(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI)**

PROPOSED COURSE STRUCTURE (R23) – B. Tech CSE (AI) (Applicable from the academic year 2023-24 and onwards)

B. Tech.- I Year I Semester

S.No.	Category	Title	L	Т	Р	Credits
1	BS&H	Chemistry	3	0	0	3
2	BS&H	Liner Algebra & Calculus	3	1	0	3
3	Engineering Science	Engineering Graphics	3	0	0	3
4	Engineering Science	Basic Electrical and Electronics Engineering	3	0	0	3
5	Engineering Science	Introduction to Programming	3	0	0	3
6	BS&H	Chemistry Lab	0	0	2	1
7	Engineering Science	Electrical and Electronics Engineering workshop	0	0	3	1.5
8	Engineering Science	Computer Programming Lab	0	1	3	1.5
9	Engineering Science	IT Workshop			2	1
10	Audit Course	Health and Wellness , Yoga and Sport	2	0	0	5
	То	14	0	12	20.5	

Theory: BSC-2, ESC-3 Practical: BSC-1, ESC-3, Audit course-1

B. Tech.- I Year II Semester

S.No.	Category	Title	L	Т	Р	Credits		
1	BS&H	Communicative English	2	0	0	2		
2	BS&H	Engineering physics	3	0	0	3		
3	BS&H	Differential equation & Vector calculus	3	0	0	3		
4	Engineering Science	ing Science Basic civil & Mechanical engineering		0	0	3		
5	Professional Core	Data Structures	3	0	0	3		
6	BS&H	Communicative English Lab	0	0	2	1		
7	BS&H	Engineering physics Lab	0	0	2	1		
8	Professional Core	Data Structures Lab	0	0	3	1.5		
9	Engineering Science	Engineering work shop	0	0	3	1.5		
10	Audit	NSS/NCC/Scouts & Guides/community service	1	-	-	.5		
Total 14 0 10 19.5								
Mandatory Community Service Project Internship of 08weeks duration during summer								
	vacation							

Theory: BSC-3, ESC-1, PCC-1 Practical: BSC-2, ESC-1, PCC-1, Audit course-1

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI) PROPOSED COURSE STRUCTURE (R23) – B. Tech CSE (AI) (Applicable from the academic year 2024-25 and onwards)

B. Tech.- II Year I Semester

S.No.	Category	Title	L	Т	Р	Credits
1	BS&H	Discrete Mathematics & Graph Theory	3	0	0	3
2	BS&H	Universal human values – understanding	2	1	0	3
		harmony and Ethical human conduct				
3	Engineering Science	Artificial Intelligence	3	0	0	3
4	Professional Core	Advanced Data Structures &	3	0	0	3
		Algoriumis Analysis				
5	Professional Core	Object Oriented Programming Through Java	3	0	0	3
6	Professional Core	Advanced Data Structures and Algorithms Lab	0	0	3	1.5
7	Professional Core	Object Oriented Programming Through Java Lab	0	0	3	1.5
8	Skill Enhancement course	Skill Course	0	1	2	2
9	Audit Course	Environmental Science	2	0	0	-
Total					8	20

Theory: BSC-2, ESC-1, PCC-2 Practical: PCC-2, Audit course-1, SC-1

B. Tech.- II Year II Semester

S.No.	Category	Title	L	Т	Р	Credits			
1	Management course-1	Optimization Techniques	2	0	0	2			
2	Engineering Science/Basic science	Probability & Statistics	3	0	0	3			
3	Professional Core	Machine Learning	3	0	0	3			
4	Professional Core	Database Management Systems	3	0	0	3			
5	Professional Core	Digital Logic & Computer Organization	3	0	0	3			
6	Professional Core	Machine Learning Lab	0	0	3	1.5			
7	Professional Core	Database Management Systems Lab	0	0	3	1.5			
8	Skill Enhancement course	Skill Course		1	2	2			
9	BS&H	Design Thinking &Innovation	0	0	2	1			
	Total 14 1 10 20								
Μ	Mandatory Community Service Project Internship of 08weeks duration during summer vacation								

Theory: ESC-1, PCC-3, MS-1, BSC-1 Practical: PCC-2, Audit course-1, SC-1

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

Minor:

To obtain Minor Engineering, student needs to obtain 15 credits by successfully completing any of the following courses in the concern stream.

For Mi	nor in AI & ML:	
Advan	ced Data Structures & Algorithm Analysis	3-0-3
1.	Artificial Intelligence	3-0-3
2.	Operating Systems	3-0-3
3.	Computer Networks	3-0-0
4.	Machine Learning	3-0-0
5.	Deep Learning	3-0-0
6.	Cloud computing	3-0-0
For Mi	nor in Cyber Security:	
1.	Operating Systems	3-0-3
2.	Computer Networks	3-0-0
3.	Artificial Intelligence	3-0-3
4.	Cloud computing	3-0-0
5.	Cyber Security	3-0-0
6.	Cryptography & Network Security	3-0-3
7.	Blockchain technology	3-0-0
For Mi	nor in Data Science:	
1.	Advanced Data Structures & Algorithm Analysis	3-0-0
2.	Artificial Intelligence	3-0-0
3.	Introduction to Data Science	3-0-3
4.	Machine Learning	3-0-0
5.	Data Engineering	3-0-3
6.	Big Data Analytics	3-0-0
7.	Cloud computing	3-0-0

Honors: Student need to obtain 15 Credits by successfully completing any of the following

1.	Machine Learning for Cyber Security	3-0-0
2.	Robotics	3-0-0
3.	Explainable AI	3-0-0
4.	Blockchain and its Applications – NPTEL 12 W	3-0-0
5.	Applied Linear Algebra in AI & ML (MOOCS- SWAYAM / NPTEL 12W)	3-0-0
6.	Applied Time-Series Analysis (MOOCS- SWAYAM / NPTEL 12W)	3-0-0
7.	Machine Learning for Engineering and Science Applications	3-0-0
	(MOOCS- SWAYAM / NPTEL 12W)	
8.	Parallel Computer Architecture (MOOCS- SWAYAM / NPTEL 12W)	3-0-0
9.	Principles of Knowledge Graphs	3-0-0
10.	Any of the SWAYAM /NPTEL Course suggested by the BoS Chairman	

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

II Year I Semester	DISCOPTE MATUEMATICS AND COADU	L	Т	Ρ	С
	DISCRETE MATHEMATICS AND GRAPH THEORY	3	0	0	3

Course Objectives:

- To introduce the students to the topics and techniques of discrete methods and combinatorial reasoning.
- To introduce a wide variety of applications. The algorithmic approach to the solution of problems is fundamental in discrete mathematics, and this approach reinforces the close ties between this discipline and the area of computer science.

