
OOP THROUGH C++ (R16) UNIT-V
What is template? What is the need of templates? How can you define a

template? (OR)

Explain about generic programming.
(OR)

Explain about class templates with an example.
(OR)

Explain about member function templates with an example.
The template provides generic programming by defining generic classes. A function that works
for all C++ data types are called generic function.
Uses:

 A template is a technique that allows a single function or class to work with different data
types.

 A single function can accept different types of values.

 Templates increases the flexibility of the program

 Template provides flexibility.

Class Template

A class template can be defined as follows:

template <class T>
class name_of_the_class

{
Data members

Member functions
}

template <class T> tells the compiler that the following declaration can use the template class
data type. “T” is the variable of template type.

Example
include <iostream.h>

template<class T> class

Data

{
public:

Data(T c)

{

cout<<"\n value = "<<c;
cout<<"\tsize = "<<sizeof(c)<< " byte(s)";

}
};

int main()

{
Data <char> c('A');

Data <int> i(100);
Data <double> f(23.45);

}

Output

Value =A Size = 1 byte(s)

OOP THROUGH C++ (R16) UNIT-V

Value =100 Size = 2 byte(s)

Value =23.45 Size = 8 byte(s)
Class templates with more parameters

The class templates can contain one or more parameters of generic type.

template <class T1, class T2>
{

Data members
Member functions

}

Example
include <iostream.h>
template<class T1, class
T2> class Data
{

public:

Data(T1 c, T2 d)
{

cout<<"\n C="<< c << "\t D="<<d;
}

};

int main()
{

Data <char, double> c('D',10.5);

Data <int, double> i(100, 23.456);
Data <double,char> f(23.345,'K');

Data <char, char*> k('R', "Rama");
return 0;

}

Output
C= D C=

100 C=

23.345 C=
R

D= 10.5

D= 23.456
D= K

D= Rama

Explain about functions templates with an example.
(OR)

Write about generic functions with an example.
(OR)

How a function template can work?

Like class templates, function templates can also be defined as follows:

template <class T>
return type functions name (arguments of type T)

{
Statements;

}

OOP THROUGH C++ (R16) UNIT-V
After compilation, the compiler cannot guess the type of data that a template function can work.
When the template function is called, at that moment, the type of arguments passes to the
template function replaces with the identical type. This process is called instantiating.
Example
include <iostream.h>
template <class T>

T Max (T a, T b)
{

return a > b ? a:b;
}
int main ()
{

int i = 39;
int j = 20;
cout << "Max("<<i<<","<<j<<"): " << Max(i, j) <<
endl; double f1 = 13.5;

double f2 = 20.7;
cout << "Max("<<f1<<","<<f2<<"): " << Max(f1, f2) <<
endl; char c1 = 'Z';
char c2 = 'A';
cout << "Max("<<c1<<","<<c2<<"): " << Max(c1, c2) <<
endl; return 0;

}

Output
Max (39, 20): 39
Max (13.5, 20.7): 20.7

Max (Z, A): Z

Function template with more arguments:

#include <iostream.h>

template<class T>
void add(T a, T b)

{
T c;

c=a+b;
cout<<"\nSum="<<c;

}
int main()

{
int a=10, b=20;

add(a,b);
double p=10.7,q=20.5;

add(p,q);
char c='A', d='D';

add(c,d);
return 0;

}
Output
Sum = 30

OOP THROUGH C++ (R16) UNIT-V
Sum = 31.2
Sum = á

How can you overload a function template? Explain with an example.
A Template function can also support overloading mechanism. It can be overloaded by normal
function or template function. The compiler observes the following rules for choosing an
appropriate function:

1. Searches for an accurate match of functions; if found, it is invoked.
2. Searches for a template function through which a function that can be invoked with an

accurate match can be generated; if found, it is invoked
3. In case no match found, an error will be reported.

