
Page 1

CHAPTER 1
INTRODUCTION TO SOFTWARE TESTING

1.1 TESTING AS AN ENGINEERING ACTIVITY

Software systems are becoming more challenging to build new methods, techniques and tools
are used to develop software and maintenances. The poor quality software that can cause loss of life
or property. So, high quality software should be produced.

For that, you should provide necessary training and create interest to the software
development team in the areas of software product and process quality. Highly qualified staff ensure
that software products are built on time & Software products are built within budget.

Software products with high quality attributes are:

o Reliability
o Correctness
o The ability to meet all user requirements

Elements of the Engineering Design

 Basic principles

 Processes
 Standards

 Measurements
 Tools
 Methods

 Best practices
 Codes of ethics

 Body of knowledge
 The profession of software engineering is slowly acted as a formal engineering discipline.
 The software development activities are also using the engineering approach as follows:

 The development process is well understood
 Projects are well planned
 Life cycles models are defined and followed
 Standards are in place in process and products
 Measurements are employed to evaluate product and process quality
 Components are reviewed
 Verification and validation process play a key role in producing a quality

server
 Engineers have proper education, training and certification.

Page 2

 A testing specialist who is trained as an engineer should have knowledge of
test related principles, measurements, standards, plans, tools and methods, and
should learn how to apply them to the testing tasks to be performed.

1.2 ROLE OF PROCESS IN SOFTWARE QUALITY

 The software engineering process is the set of methods, practices, standards, documents,
activities, policies and procedures that software engineers used to develop and maintain a
software system and its associated artifacts such as projects and test plans, design documents,
code and manuals.

 Types of manuals namely
1. user manual
2. troubleshoot manual
3. administration manual
4. Quality factors involved in high quality software products:

1. usability
2. reliability
3. testability
4. maintainability

 Different models are used in software engineering process such as
 CMM
 spice

 TMM

1.3 TESTING AS A PROCESS
 Software development process has includes five sub process namely

1. requirement / analysis process
2. product specification process
3. Design process
4. implementation process
5. testing process : v&v

 The testing process further involves in two processes namely verification and validation.

 The technical aspects of the testing relate to the techniques, method, measurement, and
tools used to ensure that the software under test is as defect free and reliable.

 The testing itself is related to two processes called verification, validation.
Validation: It is the process of evaluate a software system during or at the end of the cycle in

order to determine whether it satisfies the specified requirements.
Meaning: Validation is associated with traditional execution based technique that means

exercising the code with test cases.
Verification: It is process of evaluating a software system to determine whether product of

a given development phase satisfy the condition imposed at the start that phase.

Page 3

Meaning: Verification is usually associated with activities such as inspection and reviews of
software deliverables.

FIG. Example processes embedded in the software development process

 Software testing: Testing is generally described as a group of procedures carried out to
evaluate source aspects of a piece of software.
Purpose of testing processes: testing has a dual purpose process namely reveal defects and to
evaluate quality attributes of software.

 Debugging: it is the process of locating the fault or defect, repairing the code and retesting
the code

1.4 BASIC DEFINITIONS
Faults (Defects)
A fault (defect) is introduced into the software as the result of an error. It is an anomaly in the
software that may cause it to behave incorrectly, and not according to its specification.

 Errors
An error is a mistake, misconception, or misunderstanding on the part of a software developer.

Failures
A failure is the inability of a software system or component to perform its required functions within
specified performance requirements.

Page 4

Test Cases
The usual approach to detecting defects in a piece of software is for the tester to select a set of input
data and then execute the software with the input data under a particular set of conditions. A test
case in a practical sense is a test-related item which contains the following information:

1. A set of test inputs. These are data items received from an external source by the code
under test. The external source can be hardware, software, or human.
2. Execution conditions. These are conditions required for running the test, for example, a
certain state of a database, or a configuration of a hardware device.
3. Expected outputs. These are the specified results to be produced by the code under test.

Test
A test is a group of related test cases, or a group of related test cases and test procedures.

Test Oracle
A test oracle is a document, or piece of software that allows testers to determine whether a test has
been passed or failed.