Course Outcome: After completion of course, students would be able to:

- 1. Build skills in solving mathematical problems (L3)
- 2. Comprehend mathematical principles and logic (L4)
- 3. Demonstrate knowledge of mathematical modeling and proficiency in using mathematical software (L6)
- 4. Manipulate and analyze data numerically and/or graphicallysing appropriate Software (L3)
- 5. How to communicate effectively mathematical ideas/results verbally or in writing (L1)

UNIT-I: Mathematical Logic:

Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method ofProof, Predicate Calculus: Predicates, Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus.

UNIT-II: Set Theory:

Sets: Operations on Sets, Principle of Inclusion-Exclusion, Relations: Properties, Operations, Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering, Hasse Diagrams, Functions: Bijective, Composition, Inverse, Permutation, and Recursive Functions, Lattice and its Properties.

UNIT-III: Combinatorics and Recurrence Relations:

Basis of Counting, Permutations, Permutations with Repetitions, Circular and Restricted Permutations, Combinations, Restricted

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

Combinations, Binomial and Multinomial Coefficients and Theorems. **Recurrence Relations:**

Generating Functions, Function of Sequences, Partial Fractions, Calculating Coefficient of Generating Functions, Recurrence Relations, Formulation as Recurrence Relations, Solving Recurrence Relations by Substitution and Generating Functions, Method of Characteristic Roots, Solving Inhomogeneous Recurrence Relations

UNIT-IV: Graph Theory:

Basic Concepts, Graph Theory and its Applications, Subgraphs, Graph Representations: Adjacency and Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and Hamiltonian Graphs,

Unit-V: Multi Graphs

Multigraphs, Bipartite and Planar Graphs, Euler's Theorem, Graph Colouring and Covering, Chromatic Number, Spanning Trees, Prim's and Kruskal's Algorithms, BFS and DFS Spanning Trees.

TEXT BOOKS:

- 1. Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay and P. Manohar, Tata McGraw Hill.
- 2. Elements of Discrete Mathematics-A Computer Oriented Approach, C. L.Liu and D. P. Mohapatra, 3rd Edition, Tata McGraw Hill.
- 3. Theory and Problems of Discrete Mathematics, Schaum's Outline Series, Seymour Lipschutz and Marc Lars Lipson, 3rd Edition, McGraw Hill.

REFERENCE BOOKS:

- 1. Discrete Mathematics for Computer Scientists and Mathematicians, J. L.Mott, A. Kandel and T. P. Baker, 2nd Edition, Prentice Hall of India.
- Discrete Mathematical Structures, Bernand Kolman, Robert
 Busby andSharon Cutler Ross, PHI.
- 3. Discrete Mathematics, S. K. Chakraborthy and B.K. Sarkar, Oxford, 2011.
- 4. Discrete Mathematics and its Applications with Combinatorics and GraphTheory, K. H. Rosen, 7th Edition, Tata McGraw Hill.

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

II Year I Semester

UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND ETHICAL HUMAN CONDUCT

L	Т	Р	С
2	1	0	3

Course Objectives:

The main objectives of the course are to

- To help the students appreciate the essential complementary between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature.

Course Outcome: After completion of course, students would be able to:

- 1. Define the terms like Natural Acceptance, Happiness and Prosperity (L1, L2)
- 2. Identify one's self, and one's surroundings (family, society nature) (L1, L2)
- 3. Apply what they have learnt to their own self in different day-to-day settings in real life (L3)
- 4. Relate human values with human relationship and human society. (L4)
- 5. Justify the need for universal human values and harmonious existence (L5)
- Develop as socially and ecologically responsible engineers (L3, L6)

UNIT I Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture 1: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education)

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

Lecture 2: Understanding Value Education

Tutorial 1: Practice Session PS1 Sharing about Oneself Lecture

3: self-exploration as the Process for Value Education

Lecture4: Continuous Happiness and Prosperity- the Basic Human Aspirations

Tutorial 2: Practice Session PS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity - Current Scenario

Lecture 6: Method to Fulfill the Basic Human Aspirations Tutorial

3: Practice Session PS3 Exploring Natural Acceptance

UNIT II Harmony in the Human Being (6 lectures and 3 tutorials for practice session)

Lecture 7: Understanding Human being as the Co-existence of the self and the body.

Lecture 8: Distinguishing between the Needs of the self and the body Tutorial 4: Practice Session PS4 Exploring the difference of Needs of self and body.

Lecture 9: The body as an Instrument of the self

Lecture 10: Understanding Harmony in the self

Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the self Lecture 11: Harmony of the self with the body

Lecture 12: Programme to ensure self-regulation and Health

Tutorial 6: Practice Session PS6 Exploring Harmony of self with the body

UNIT III Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)

Lecture 13: Harmony in the Family – the Basic Unit of Human Interaction Lecture 14: 'Trust' – the Foundational Value in Relationship

Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust

Lecture 15: 'Respect' – as the Right Evaluation

Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect

Lecture 16: Other Feelings, Justice in Human-to-Human Relationship

Lecture 17: Understanding Harmony in the Society

Lecture 18: Vision for the Universal Human Order

Tutorial 9: Practice Session PS9 Exploring Systems to fulfil Human Goal

UNIT IV Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session) Lecture 19: Understanding Harmony in the Nature Lecture 20: Interconnectedness, self-regulation and Mutual Fulfilment

KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES (Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

among the Four Orders of Nature Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature Lecture 21: Realizing Existence as Co-existence at All Levels Lecture 22: The Holistic Perception of Harmony in Existence Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence.