Example:
include <iostream.h>

template<class T> void

show(T c)

{

cout<<"\nTemplate variable C="<<c;
}

void show (int i)
{

cout<<"\nInteger variable F ="<<f;
}

int main()
{

show('A');
show(10);
show(23.45f);

show(23.678);
show("Rama");

return 0;

}

Output
Template variable C= A
Integer variable F = 10

Template variable C= 23.45
Template variable C= 23.678

Template variable C= Rama

Bubble Sort Using Function Templates
include <iostream.h>

template<class T> void

bsort(T a[], int n)

{
for(int i=0;i<n-1;i++)

{
for(int j=i+1;j<n;j++)

if(a[i] > a[j])

{

OOP THROUGH C++ (R16) UNIT-V
T temp = a[j];
a[j] = a[i];

a[i] = temp;
}

}
}

int main()
{

int i;
int a[5] = {4,1,5,-4,3};

float f[5] = {4.4,1.0,5.7,-4.5,3.3};
char c[5]={'A','N','A','N','D'};

bsort(a,5);
bsort(f,5);

bsort(c,5);
cout<< "\nSorted list:";

for(i=0;i<5;i++)
cout<< a[i]<<" ";

cout<< "\nSorted list:";
for(i=0;i<5;i++)

cout<< f[i]<<" ";
cout<< "\nSorted list:";

for(i=0;i<5;i++)
cout<< c[i]<<" ";

return 0;

}

Output

Sorted list: -4 1 3 4 5

Sorted list: -4.5 1.0 3.3 4.5 5.7
Sorted list: A A D N N

Difference between templates and macros
1. Macros are not type safe; that is, a macro defined for integer operations cannot accept

float data. They expanded with no type checking.
2. It is difficult to errors in macros.
3. In case a variable is pre-incremented or decremented, the operation is carried out twice.

Consider the following macro:

#include<iostream.h>
#define max(a) a+ ++a

int main()
{

int i=10, c;
c = max(10);

cout<<c;
return 0;

}
Output:

22

OOP THROUGH C++ (R16) UNIT-V
The macro defined in the above macro definition is expanded twice. Hence, it is a serious

limitation of macros. The lenition of this program can be removed using a template as shown
below:
#include <iostream.h>

template<class T>
T max(T k)

{
++k;

return k;
}

int main()
{

int a = 10, c;
c = max(a);

cout<<c;
return 0;

}

Output

11

What is meant by exception? What are its uses? Explain about principles of exception

handling. (Types of exceptions)
Exception handling is used to trap the errors like logical errors. An exception is an abnormal
termination of the program due to errors occurred in runtime. Exception handling mechanism
helps us to prevent the abnormal termination of the program.

(OR)
Exceptions are run time anomalies or unusual conditions that a program may encounter during
execution.

(OR)
An Exception is a problem that arises during the execution of a program.

Anomalies such as

 Division by zero
 Access to an array outside of its bounds

 Running out of memory

 Running out of disk space

A C++ exception is a response to an exceptional circumstance that arises while a program is
running, such as an attempt to divide by zero. It was not a part of original C++. It is a new
feature added to ANSI C++.

Exceptions are of 2 kinds
1. Synchronous Exceptions

― Out of range
― Over flow

2. Asynchronous Exceptions: Error that are caused by causes beyond the control of the
program
 Keyboard interrupts

In C++ only synchronous exception can be handled.

OOP THROUGH C++ (R16) UNIT-V

The purpose of exception handling mechanism is to create a routine that detects and report
exceptional circumstances so that appropriate action can be taken. The mechanism has error
handling code that perform the following tasks:

 Find the problem (Hit the exception)

 Inform that an error has occurred (Throw the exception)

 Receive the error information (Catch the exception)

 Take corrective action (handle the exception)

Explain about exception handling mechanism with an example.

(OR)
Explain about try, catch, throw keywords with an example.

(OR)
How exceptions can be handled? Explain with an example.
In C++, Exception handling mechanism basically builds upon three keywords:

1. try

2. throw
3. catch

 When an exception is detected, it is

thrown using a throw statement in
the try block.

 A catch block defined by the keyword
„catch‟ that catches the

exception and handles it
appropriately.

try keyword
The try keyword is followed by a series of statements enclosed in curly braces. This keyword is
used
at the starting of the exception.
Syntax:

try

{
Statement 1;

Statement 2;
------ -------

Statement N;
}

throw keyword
The function of ‘throw’ statement is to send the exception found. The throw statement is present

inside the try block. It has three forms and their syntax:

1. throw(exception);
2. throw exception;

3. throw //used to re-throw a exception

OOP THROUGH C++ (R16) UNIT-V
The argument object exception may be of any type, including constant. It is also possible to
throw an object not intended for error handling. In any case, control is transferred to the catch
statement.

catch
The catch block contains a series of statements enclosed in curly braces. It contains an argument
of an exception type. When an exception is found the catch block is executed. In case of no
exception is caught the catch block is ignored.