Test Bed
A test bed is an environment that contains all the hardware and software needed to test a software
component or a software system.

 Software Quality
Two concise definitions for quality are found in the IEEE Standard Glossary of Software
Engineering Terminology:

1. Quality relates to the degree to which a system, system component, or process meets
specified requirements.
2. Quality relates to the degree to which a system, system component, or process meets
customer or user needs, or expectations. In order to determine whether a system, system
component, or process is of high quality we use what are called quality attributes. These are
characteristics that reflect quality. For software artifacts we can measure the degree to which
they possess a given quality attribute with quality metrics.

Quality metrics
A metric is a quantitative measure of the degree to which a system, system component, or process
possesses a given attribute.
There are product and process metrics. A very commonly used example of a software product metric
is software size, usually measured in lines of code (LOC). Two examples of commonly used process
metrics are costs and time required for a given task. Quality metrics are a special kind of metric.

Page 5

A quality metric is a quantitative measurement of the degree to which an item possesses a given
quality attribute.
Many different quality attributes have been described for software. Some examples of quality
attributes with brief explanations are the following:

correctness—the degree to which the system performs its intended function
reliability—the degree to which the software is expected to perform its required functions
under stated conditions for a stated period of time
usability—relates to the degree of effort needed to learn, operate, prepare input, and interpret
output of the software
integrity—relates to the system‘s ability to withstand both intentional and accidental attacks
portability—relates to the ability of the software to be transferred from one environment to
another
maintainability—the effort needed to make changes in the software
interoperability—the effort needed to link or couple one system to another.

Another quality attribute that should be mentioned here is testability. This attribute is of

more interest to developers/testers than to clients. It can be expressed in the following two ways:
1. the amount of effort needed to test the software to ensure it performs needed),
2. the ability of the software to reveal defects under testing conditions (some software is designed in
such a way that defects are well hidden during ordinary testing conditions).
Testers must work with analysts, designers and, developers throughout the software life system to
ensure that testability issues are addressed.

Software Quality Assurance Group
The software quality assurance (SQA) group in an organization has ties to quality issues. The group
serves as the customers‘ representative and advocate. Their responsibility is to look after the
customers‘ interests.
The software quality assurance (SQA) group is a team of people with the necessary training and
skills to ensure that all necessary actions are taken during the development process so that the
resulting software conforms to established technical requirements.

Reviews
In contrast to dynamic execution-based testing techniques that can be used to detect defects and
evaluate software quality, reviews are a type of static testing technique that can be used to evaluate
the quality of a software artifact such as a requirements document, a test plan, a design document, a
code component. Reviews are also a tool that can be applied to revealing defects in these types of
documents.
Definition: A review is a group meeting whose purpose is to evaluate a software artifact or a set of
software artifacts.

Page 6

CHAPTER 2
TESTING FUNDAMENDALS

2.1 SOFTWARE TESTING PRINCIPLES
 Testing principles are important to test specialists because they provide the foundation for

developing testing knowledge and acquiring testing skills.
 They also provide guidance for defining testing activities as performed in the practice of a

test specialist, A principle can be defined as;
 A general or fundamental, law, doctrine, or assumption,

 A rule or code for conduct,
 The laws or facts of nature underlying the working of an artificial device.

The principles as stated below only related to execution-based testing.

Principle1: Testing is the process of exercising a software component using a selected set of
tests cases, with the internet.

 Revealing defects, and
 Evaluating quality.

 Software engineers have made great progress in developing methods to prevent and eliminate
defects. However, defects do occur, and they have a negative impact on a software quality.
This principle supports testing as an execution-based activity to detect defects.

 The term defect as used in this and in subsequent principle represents any deviations in the
software that have negative impact on its functionality, performance, reliability, security and
other of its specified quality attributes.

Principle-2:When the test objectives is to detect defects, then a good test case is one that has a
high probability of revealing a yet undetected defects.
 The goal for the test is to prove / disprove the hypothesis that is, determine if the specific

defect is present / absent.
 A tester can justify the expenditure of the resources by careful test design so that principle

two is supported.