UNIT V Implications of the Holistic Understanding – a Look at Professional Ethics (6 lectures and 3 tutorials for practice session)
Lecture 23: Natural Acceptance of Human Values
Lecture 24: Definitiveness of (Ethical) Human Conduct
Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct
Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order
Lecture 26: Competence in Professional Ethics
Tutorial 13: Practice Session PS13 Exploring Humanistic Models in
Education Lecture 27: Holistic Technologies, Production Systems and
Management Models-Typical Case Studies
Lecture 28: Strategies for Transition towards Value-based Life and
Profession Tutorial 14: Practice Session PS14 Exploring Steps of
Transition towards Universal Human Order

Practice Sessions for UNIT I – Introduction to Value Education PS1 Sharing about Oneself PS2 Exploring Human Consciousness PS3 Exploring Natural Acceptance

Practice Sessions for UNIT II – Harmony in the Human Being PS4 Exploring the difference of Needs of self and body PS5 Exploring Sources of Imagination in the self PS6 Exploring Harmony of self with the body

Practice Sessions for UNIT III – Harmony in the Family and Society PS7 Exploring the Feeling of Trust PS8 Exploring the Feeling of Respect PS9 Exploring Systems to fulfil Human Goal

Practice Sessions for UNIT IV - Harmony in the

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

Nature (Existence) PS10 Exploring the Four Orders of Nature PS11 Exploring Co-existence in Existence

Practice Sessions for UNIT V - Implications of the Holistic

Understanding - a Look at Professional Ethics

PS12 Exploring Ethical Human Conduct

PS13 Exploring Humanistic Models in Education

PS14 Exploring Steps of Transition towards Universal Human Order

READINGS:

Textbook and Teachers Manual

a. The Textbook

R R Gaur, R Asthana, G P Bagaria, *A Foundation Course in Human Values and Professional Ethics*, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

b. The Teacher's Manual

R R Gaur, R Asthana, G P Bagaria, *Teachers' Manual for A Foundation Course in Human Values and Professional Ethics*, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. *Human Values*, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. *The Story of My Experiments with Truth* by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Mode of Conduct:

Lecture hours are to be used for interactive discussion, placing the

KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES (Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI)

proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self- exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extraordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses. This course is to be taught by faculty from every teaching department, not exclusively by any one department.

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

Teacher preparation with a minimum exposure to at least one 8-day Faculty Development Program on Universal Human Values is deemed essential.

Online Resources:

- 1. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20H</u> <u>andout%201-</u> <u>Introduction%20to%20Value%20Education.pdf</u>
- <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20H</u> <u>andout%202-</u> Harmony%20in%20the%20Human%20Being.pdf
- 3. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20H</u> <u>andout%203-</u> <u>Harmony%20in%20the%20Family.pdf</u>
- 4. <u>https://fdp-si.aicte-</u> <u>india.org/UHV%201%20Teaching%20Material/D3-</u> <u>S2%20Respect%20July%2023.pdf</u>
- 5. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20H</u> <u>andout%205-</u> <u>Harmony%20in%20the%20Nature%20and%20Existe</u> <u>nce.pdf</u>
- https://fdp-si.aicte-india.org/download/FDPTeachingMaterial/3days%20FDP-SI%20UHV%20Teaching%20Material/Day%203%20Handouts/UH V%203D%20D3 S2A%20Und%20Nature-Existence.pdf
- <u>https://fdp-si.aicte-</u> india.org/UHV%20II%20Teaching%20Material/UHV%20II%20 Lecture%2023- 25%20Ethics%20v1.pdf
- 8. <u>https://www.studocu.com/in/document/kiet-group-of-institutions/universal-human-values/chapter-5-holistic-understanding-of-harmony-on-professional-ethics/62490385</u> <u>https://onlinecourses.swayam2.ac.in/aic22_ge23/preview</u>

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Voor I Somostor	Artificial Intelligence	L	Т	Ρ	С
II fear i Semester		3	0	0	3

Course Objectives:

- The student should be made to study the concepts of Artificial Intelligence.
- The student should be made to learn the methods of solving problems using Artificial Intelligence.
- The student should be made to introduce the concepts of Expert Systems.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.
- To learn different knowledge representation techniques

Course Objectives:

- 1. The student should be made to study the concepts of Artificial Intelligence.
- 2. The student should be made to learn the methods of solving problems using Artificial Intelligence.
- 3. The student should be made to introduce the concepts of Expert Systems.
- 4. To understand the applications of AI, namely game playing, theorem proving, and machine learning.
- 5. To learn different knowledge representation techniques

UNIT - I

Introduction: AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation.

UNIT - II

Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A* ,AO* Algorithms, Problem reduction, Game Playing-Adversial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions.

KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES (Autonomous) Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI&ML)

UNIT - III

Representation of Knowledge: Knowledge representation issues, predicate logic-logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems. Reasoning under uncertainty, review of probability, Bayes' probabilistic interferences and dempstershafer theory.

UNIT - IV

Logic concepts: First order logic. Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining, Resolution, Learning from observation Inductive learning, Decision trees, Explanation based learning, Statistical Learning methods, Reinforcement Learning.

UNIT - V

Learning: What is learning? Rote learning, learning by taking advice, learning in problem solving, learning from examples: Induction, explanation-based learning.

Textbooks:

- 1. S. Russel and P. Norvig, "Artificial Intelligence A Modern Approach", SecondEdition, Pearson Education.
- 2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill

Reference Books:

- 1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: a logical approach", Oxford University Press.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problemsolving", Fourth Edition, Pearson Education.
- 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers.
- 4. Artificial Intelligence, SarojKaushik, CENGAGE Learning.

Online Learning Resources:

- 1. <u>https://ai.google/</u>
- 2. https://swayam.gov.in/nd1_noc19_me71/preview

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Year I Semester

ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS

L	Т	Р	С
3	0	0	3

Course Objectives:

- Provide knowledge on advance data structures frequently used in Computer Science domain
- Develop skills in algorithm design techniques popularly used
- Understand the use of various data structures in the algorithm design

UNIT – I:

Introduction to Algorithm Analysis, Space and Time Complexity analysis, Asymptotic Notations. AVL Trees – Creation, Insertion, Deletion operations and Applications B-Trees – Creation, Insertion, Deletion operations and Applications

UNIT – II:

Heap Trees (Priority Queues) – Min and Max Heaps, Operations and Applications Graphs – Terminology, Representations, Basic Search and Traversals, Connected Components and Biconnected Components, applications Divide and Conquer: The General Method, Quick Sort, Merge Sort, Strassen's matrix multiplication, Convex Hull

UNIT – III:

Greedy Method: General Method, Job Sequencing with deadlines, Knapsack Problem, Minimum cost spanning trees, Single Source Shortest Paths Dynamic Programming: General Method, All pairs shortest paths, Single Source Shortest Paths – General Weights (Bellman Ford Algorithm), Optimal Binary Search Trees, 0/1 Knapsack, String Editing, Travelling Salesperson problem

UNIT – IV:

Backtracking: General Method, 8-Queens Problem, Sum of Subsets problem, Graph Coloring, 0/1 Knapsack Problem

Branch and Bound: The General Method, 0/1 Knapsack Problem, Travelling Salesperson problem