Syntax:

catch (type arg)
{

statement 1;
statement 2;

}

 The type indicates the type of exception the catch block handles. The parameter arg is an
optional parameter.

 The catch statement catches an exception whose type matches with the type of the „catch‟
argument.

 If the parameter in the catch statement is named, then the parameter can be used in the
exception handling code.

 If a catch statement does not match the exception it is skipped.

Example: program for divide by zero.
include <iostream.h>

int main()

{
int a,b;
cout<<"Enter values of a and b: ";
cin>>a>>b;
try {

if(b!=0)
cout<<"Result of

(a/b):"<<a/b; else
throw b;

}

catch(int e)
{

cout<<"Divide by zero error due to b = "<<e;
}

}

Output1:

Enter values of a and b: 4 2

Result (a/b) : 2
Output2:
Enter values of a and b: 3 0
Divide by zero error due to b = 0

OOP THROUGH C++ (R16) UNIT-V

How can you define multiple catch statements? Explain with an example.
It is also possible to define multiple catch blocks. In the try block such programs also contain
multiple throw statements based on certain conditions. The format of multiple catch statements is
as follows:

try
{

throw exception;
}

catch(type1 arg)
{

// catch block 1
}

catch(type2 arg)
{

// catch block 2
}

… … …
catch(typeN arg)

{
// catch block N

}

Whenever an exception is thrown, the compiler searches for an appropriate matching catch
block. If found, the matching catch block is executed. If no match catch block is found then the
program is terminated.

Example

#include <iostream.h>

void test(int x)

{

try {

 if(x==1) throw x;

 else if(x==0) throw 'x';

 else if(x==-1) throw 1.0;

}

catch(int i)

{

 cout<<"\nCaught an integer";

}

catch(char c)

{

 cout<<"\nCaught a character";

}

catch(double d)

{

 cout<<"\nCaught a double";

}

}

int main()

{

OOP THROUGH C++ (R16) UNIT-V
test(1);
test(0);

test(-1);
test(2);

return 0;
}

Output:
Caught an integer
Caught a character

Caught a double

Is there any possibility to caught more than one exception by a single catch block? Explain

with an example.
It is possible to define single or default catch block for one or more exceptions of different types.
In such a situation, a single catch block is used to catch the exceptions thrown by multiple throw
statements .
Syntax:

catch
{

// Statements for handling all exceptions
}

Example

include <iostream.h>

void test(int x)

{

try {

if(x==1) throw x;

else if(x==0) throw 'x';

else if(x==-1) throw 1.0;

}

catch(…)

{

cout<<"\nCaught an Exception”;

}

}

int main()

{

test(1);

test(0);

test(-1);

return 0;

}

Output

Caught an Exception

Caught an Exception

Caught an Exception

OOP THROUGH C++ (R16) UNIT-V

Explain about re-throwing exception with an example.
An exception is thrown from a catch block is called as re-throwing exception. The throw
statement without any argument re-throws the exception.
Ex:

#include <iostream.h>
void test()

{
try

{
throw "hello";

}
catch(char const *p)

{
cout<<"\n caught the exception";

throw;
}

}
int main()

{
cout<<"\n in main";

try
{

test();
}

catch(char const *p)

{
cout<<"\n caught in main";

}
cout<<"\n main end";

return 0;
}

Output:
In main
caught the exception

caught in main
main end

Write about specified exceptions with an example.
It is also possible to restrict a function to throw certain type of exceptions by adding a throw list
clause to the function definition.

Syntax:
type function(arg-list) throw(type-list)
{

… … …
… … …

}

 The type-list specifies the type of exception that may be thrown.

OOP THROUGH C++ (R16) UNIT-V

 Throwing any other kind of exception will cause abnormal program termination.
 If you want to prevent a function from throwing no exception, you may do so by making

the type-list empty.
throw();

Example
include <iostream.h>

void test(int x) throw(int, double)
{

if(x==1) throw x;
else if(x==0) throw 'x';

else if(x==-1) throw 1.0;
}

int main()
{

try
{

test(0);
test(-1);

test(1);
}

catch(char c)
{

cout<<"\nCaught a character";
}

catch(int i)
{

cout<<"\nCaught an integer";
}
catch(double d)
{

cout<<"\nCaught a double";
}
return 0;

}

Output
terminate called after throwing an instance of 'char'