Principle-3:Test result should be inspected meticulously.
 Tester need to carefully inspect and interpret test results. Several erroneous and costly

scenarios may occur if care is not taken.
Example:
 A failure may be overloaded, and the test may be granted a pass status when in reality the
software has failed the test. Testing may continue based on erroneous test result. The defect may be
revealed at some later stage of testing, but in that case it may be moke costly and difficult to locate
and repair.

Page 7

Principle-4: A test case must contain the expected output or result.
 The test case is of no value unless there is an explicit statement of the expected outputs or

results.
Example:
 A specific variable value must be observed or a certain panel button that must light up.

Principle-5: Test cases should be developed for both valid and invalid input conditions.
 The tester must not assume that the software under test will always be provided with valid

inputs.
 Inputs may be incorrect for several reasons.

Example:
 Software users may have misunderstandings, or lack information about the nature of the
inputs. They often make typographical errors even when compute / correct information are available.
Device may also provide invalid inputs due to erroneous conditions and malfunctions.

Principle-6: The probability of the existence of additional defects in a software component is
proportional to the number of defects already defected in that component.
Example:
 If there are two components A and B and testers have found 20 defects in A and 3 defects in
B, then the probability of the existence of additional defects in A is higher than B.

Principle-7: Testing should be carried out by a group that is independent of the development
group.
 Tester must realize that

1. Developers have a great deal of pride in their work and
2. On practical level it may be difficult for them to conceptualize where defects could be

found.

Principle-8: Tests must be repeatable and reusable
 This principle calls for experiments in the testing domain to require recording of the exact

condition of the test, any special events that occurred, equipment used, and a careful
accounting of the results.

 This information invaluable to the developers when the code is returned for debugging so
that they can duplicate test conditions.

Principle-9: Testing should be planned.
 Test plan should be developed for each level of testing, and objective for each level should

be described in the associated plan.

Page 8

 The objectives should be stated as quantitatively as possible plan, with their precisely
specified objectives.

Principle-10: Testing activities should be integrated into the software life cycle.
 It is no longer feasible to postpone testing activities until after the code has been written.
 Test planning activities into the software lifecycle starting as early as in the requirements

analysis phases, and continue on throughout the software lifecycle in parallel with
development activities.

Principle-11: Testing is a creative and challenging task.
Difficult and challenges for the tester includes,

 A tester needs to have comprehensive knowledge of the software engineering discipline.
 A tester needs to have knowledge from both experience and education as to how software is

specified, designed and developed.

 A tester needs to be able to manage many details.
 A tester needs to have knowledge of fault type and where faults of a certain type night occur

in code constructs.
 A tester needs a reason like scientist and propose hypotheses that related to presence of

specific type of defects.
 A tester needs to design and record test procedure for running the tests.

 A tester to plan for testing and allocate the proper resources.
 A tester need to execute the tests and is responsible for recording results.

 A tester need to learn to use tools and keeps abreast of the newest test tool advance.

2.2 TESTERS ROLE IN A SOFTWARE DEVELOPMENT ORGANISATION

 The tester job is to reveal defects, find weak points, inconsistent behavior and circumstances
where the software doesn‘t work as expected.

 The main function of a tester is to plan, execute, record and analyze test. They don‘t debug

the software.
 When defects are detected during testing, software should be returned to the developers who

locate the defect and repair the code. The tester may cooperate with code developers and also
need to work along with the requirements engineers to ensure that requirements are testable
and to plan for system and acceptance test.

 Test managers were need to cooperate with project managers in order to develop test plan,
and with upper management to provide input for the development and maintenance of
organizational testing standards, policies and goals

 Testers also need to cooperate with software quality assurance staff and software engineering
group members

Page 9

CHAPTER 3
DEFECT CLASSES AND DEFECT REPOSITORY

3.1 DEFECTS
Origins of Defects
 Defects have determined effects on software users, and software engineers work very hard to

produce high-quality software with a low number of defects.
 But even under the best of development circumstances errors are made, resulting in defects

beings injected in the software during the phase of the software lifecycle.