UNIT – V:

NP Hard and NP Complete Problems: Basic Concepts, Cook's theorem

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

NP Hard Graph Problems: Clique Decision Problem (CDP), Chromatic Number Decision Problem (CNDP), Traveling Salesperson Decision Problem (TSP)

NP Hard Scheduling Problems: Scheduling Identical Processors, Job Shop Scheduling

Textbooks:

- 1. Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni, Sartaj; Mehta, Dinesh 2nd Edition Universities Press
- 2. Computer Algorithms/C++ Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran 2nd Edition University Press

Reference Books:

- 1. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
- 2. An introduction to Data Structures with applications, Trembley & Sorenson, McGraw Hill
- 3. The Art of Computer Programming, Vol.1: Fundamental Algorithms, Donald E Knuth, Addison-Wesley, 1997.
- 4. Data Structures using C & C++: Langsam, Augenstein & Tanenbaum, Pearson, 1995
- 5. Algorithms + Data Structures & Programs:, N.Wirth, PHI
- 6. Fundamentals of Data Structures in C++: Horowitz Sahni & Mehta, Galgottia Pub.
- 7. Data structures in Java:, Thomas Standish, Pearson Education Asia

Online Learning Resources:

- 1. https://www.tutorialspoint.com/advanced_data_structures/index.asp
- 2. http://peterindia.net/Algorithms.html
- 3. Abdul Bari, <u>1. Introduction to Algorithms (youtube.com)</u>

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Voor I Somostor	Object-Oriented Programming through		Т	Ρ	С
II Tear I Semester	JAVA	3	0	0	3

Course Objectives:

The learning objectives of this course are to:

- identify Java language components and how they work together in applications
- learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
- learn how to extend Java classes with inheritance and dynamic binding and how to use exception handling in Java applications
- understand how to design applications with threads in Java
- understand how to use Java APIs for program development

UNIT I: Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction, Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line Arguments, User Input to Programs, Escape Sequences Comments, Programming Style.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types, Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Formatted Output with printf() Method, Static Variables and Methods, Attribute Final, **Introduction to Operators**, Precedence and Associativity of Operators, Assignment Operator (=), Basic Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary Operator, Relational Operators, Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, ifelse Expressions, Ternary Operator?:, Switch Statement, Iteration Statements, while Expression, do-while Loop, for Loop, Nested for Loop, For-Each for Loop, Break Statement, Continue Statement.

UNIT II: Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Assigning One Object to Another, Access Control for Class Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value and by Reference, Keyword this.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Class Objects as Parameters in Methods, Access Control, Recursive Methods, Nesting of Methods, Overriding Methods, Attributes Final and Static.

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI&ML)

UNIT III: Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory, Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array, Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two-dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors.

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class-Object Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods in Interface, Functional Interfaces, Annotations.

UNIT IV: Packages and Java Library:Introduction, Defining Package, Importing Packages and Classes into Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes, Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Autounboxing, Java util Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant (java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters Class.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions, Checked Exceptions.

Java I/O and File: Java I/O API, standard I/O streams, types, Byte streams, Character streams, Scanner class, Files in Java(Text Book 2)

UNIT V: String Handling in Java:Introduction, Interface Char Sequence, Class String, Methods for Extracting Characters from Strings,Comparison, Modifying, Searching; Class String Buffer.

Multithreaded Programming:Introduction, Need for Multiple Threads Multithreaded Programming for Multi-core Processor, Thread Class, Main Thread-Creation of New Threads, Thread States, Thread Priority-Synchronization, Deadlock and Race Situations, Inter-thread Communication - Suspending, Resuming, and Stopping of Threads.

Java FX GUI: Java FX Scene Builder, Java FX App Window Structure, displaying text and image, event handling, laying out nodes in scene graph, mouse events (Text Book 3)

Text Books:

1. JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.

2. Joy with JAVA, Fundamentals of Object Oriented Programming,

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

DebasisSamanta, MonalisaSarma, Cambridge, 2023.

3. JAVA 9 for Programmers, Paul Deitel, Harvey Deitel, 4th Edition, Pearson.

References Books:

- 1. The complete Reference Java, 11thedition, Herbert Schildt, TMH
- 2. Introduction to Java programming, 7th Edition, Y Daniel Liang, Pearson

Online Resources:

- 1. <u>https://nptel.ac.in/courses/106/105/106105191/</u>
- 2. <u>https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012880464547618816347_shared/overview</u>

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Year I Semester

ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS LAB

L	Т	Ρ	С
0	0	3	1.5

Course Objectives:

The objectives of the course is to

- acquire practical skills in constructing and managing Data structures
- apply the popular algorithm design methods in problem-solving scenarios

Experiments covering the Topics:

- Operations on AVL trees, B-Trees, Heap Trees
- Graph Traversals
- Sorting techniques
- Minimum cost spanning trees
- Shortest path algorithms
- 0/1 Knapsack Problem
- Travelling Salesperson problem
- Optimal Binary Search Trees
- N-Queens Problem
- Job Sequencing

Sample Programs:

- 1. Construct an AVL tree for a given set of elements which are stored in a file. And implement insert and delete operation on the constructed tree. Write contents of tree into a new file using inorder.
- 2. Construct B-Tree an order of 5 with a set of 100 random elements stored in array. Implement searching, insertion and deletion operations.
- 3. Construct Min and Max Heap using arrays, delete any element and display the content of the Heap.
- 4. Implement BFT and DFT for given graph, when graph is represented by

a) Adjacency Matrix b) Adjacency Lists

- 5. Write a program for finding the bi-connected components in a given graph.
- 6. Implement Quick sort and Merge sort and observe the execution time for various input sizes (Average, Worst and Best cases).

KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES (Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

- 7. Compare the performance of Single Source Shortest Paths using Greedy method when the graph is represented by adjacency matrix and adjacency lists.
- 8. Implement Job sequencing with deadlines using Greedy strategy.
- 9. Write a program to solve 0/1 Knapsack problem Using Dynamic Programming.
- 10. Implement N-Queens Problem Using Backtracking.
- 11. Use Backtracking strategy to solve 0/1 Knapsack problem.
- 12. Implement Travelling Sales Person problem using Branch and Bound approach.

