.setDaemon(true);

d1.setPriority(Thread.MIN_PRIORITY);

dl.start();
d2.start();
}
}
Output:
Daemon thread:0

Normal thread:0

Daemon thread:4

Normal thread:4

Thread Groups:

Thread Group: A ThreadGroup represents a group of threads. The main advantage of taking
several threads as a group is that by using a single method, we will be able to control al
the threads in the group.

Thread groups offer a convenient way to manage groups of threads as a unit. Thisis particularly
valuable in situations in which you want to suspend and resume a number of related threads. For
example, imagine a program in which one set of threads is used for printing a document, another
set is used to display the document on the screen, and another set saves the document to a disk
file. If printing is aborted, you will want an easy way to stop all threads related to printing.
Thread groups offer this convenience.

» Creating athread group: ThreadGroup tg = new ThreadGroup (“groupname”);
» Toadd athread to this group (tg): Thread t1 = new Thread (tg, targetobj, “threadname”);
» To add another thread group to this group (tg):

ThreadGroup tgl = new ThreadGroup (tg, “‘groupname”);

» To know the parent of athread: tg.getParent ();
» To know the parent thread group: t.getThreadGroup ();

This returns a ThreadGroup object to which the thread t belongs.

» To know the number of threads actively running in athread group: t.activeCount ();
» To change the maximum priority of athread group tg: tg.setMaxPriority ();

Method
int activeCournt()

int activeGroupCourt()

final void checkAccess()

_D‘mriptinrl

Returns the number of threads in the group plus any

|groups for which this thread is a parent.

Returns the number of groups for which the invoking

|thread i= & parent.

Causes the security manager to verify that the
invoking thread may access and,/ or change the
group on which checkAccess() i= called.

final void destroy()
int enumerate(Thread group 1)

irt enumerate(Thread group]], boolean i) .

Destroys the thread group (and any child groups) on

which it is called.

The threads that comprise the imvoking thread group
are put into the group array.
The threads that comprizse the invoking thread group

are put into the group array. If 8l is true, then threads
in all subgroups of the thread are also put into group.

irt enumeratelThreadGroup grouo 1)

The subgroups of the invoking thread group are put
into the group array.

int enumerateThreadGroup growg] .
boolean all)

final int gethMaxPriority)
final String getMame()
final ThreadGroup getParent|)

The subgroups of the invoking thread group are put
into the group array. If 8/l is true, then all subgroups

of the subgroups (and =0 on) are also put into grouo.

Returns the maximum priority setting for the group.

_Fi!eturns the name of the group.

Returns null f the invoking ThreadGroup object has
no parent. Otherwise, it returns the parent of the
invoking object.

final void interrupt()

Irvokes the interrupt() method of all threads in
the group.

TABLE 16-18 The Methods Defined by ThreadGroup

Program : Write a program to demonstrate the creation of thread group.

//Using ThreadGroup
import java.io.*;

class WhyTGroups

{ public static void main (String argq[]) throws IOException

{ Reservation res = new Reservation ();
Cancellation can = new Cancellation ();

/[Create a ThreadGroup

ThreadGroup tg = new ThreadGroup ("Reservation Group");

/[Create 2 threads and add them to thread group

Thread t1 = new Thread (tg, res, "First Thread");

Thread t2 = new Thread (tg, res, "Second Thread");

//Create another thread group as a child to tg

ThreadGroup tgl = new ThreadGroup (tg, "Cancellation Group");
Thread t3 = new Thread (tgl, can, "Third Thread");

Thread t4 = new Thread (tgl, can, "Fourth Thread");

/[find parent group of tgl

System.out.printin ("Parent of tgl =" + tgl.getParent ());

//set maximum priority

tgl.setMaxPriority (7);

System.out.printin ("Thread group of t1 =" + t1.getThreadGroup ());
System.out.printin ("Thread group of t3 =" + t3.getThreadGroup ());
tl.start ();

t2.start ();

t3.start ();

td.start ();

System.out.printin ("Number of threadsin thisgroup : " + tg.activeCount ());

class Reservation extends Thread

{ publicvoidrun ()

{ System.out.println ("I am Reservation Thread");

class Cancellation extends Thread

{ public void run ()

{ System.out.printin ("I am Cancellation Thread");

ci CAWINDOWSsystem32icmd.exe
D:~JQR>javac HhylGroups. java

D: “JQR>java HhylGroups
Parent of tgl = java.lang.ThreadGrouplname=Reservation Grouwp.maxpri=101]

Thread group of tl = java.lang.ThreadGrouplname=Reservation Group.maxpri=i@]
Thread group of £3 = java.lang.ThreadGrouplname=Cancellation Group.maxpri=7]
I am Reservation Thread

Mumher of threads in this group - 4

I am Cancellation Thread

I am Cancellation Thread

I am Reserwvation Thread

D:JQR>