 Defect Sources
Lack of education
Poor communication
Oversight
Transcription
Immature process

Impact of S/W artifacts

Errors
Faults defects
Failures

 Fig: Origins of Defects

 Tester as doctors need to have knowledge about possible defects in order to develop defect

hypotheses, they use the hypotheses to;
 Design test cases

 Design test procedure
 Assemble test sets

 Select the testing levels appropriate for the tests
 Evaluate the results of the test.

 A successful testing experiment will prove the hypothesis is true that is, the hypothesized
defect was present. Then the software can be repaired.

Impact from user’s view

Poor quality software
User dissatisfaction

Page 10

3.2 DEFECT CLASSES, THE DEFECT REPOSITORY, AND TEST DESIGN
 Defect can be classified in many ways. It is important for an organization to adapt a single

classification scheme and apply it to projects.
 No matter which classification scheme is selected, some defects will fit into more than one

class or category.
 Because of this problem, developers, testers, and SQA staff should try to be as consistent as

possible when recording defect data.
 Execution-based testing strategies should be selected that have the strongest possibility of

defecting particular types of defects.

Fig: Defect Classes and Defect Repository

Defect classes

Defect classes are classified into four types namely
1. requirement/specification defect class
2. design defect class
3. coding defect class
4. testing defect class

Requirement specification
 defect classes

Functional description
Features
Feature Interaction
Interface Description

Defect Repository

Defect classes

Severity

Occurrences

Design Defect Classes

Algorithm and processing
Control, logic, & sequence Data
Module interface description
External interface description

Coding defect classes
Algorithm and processing
Control, logic, & sequences
Data flow, module interface
Code documentation
External flow, software

Testing defect classes

Test hardness
Test design
Test procedure

Defect reports/
analysis

Defect reports/
analysis

Defect reports/
analysis

Page 11

1. Requirement/Specification Defect Class
Some requirement defects are

1. functional description defects- the overall description of what the product does, and
how it should behave is incorrect, ambiguous, and/or incomplete

2. Feature defects- distinguishing characteristics of a software component or system.
3. Failure interaction defects- these are due to an incorrect description of how the features

should interact.
4. Interface description defects- these occur in the description of how the target software

is to interface with external software, hardware and users.

2. Design defects
Some design defects are

1. Algorithms and processing defects- these occur when the processing steps in the algorithm
as described by the pseudo code are incorrect.

2. Control logic and sequence defects- Control defects occur when logic flow in the pseudo
code is not collect.

3. Data Defects- These are associated with in collect design of data structures.
4. Module Interface Description Defects- This include in correct, missing, and /or

inconsistent defects of parameter types.
5. Functional Description Defects- This includes incorrect missing, and/ or unclear defects of

design elements. These defects are best defected during a design review.
6. External Interface Description defects- these are derived four incorrect design description

for inter faces with COTS components, external software systems, databases, and hardware
devices.

3. Coding Defects

1. Algorithmic and processing Defects- Adding levels of programming detail to design, code-
related algorithmic and processing defects now include unchecked overflow and underflow
conditions , comparing inappropriate data types, converting one data type to another,
incorrect ordering of arithmetic operators , misuse or omission of parenthesis , precision loss
an incorrect use of signs.

2. Control logic and sequence Defects- On the coding level these would include incorrect
expression of case statements incorrect iterations of loops.

3. Typographical Defects- These are syntax errors.
4. Initialization Defects- These occur when initialization statements are omitted or are

incorrect this may occur because of misunderstandings or lack of communication between
programmers and / or programmers and designers, carelessness of the programming
environment.

Page 12

5. Data Flow Defects- These are certain reasonable operational sequence that data should flow
through.

6. Data Defects- These are indicated by incorrect implementation of data structures.
7. Module Interface Defects- As in the case of module design elements, interface defects in

the code may be due to using incorrect or inconsistent parameter type an incorrect number of
parameters.

8. Code Documentation Defects – When the documentation does not reflect what the
programs actually does, or is in complete or ambiguous, this is called a code documentation
defect.