Reference Books:

- Fundamentals of Data Structures in C++, Horowitz Ellis, SahniSartaj, Mehta, Dinesh, 2ndEdition, Universities Press
- Computer Algorithms/C++ Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, 2ndEdition, University Press
- 3. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
- 4. An introduction to Data Structures with applications, Trembley& Sorenson, McGraw Hill

Online Learning Resources:

- 1. http://cse01-iiith.vlabs.ac.in/
- 2. http://peterindia.net/Algorithms.html

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Year I Semester	Object-Oriented Programming	L	Т	Р	С
	through JAVA Lab	0	0 3	1.5	

Course Objectives:

The aim of this course is to

- Practice object oriented programming in the Java programming language
- implement Classes, Objects, Methods, Inheritance, Exception, Runtime Polymorphism, User defined Exception handling mechanism
- Illustrate inheritance, Exception handling mechanism, JDBC connectivity
- Construct Threads, Event Handling, implement packages, Java FX GUI

Experiments covering the Topics:

- Object Oriented Programming fundamentals- data types, control structures
- Classes, methods, objects, Inheritance, polymorphism,
- Exception handling, Threads, Packages, Interfaces
- Files, I/O streams, JavaFX GUI

Sample Experiments:

Exercise – 1:

a) Write a JAVA program to display default value of all primitive data type of JAVA

b) Write a java program that display the roots of a quadratic equation $ax^2+bx=0$. Calculate the discriminate D and basing on value of D, describe the nature of root.

Exercise - 2

a) Write a JAVA program to search for an element in a given list of elements using binary search mechanism.

b) Write a JAVA program to sort for an element in a given list of elements using bubble sort

c) Write a JAVA program using StringBuffer to delete, remove character.

Exercise - 3

a) Write a JAVA program to implement class mechanism. Create a class, methods and invoke them inside main method.

b) Write a JAVA program implement method overloading.

- c) Write a JAVA program to implement constructor.
- d) Write a JAVA program to implement constructor overloading.

Exercise - 4

a) Write a JAVA program to implement Single Inheritance

b) Write a JAVA program to implement multi level Inheritance

(Autonomous) Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI&ML)

c) Write a JAVA program for abstract class to find areas of different shapes

Exercise - 5

a) Write a JAVA program give example for "super" keyword.

b) Write a JAVA program to implement Interface. What kind of Inheritance can be achieved?

c) Write a JAVA program that implements Runtime polymorphism

Exercise - 6

a) Write a JAVA program that describes exception handling mechanism

- b) Write a JAVA program Illustrating Multiple catch clauses
- Write a JAVA program for creation of Java Built-in Exceptions
- Write a JAVA program for creation of User Defined Exception

Exercise - 7

a) Write a JAVA program that creates threads by extending Thread class. First thread display "Good Morning "every 1 sec, the second thread displays "Hello "every 2 seconds and the third display "Welcome" every 3 seconds, (Repeat the same by implementing Runnable)

b) Write a program illustrating is Alive and join ()

- c) Write a Program illustrating Daemon Threads.
- d) Write a JAVA program Producer Consumer Problem

Exercise – 8

1. Write a JAVA program that import and use the user defined packages

- **2.** Without writing any code, build a GUI that display text in label and image in an ImageView (use JavaFX)
- **3.** Build a Tip Calculator app using several JavaFX components and learn how to respond to user interactions with the GUI

Exercise - 9

Write a java program that connects to a database using JDBC 1.

b)Write a java program to connect to a database using JDBC and insert values into it.

c) Write a java program to connect to a database using JDBC and delete values from it

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Year I Semester

ENVIRONMENTAL SCIENCE

Т	Ρ	С
0	0	З

L

3

Course Objectives:

- To make the students to ge tawareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

Course Outcomes:

- Grasp multidisciplinary nature of environmental studies and various renewable and non-renewable resources.
- Understand flow and bio-geo-chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste landreclamation.
- Casus of population explosion, value education and welfare programmes.

UNIT–I

Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems - Forest resources - Use and over - exploitation, deforestation, case studies - Timber extraction -Mining, dams and other effects on forest and tribal people - Water resources - Use and over utilization of surface and ground water -Floods, drought, conflicts over water, dams - benefits and problems-Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies- Food resources: World food problems, changes caused by agriculture and overgrazing. effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, casestudies.-Energy resources:

UNIT–II

Ecosystems: Concep to fan ecosystem.-Structure and function of an ecosystem-Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

and ecological pyramids–Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassl and ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity And Its Conservation: Introduction Definition: genetic, species and ecosystem diversity–Bio-geographical classification of India–Value of biodiversity: consumptive use,

Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a megadiversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts– Endangered and endemic species of India –Conservation of biodiversity: In-situand Ex-situ conservation of biodiversity.

UNIT–III

Environmental Pollution: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT-IV

Social Issues and the Environment: From Unsustainable to Sustainable development– Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions– Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wastel and

KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES (Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act–Wild life Protection Act– Forest Conservation Act–Issues involved in enforcement of environment allegislation–Public awareness.

UNIT–V

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education–HIV/AIDS–Women and Child Welfare–Role of information Technology in Environment and human health–Case studies. Field Work: Visit to a local area to document environmental assets River/ forest grassland/ hill/ mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds–river, hills lopes, etc..

Text books:

- 1. Text book of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palani swamy, "Environmental Studies", Pearson education
- 3. S.AzeemUnnisa, "Environmental Studies" Academic Publishing Company
- K.RaghavanNambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt.Ltd.

Reference Books:

- 1. Deeksha Daveand E.SaiBabaReddy, "Text book of Environmental Science", Cengage Publications.
- 2. M.AnjiReddy, "Text book of Environmental Sciences and Technology", BSPublication.
- 3. J.P.Sharma,Comprehensive Environmental studies, Laxmi publications.
- 4. J.GlynnHenry and GaryW.Heinke, "Environmental Sciences and Engineering", Prentice Hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M.Masters and WendellP.Ela, "Introduction to Environmental Engineering and Science ,Prentice Hall of India Private limited.

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Voor II Somostor	OPTIMIZATION TECHNIQUES	L	Т	Ρ	С
II Tear II Semester	OF TIMIZATION TECHNIQUES	2	0	0	2

Course Objectives:

- To define an objective function and constraint functions in terms of design variables, and then state the optimization problem.
- To state single variable and multi variable optimization problems, without and with constraints.
- To explain linear programming technique to an optimization problem, define slack and surplus variables, by using Simplex method.
- To state transportation and assignment problem as a linear programming problem to determine Simplex method.
- To study and explain nonlinear programming techniques, unconstrained or constrained, and define exterior and interior penalty functions for optimization problems.

Course Outcomes: At the end of the course, student will be able to

- 1. State and formulate the optimization problem, without and with constraints, by using design variables from an engineering design problem.
- 2. Apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints, and arrive at an optimal solution.
- 3. Apply and Solve transportation and assignment problem by using Linear programming Simplex method.
- 4. Apply gradient and non-gradient methods to nonlinear optimization problems and use interior or exterior penalty functions for the constraints to derive the optimal solutions
- 5. Formulate and apply Dynamic programming technique to inventory control, production planning, engineering design problems etc. to reach a final optimal solution from the current optimal solution.

UNIT I: Introduction and Classical Optimization Techniques:

Statement of an Optimization problem, design vector, design constraints, constraint surface, objective function, objective function surfaces, classification of Optimization problems.

Classical Optimization Techniques: Single variable Optimization, multi variable Optimization without constraints, necessary and sufficient conditions for minimum/maximum, multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers, multivariable Optimization with inequality constraints, Kuhn – Tucker conditions

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

UNIT II: Linear Programming :

Standard form of a linear programming problem, geometry of linear programming problems, definitions and theorems, solution of a system of linear simultaneous equations, pivotal reduction of a general system of equations, motivation to the simplex method, simplex algorithm.

UNIT III: Transportation Problem:

Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel's approximation method, testing for optimality of balanced transportation problems, Special cases in transportation problem.

UNIT IV: Nonlinear Programming:

Unconstrained cases, One – dimensional minimization methods: Classification, Fibonacci method, Univariate method, steepest descent method. Constrained cases– Characteristics of a constrained problem, Classification, Basic approach of PenaltyFunction method, Basic approaches of Interior and Exterior penalty function methods,

UNIT V: Dynamic Programming:

Dynamic programming multistage decision processes, types, concept of sub optimization and the principle of optimality, computational procedure in dynamic programming, examples illustrating the calculus method of solution, examples illustrating the tabular method of solution.

Textbooks:

1. "Engineering optimization: Theory and practice", S. S.Rao, New Age International

(P) Limited, 3rd edition, 1998.

2. "Introductory Operations Research", H.S. Kasene& K.D. Kumar, Springer (India), Pvt.LTd.

Reference Books:

- "Optimization Methods in Operations Research and systems Analysis", by K.V. Mital and C. Mohan, New Age International (P) Limited, Publishers, 3rd edition, 1996.
- 2. Operations Research, Dr.S.D.Sharma, Kedarnath, Ramnath& Co

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Voor II Somostor	αθορλαιί του λίτα απλατιστίος	L	Т	Ρ	C
II Tear II Semester	PROBABILITY AND STATISTICS	3	0	0	3

Course Objectives:

- To familiarize the students with the foundations of probability and statistical methods
- To impart probability concepts and statistical methods in various applications Engineering

Course Outcomes: Upon successful completion of this course, the student should be able to

- 1. Classify the concepts of data science and its importance (L2)
- 2. Interpret the association of characteristics and through correlation and regression tools (L4)
- 3. Apply discrete and continuous probability distributions (L3)
- 4. Design the components of a classical hypothesis test (L6)
- 5. Infer the statistical inferential methods based on small and large sampling tests (L4)

Unit – I: Descriptive statistics and methods for data science:

Data science – Statistics Introduction – Population vs Sample – Collection of data – primary and secondary data – Type of variable: dependent and independent Categorical and Continuous variables – Data visualization – Measures of Central tendency – Measures of Variability – Skewness – Kurtosis.

UNIT - II: Correlation and Regression:

Correlation – Correlation coefficient – Rank correlation. Linear Regression: Straight line – Multiple Linear Regression - Regression coefficients and properties – Curvilinear Regression: Parabola – Exponential – Power curves.

UNIT – III: Probability and Distributions:

Probability– Conditional probability and Baye's theorem – Random variables – Discrete and Continuous random variables – Distribution functions – Probability mass function, Probability density function and Cumulative distribution functions – Mathematical Expectation and Variance – Binomial, Poisson, Uniform and Normal distributions.

UNIT – IV: Sampling Theory:

Introduction – Population and Samples – Sampling distribution of Means and Variance (definition only) – Point and Interval estimations – Maximum error of estimate – Central $\lim_{n \to \infty} 2^n$ it theorem (without proof)

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

– Estimation using t, and F-distributions.

UNIT – V: Tests of Hypothesis:

Introduction – Hypothesis – Null and Alternative Hypothesis – Type I and Type II errors – Level of significance – One tail and two-tail tests – Test of significance for large samples and Small Samples: Single and difference means – Single and two proportions – Student's t- test, Ftest, -test.

Text Books:

- 1. **Miller and Freund's**, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. S. C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

Reference Books:

- Shron L. Myers, Keying Ye, Ronald E Walpole, Probability and Statistics Engineers and the Scientists,8th Edition, Pearson 2007.
- 2. **Jay 1. Devore,** Probability and Statistics for Engineering and the Sciences, 8th Edition, Cengage.
- Sheldon M. Ross, Introduction to probability and statistics Engineers and the Scientists, 4th Edition, Academic Foundation, 2011.
- Johannes Ledolter and Robert V. Hogg, Applied statistics for Engineers and Physical Scientists, 3rd Edition, Pearson, 2010.

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Voor II Somostor	Machina Loorning	L	Т	Ρ	С
II Tear II Semester	Machine Learning	3	0	0	3

Course Objectives:

The objectives of the course is to

- Define machine learning and its different types (supervised and unsupervised) and understand their applications.
- Apply supervised learning algorithms including decision trees and k-nearest neighbours (k-NN).
- Implement unsupervised learning techniques, such as K-means clustering.

Course outcomes:

At the end of the Course the student shall be able to

- 1. Understand fundamentals and the characteristics of machine learning.
- 2. Apply various supervised learning methods and relevant problems
- 3. Apply various unsupervised learning methods to appropriate problems.
- 4. 4 Create reinforcement learning techniques for various applications and ensemble machine learning algorithms
- 5. Identify and integrate the various genetic algorithms

UNIT-I: Introduction to Machine Learning: Evolution of Machine Learning, Paradigms for ML, Learning by Rote, Learning by Induction, Reinforcement Learning, Types of Data, Matching, Stages in Machine Learning, Data Acquisition, Feature Engineering, Data Representation, Model Selection, Model Learning, Model Evaluation, Model Prediction, Search and Learning, Data Sets.