9. External hardware, software interface defects – These defects arise from problems related
to system called links to database, input/output sequence , memory usage , interrupts and
exception handling , data exchange with hardware , protocols , formats, interfaces with build
files , and fixing sequences.

4. Testing Defects

Defects are not confined to code and it related artifacts. Test plans , tests cases, test hardness
and test procedures can also contain defects . Defect in test plans are best detected using
review techniques.
1. Test hardness Defects
2. Test Case Design and Test Procedure Defects- These would encompass incorrect,

incomplete, missing, inappropriate test cases and test procedures.

3.3 DEVELOPER/TESTER SUPPORT FOR DEVELOPING A DEFECT REPOSITORY

The benefits of developing a defect repository to store defect information. As software
engineers and test specialists we should follow the examples of engineers in other disciplines who
have realized the usefulness of defect data. A requirement for repository development should be a
part of testing and/or debugging policy statements. The defect data is useful for test planning, a
TMM level 2 maturity goals.

It helps you to select applicable testing techniques, design (and reuse) the test cases you
need, and allocate the amount of resources you will need to devote to detecting and removing these
defects. This in turn will allow you to estimate testing schedules and costs. The defect data can
support debugging activities as well.

Page 13

Figure: Defect Repository

A defect repository can help to support achievement and continuous implementation of

several TMM maturity goals including con trolling and monitoring of test, software quality
evaluation and control, test measurement, and test process improvement.

CHAPTER 4
TEST CASE DESIGN

4.1 INTRODUCTION
 The Testing Maturity Model provides some answers to these questions. It can serve as a

learning tool, or framework, to learn about testing. Support for this usage of the TMM lies in
its structure. It introduces both the technical and managerial aspects of testing in a manner
that allows for a natural evolution of the testing process, both on the personal and
organizational levels.

Page 14

 In this chapter we begin the study of testing concepts using theTMM as a learning
framework. We begin the development of testing skills necessary to support achievement of
the maturity goals at levels 2–3 of the Testing Maturity Model. TMM level 2 has three
maturity goals, two of which are managerial in nature.

 Note that this goal is introduced at a low level of the TMM, indicating its importance as a
basic building block upon which additional testing strengths can be built. In order to satisfy
this maturity goal test specialists in an organization need to acquire technical knowledge
basic to testing and apply it to organizational projects.

4.2 THE SMART TESTER

 The smart tester is to understand the functionality, input/output domain and the environment
for use of the code being tested. For certain types of testing the user must also understand in
detail how the code is constructed.

Novice Tester

Novice testers, taking their responsibility seriously, might try to get test a module or component
using all possible inputs and exercise all possible software structures. Using this approach, they
reason, will enable them to detect all defects

Roles of a Smart Tester

 Reveal defects
 Can be used to evaluate software performance, usability & reliability.
 Understand the functionality, input/output domain and the environment for use of the

code being tested

4.3 TEST CASE DESIGN STRATEGIES AND TECHNIQUES

Test Strategies

Tester's View

Knowledge sources

Techniques / Methods

Page 15

Black-box testing
(not code-based)
(sometimes called
functional testing)

 Inputs

 Outputs

Requirements
document
Specifications
User manual
Models
Domain knowledge
Defect analysis data
Intuition
Experience

Equivalence class partitioning
Boundary value analysis
Cause effect graphing
Error guessing
Random testing
State-transition testing
Scenario-based testing

White-box testing
(also called
code-based or
structural testing)

Program code
Control flow graphs
Data flow graphs
Cyclomatic
complexity
High-level design
Detailed design

Control flow testing/coverage:
- Statement coverage
- Branch (or decision) coverage
- Condition coverage
- Branch and condition coverage
- Modified condition/ decision
coverage
- Multiple condition coverage
- Independent path coverage
- Path coverage
Data flow testing/ coverage
Class testing/coverage
Mutation testing

Figure: Two basic Testing Strategies

4.4 USING THE BLACK BOX APPROACH TO TEST CASE DESIGN

 Given the black box test strategy where we are considering only inputs and outputs as a

basis for designing test cases. How do we choose a suitable set of inputs from the set of

all possible valid and invalid inputs?

 Keep in mind that infinite time and resources are not available to exhaustively test all

possible inputs. This is prohibitively expensive even if the target software is a simple

software unit. The goal for the smart tester is to effectively use the resources available by

developing a set of test cases that gives the maximum yield of defects for the time and

effort spent.

Page 16

 To help achieve this goal using the black box approach we can select from several

methods. Very often combinations of the methods are used to detect different types of

defects. Some methods have greater practicality than others.

 Random Testing

 Equivalence Class Partitioning

 Boundary Value Analysis

 Other black box test design approaches

o Cause-and-Effect Graphing

o State Transition Testing

o Error Guessing

CHAPTER 5
BLACK BOX TEST CASE DESIGN TECHNIQUES

Page 17

5.1 RANDOM TESTING

Each software module or system has an input domain from which test input data is selected. If a
tester randomly selects inputs from the domain, this is called random testing. For example, if the
valid input domain for a module is all positive integers between 1 and 100, the tester using this
approach would randomly, or unsystematically, select values from within that domain; for
example, the values 55, 24, 3 might be chosen.

 Issues in Random Testing:

 Are the three values adequate to show that the module meets its specification when the
tests are run?

 Should additional or fewer values be used to make the most effective use of resources?

 Are there any input values, other than those selected, more likely to reveal defects? For
example, should positive integers at the beginning or end of the domain be specifically
selected as inputs?

 Should any values outside the valid domain be used as test inputs? For example, should
test data include floating point values, negative values, or integer values greater than
100?

More structured approaches to black box test design address these issues.
Use of random test inputs may save some of the time and effort that more thoughtful test
input selection methods require. However, the reader should keep in mind that according to
many testing experts, selecting test inputs randomly has very little chance of producing an
effective set of test data.

5.2 EQUIVALENCE CLASS PARTITIONING

 If a tester is viewing the software-under-test as a black box with well-defined inputs
and outputs, a good approach to selecting test inputs is to use a method called equivalence
class partitioning. Equivalence class partitioning results in a partitioning of the input
domain of the software-under- test.

The technique can also be used to partition the output domain, but this is not a
common usage. The finite numbers of partitions or equivalence classes that result allow the
tester to select a given member of an equivalence class as a representative of that class. Using
equivalence class partitioning a test value in a particular class is equivalent to a test value of
any other member of that class. Therefore, if one test case in a particular equivalence class
reveal a defect, all the other test cases based on that class would be expected to reveal the
same defect.

 Based on this discussion of equivalence class partitioning we can say that the
partitioning of the input domain for the software-under-test using this technique has the
following advantages:

Page 18

1. It eliminates the need for exhaustive testing, which is not feasible.
2. It guides a tester in selecting a subset of test inputs with a high probability of

detecting a defect.
3. It allows a tester to cover a larger domain of inputs/outputs with a smaller subset

selected from an equivalence class. Most equivalence class partitioning takes place
for the input domain.

How does the tester identify equivalence classes for the input domain? The tester uses the
conditions to partition the input domain into equivalence classes and then develops a set of
tests cases to cover (include) all the classes. Given that only the information in an
input/output specification is needed, the tester can begin to develop black box tests for
software early in the software life cycle in parallel with analysis activities.

There are several important points related to equivalence class partitioning:

1. The tester must consider both valid and invalid equivalence classes. Invalid classes

represent erroneous or unexpected inputs.
2. Equivalence classes may also be selected for output conditions.
3. The derivation of input or outputs equivalence classes is a heuristic process. The

conditions that are described in the following paragraphs only give the tester guidelines
for identifying the partitions. There are no hard and fast rules. Given the same set of
conditions, individual testers may make different choices of equivalence classes. As a
tester gains experience he is more able to select equivalence classes with confidence.

4. In some cases it is difficult for the tester to identify equivalence classes. The
conditions/boundaries that help to define classes may be absent, or obscure, or there may
seem to be a very large or very small number of equivalence classes for the problem
domain. These difficulties may arise from an ambiguous, contradictory, incorrect, or
incomplete specification and/or requirements description. It is the duty of the tester to
seek out the analysts and meet with them to clarify these documents.