UNIT-II: Nearest Neighbor-Based Models:Introduction to Proximity Measures, Distance Measures, Non-Metric Similarity Functions, Proximity Between Binary Patterns, Different Classification Algorithms Based on the Distance Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor Algorithm, KNN Regression, Performance of Classifiers, Performance of Regression Algorithms.

UNIT-III: Models Based on Decision Trees: Decision Trees for Classification, Impurity Measures, Properties, Regression Based on Decision Trees, Bias–Variance Trade-off, Random Forests for Classification and Regression.

The Bayes Classifier: Introduction to the Bayes Classifier, Bayes' Rule and Inference, The Bayes Classifier and its Optimality, Multi-Class Classification | Class Conditional Independence and Naive Bayes Classifier (NBC)

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

UNIT-IV: Linear Discriminants for Machine Learning: Introduction to Linear Discriminants, Linear Discriminants for Classification, Perceptron Classifier, Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear Regression, Multi-Layer Perceptrons (MLPs), Backpropagation for Training an MLP.

UNIT-V: Clustering : Introduction to Clustering, Partitioning of Data, Matrix Factorization | Clustering of Patterns, Divisive Clustering, Agglomerative Clustering, Partitional Clustering, K-Means Clustering, Soft Partitioning, Soft Clustering, Fuzzy C-Means Clustering, Rough Clustering, Rough K-Means Clustering Algorithm, Expectation Maximization-Based Clustering, Spectral Clustering.

Text Books:

1. "Machine Learning Theory and Practice", M N Murthy, V S Ananthanarayana, Universities Press (India), 2024

Reference Books:

- 1. "Machine Learning", Tom M. Mitchell, McGraw-Hill Publication, 2017
- 2. "Machine Learning in Action",Peter Harrington, DreamTech
- 3. "Introduction to Data Mining", Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019.

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Vear II Semester	Database Management Systems	L	Т	Р	С
II I cal II Semester	Database management Systems	3	0	0	3

Course Objectives:

The main objectives of the course is to

- Introduce database management systems and to give a good formal foundation on the relational model of data and usage of Relational Algebra
- Introduce the concepts of basic SQL as a universal Database language
- Demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- Provide an overview of physical design of a database system, by discussing Database indexing techniques and storage techniques

Course Objectives:

At the end of the course, the student will be able to

- 1. Describe a relational database and object-oriented database
- 2. Create, maintain and manipulate a relational database using SQL
- 3. Describe ER model and normalization for database design
- 4. Examine issues in data storage and query processing and can formulate appropriate solutions
- 5. Outline the role and issues in management of data such as efficiency, privacy, security, ethical responsibility, and strategic advantage

UNIT I:Introduction: Database system, Characteristics (Database Vs File System), Database Users, Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment, Centralized and Client Server architecture for the database.

Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.

Unit II: Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance, Relational Algebra, Relational Calculus. BASIC SQL:Simple Database

(Autonomous) Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017

B. TECH CSE (AI&ML)

schema, data types, table definitions (create, alter), different DML operations (insert, delete, update).

UNIT III: SQL: Basic SQL querying (select and project) using where clause, arithmetic & logical operations, SQL functions(Date and Time, Numeric, String conversion).Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non-updatable), relational set operations.

UNIT IV: Schema Refinement (Normalization): Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependencyLossless join and dependency preserving decomposition, (1NF, 2NF and 3 NF), Boyce-Codd normal form(BCNF), MVD, Fourth normal form(4NF), Fifth Normal Form (5NF).

UNIT V:Transaction Concept:

Introduction of Transaction Processing, DBMS Buffers, Concurrency control, Types of Failures, Transaction states and Operations, System log, Transaction Properties, Schedules and Types of Schedules.

Indexing Techniques: File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing: Tree base Indexing, Comparison of File Organizations

Text Books:

- 1. Database Management Systems, 3rd edition, Raghurama Krishnan, Johannes Gehrke, TMH (For Chapters 2, 3, 4)
- 2. Database System Concepts, 5th edition, Silberschatz, Korth, Sudarsan, TMH (For Chapter 1 and Chapter 5)

Reference Books:

- 1. Introduction to Database Systems, 8thedition, C J Date, Pearson.
- Database Management System, 6th edition, RamezElmasri, Shamkant B. Navathe, Pearson
- 3. Database Principles Fundamentals of Design Implementation and Management, Corlos Coronel, Steven Morris, Peter Robb, Cengage Learning.

Web-Resources:

- 1. https://nptel.ac.in/courses/106/105/106105175/
- 2. <u>https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456_shared/overview</u>

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Year II Semester	Digital Logic & Computer	L	Т	Р	С
	Organization	3	0	0	3

Course Objectives:

The main objectives of the course is to

- provide students with a comprehensive understanding of digital logic design principles and computer organization fundamentals
- Describe memory hierarchy concepts
- Explain input/output (I/O) systems and their interaction with the CPU, memory, and peripheral devices

UNIT – I:

Data Representation: Binary Numbers, Fixed Point Representation. Floating Point Representation. Number base conversions, Octal and Hexadecimal Numbers, components, Signed binary numbers, Binary codes

UNIT – II:

Digital Logic Circuits-I: Basic Logic Functions, Logic gates, universal logic gates, Minimization of Logic expressions. K-Map Simplification, Combinational Circuits, Decoders, Multiplexers

UNIT – III:

Digital Logic Circuits-II: Sequential Circuits, Flip-Flops, Binary counters, Registers, Shift Registers, Ripple counters

Basic Structure of Computers: Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers, Computer Generations, Von-Neumann Architecture

UNIT – IV:

Computer Arithmetic : Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point Numbers and Operations

Processor Organization: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus Organization, Hardwired Control and Multi programmed Control

UNIT – V:

The Memory Organization: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed, Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management Requirements, Secondary Storage

UNIT – VI:

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

Input/Output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces

Textbooks:

- 1. Computer Organization, Carl Hamacher, ZvonkoVranesic, SafwatZaky, 6th edition, McGraw Hill, 2023.
- 2. Digital Design, 6th Edition, M. Morris Mano, Pearson Education, 2018.
- 3. Computer Organization and Architecture, William Stallings, 11thEdition, Pearson, 2022.

Reference Books:

- Computer Systems Architecture, M.Moris Mano, 3rdEdition, Pearson, 2017.
- 2. Computer Organization and Design, David A. Paterson, John L. Hennessy, Elsevier, 2004.
- 3. Fundamentals of Logic Design, Roth, 5thEdition, Thomson, 2003.

Online Learning Resources:

https://nptel.ac.in/courses/106/103/106103068/

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Voor II Somostor	Machine Learning Lab	L	Т	Ρ	С
II Tear II Semester	Machine Learning Lab	0 0 3	1.5		

Course Objectives:

- To learn about computing central tendency measures and Data preprocessing techniques
- To learn about classification and regression algorithms
- To apply different clustering algorithms for a problem.

Software Required: Python/R/Weka

Lab should cover the concepts studied in the course work, sample listof *Experiments:*

- 1. Compute Central Tendency Measures: Mean, Median, Mode Measure of Dispersion: Variance, Standard Deviation.
- 2. Apply the following Pre-processing techniques for a given dataset.
 - a. Attribute selection
 - b. Handling Missing Values
 - c. Discretization
 - d. Elimination of Outliers
- 3. Apply KNN algorithm for classification and regression
- 4. Demonstrate decision tree algorithm for a classification problem and perform parameter tuning for better results
- 5. Demonstrate decision tree algorithm for a regression problem
- 6. Apply Random Forest algorithm for classification and regression
- 7. Demonstrate Naïve Bayes Classification algorithm.
- 8. Apply Support Vector algorithm for classification
- 9. Demonstrate simple linear regression algorithm for a regression problem
- 10. Apply Logistic regression algorithm for a classification problem
- 11. Demonstrate Multi-layer Perceptron algorithm for a classification problem
- 12. Implement the K-means algorithm and apply it to the data you selected. Evaluate performance by measuring the sum of the Euclidean distance of each example from its class center. Test the performance of the algorithm as a function of the parameters K.
- 13. Demonstrate the use of Fuzzy C-Means Clustering

14. Demonstrate the use of Expectation Maximization based clustering algorithm

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Year II Semester	Database Management Systems	L	Т	Ρ	C
	Lab	0	0	3	1.5

Course Objectives:

This Course will enable students to

- Populate and query a database using SQL DDL/DML Commands
- Declare and enforce integrity constraints on a database
- Writing Queries using advanced concepts of SQL
- Programming PL/SQL including procedures, functions, cursors and triggers,

Experiments covering the topics:

- DDL, DML, DCL commands
- Queries, nested queries, built-in functions,
- PL/SQL programming- control structures
- Procedures, Functions, Cursors, Triggers,
- Database connectivity- ODBC/JDBC

Sample Experiments:

- 1. Creation, altering and droping of tables and inserting rows into a table (use constraints while creating tables) examples using SELECT command.
- 2. Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION, INTERSET, Constraints. Example:- Select the roll number and name of the student who secured fourth rank in the class.
- 3. Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.
- 4. Queries using Conversion functions (to_char, to_number and to_date), string functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, initcap, length, substr and instr), date functions (Sysdate, next_day, add_months, last_day, months_between, least, greatest, trunc, round, to_char, to_date)
- 5.
- i. Create a simple PL/SQL program which includes declaration section, executable section and exception –Handling section (Ex. Student marks can be selected from the table and printed for those who secured first class and an exception can be raised if no records were found)

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

- ii. Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.
- 6. Develop a program that includes the features NESTED IF, CASE and CASE expression. The program can be extended using the NULLIF and COALESCE functions.
- 7. Program development using WHILE LOOPS, numeric FOR LOOPS, nested loops using ERROR Handling, BUILT –IN Exceptions, USE defined Exceptions, RAISE- APPLICATION ERROR.
- 8. Programs development using creation of procedures, passing parameters IN and OUT of PROCEDURES.
- 9. Program development using creation of stored functions, invoke functions in SQL Statements and write complex functions.
- 10. Develop programs using features parameters in a CURSOR, FOR UPDATE CURSOR, WHERE CURRENT of clause and CURSOR variables.
- 11. Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers
- 12. Create a table and perform the search operation on table using indexing and non-indexing techniques.
- 13. Write a Java program that connects to a database using JDBC
- 14. Write a Java program to connect to a database using JDBC and insert values into it
- 15. Write a Java program to connect to a database using JDBC and delete values from it

Text Books/Suggested Reading:

- 1. Oracle: The Complete Reference by Oracle Press
- 2. Nilesh Shah, "Database Systems Using Oracle", PHI, 2007
- 3. Rick F Vander Lans, "Introduction to SQL", Fourth Edition, Pearson Education, 2007

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **B. TECH CSE (AI&ML)**

II Vear II Semester	DESIGN THINKING & INNOVATION	L	Т	Р	С
n rear n Semester	DESIGN THINKING & INNOVATION	1	0	2	0

Course Objectives: The objectives of the course are to

- Bring awareness on innovative design and new product development.
- Explain the basics of design thinking.
- Familiarize the role of reverse engineering in product development.
- Train how to identify the needs of society and convert into demand.
- Introduce product planning and product development process.

UNIT – I Introduction to Design Thinking

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT - II Design Thinking Process

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brainstorming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT - III Innovation

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT - IV Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies.

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, VatticherukuruMandal, Guntur, Andhra Pradesh522017 **R TECH CSE (AL&MI)**

B. TECH CSE (AI&ML)

Activity: Importance of modeling, how to set specifications, Explaining their own product design.

UNIT - V Design Thinking in Business Processes

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes.

Activity: How to market our own product, about maintenance, Reliability and plan for startup.

Textbooks:

- 1. Tim Brown, Change by design, 1/e, Harper Bollins, 2009.
- Idris Mootee, Design Thinking for Strategic Innovation, 1/e, Adams Media, 2014.

Reference Books:

- 1. David Lee, Design Thinking in the Classroom, Ulysses press, 2018.
- 2. Shrrutin N Shetty, Design the Future, 1/e, Norton Press, 2018.
- 3. William lidwell, Kritinaholden, &Jill butter, Universal principles of design, 2/e, Rockport Publishers, 2010.
- 4. Chesbrough.H, The era of open innovation, 2003.

Online Learning Resources:

- https://nptel.ac.in/courses/110/106/110106124/
- <u>https://nptel.ac.in/courses/109/104/109104109/</u>
- <u>https://swayam.gov.in/nd1_noc19_mg60/preview</u>
- <u>https://onlinecourses.nptel.ac.in/noc22_de16/preview</u>

Course Outcomes:

COs	Statements	Bloom s Level
CO1	Define the concepts related to design thinking.	L1
CO2	Explain the fundamentals of Design Thinking and innovation.	L2
CO3	Apply the design thinking techniques for solving problems in various sectors.	L3
CO4	Analyse to work in a multidisciplinary environment.	L4
CO5	Evaluate the value of creativity.	L5