Myers suggests the following conditions as guidelines for selecting input equivalence
classes. Test cases, when developed, may cover multiple conditions and multiple variables.

List of conditions

Page 19

1. ‗‗If an input condition for the software-under-test is specified as a range of values, select
one valid equivalence class that covers the allowed range and two invalid equivalence
classes, one outside each end of the range.‘‘
For example, suppose the specification for a module says that an input, the length of a
widget in millimeters, lies in the range 1–499; then select one valid equivalence class that
includes all values from 1 to 499. Select a second equivalence class that consists of all
values less than 1, and a third equivalence class that consists of all values greater than
499.

2. ‗‗If an input condition for the software-under-test is specified as a number of values, then

select one valid equivalence class that includes the allowed number of values and two
invalid equivalence classes that are outside each end of the allowed number.‘‘

3. ‗‗If an input condition for the software-under-test is specified as a set of valid input

values, then select one valid equivalence class that contains all the members of the set
and one invalid equivalence class for any value outside the set.‘‘
For example, if the specification for a paint module states that the colors RED, BLUE,
GREEN and YELLOW are allowed as inputs, then select one valid equivalence class that
includes the set RED, BLUE, GREEN and YELLOW, and one invalid equivalence class
for all other inputs.

4. ‗‗If an input condition for the software-under-test is specified as a ―must be‖ condition,

select one valid equivalence class to represent the ―must be‖ condition and one invalid

class that does not include the ―must be‖ condition.‘‘
For example, if the specification for a module states that the first character of a part
identifier must be a letter, then select one valid equivalence class where the first character
is a letter, and one invalid class where the first character is not a letter.

5. ‗‗If the input specification or any other information leads to the belief that an element in

an equivalence class is not handled in an identical way by the software-under-test, then
the class should be further partitioned into smaller equivalence classes.‘‘

5.3 BOUNDARY VALUE ANALYSIS

The test cases developed based on equivalence class partitioning can be strengthened by use
of an another technique called boundary value analysis. With experience, testers soon realize that
many defects occur directly on, and above and below, the edges of equivalence classes. Test cases
that consider these boundaries on both the input and output spaces as shown in following Figure are
often valuable in revealing defects.

Page 20

FIG. Boundaries of an equivalence partition

Whereas equivalence class partitioning directs the tester to select test cases from any element
of an equivalence class, boundary value analysis requires that the tester select elements close
to the edges, so that both the upper and lower edges of an equivalence class are covered by
test cases.
The rules-of-thumb described below are useful for getting started with boundary value
analysis.

1. If an input condition for the software-under-test is specified as a range of values, develop
valid test cases for the ends of the range, and invalid test cases for possibilities just above and
below the ends of the range.
For example if a specification states that an input value for a module must lie in the range
between -1.0 and +1.0, valid tests that include values for ends of the range, as well as invalid
test cases for values just above and below the ends, should be included. This would result in
input values of -1.0, -1.1, and 1.0, 1.1.

2. If an input condition for the software-under-test is specified as a number of values,
develop valid test cases for the minimum and maximum numbers as well as invalid test cases
that include one lesser and one greater than the maximum and minimum.
For example, for the real-estate module mentioned previously that specified a house can have
one to four owners, tests that include 0,1 owners and 4,5 owners would be developed.
The following is an example of applying boundary value analysis to output equivalence
classes. Suppose a table of 1 to 100 values is to be produced by a module. The tester should
select input data to generate an output table of size 0,1, and 100 values, and if possible 101
values.

3. If the input or output of the software-under-test is an ordered set, such as a table or a linear
list, develop tests that focus on the first and last elements of the set.

It is important for the tester to keep in mind that equivalence class partitioning and boundary
value analysis apply to testing both inputs and outputs of the software-under-test, and, most

Page 21

importantly, conditions are not combined for equivalence class partitioning or boundary
value analysis. Each condition is considered separately, and test cases are developed to insure
coverage of all the individual conditions.

5.4 CAUSE - AND – EFFECT GRAPHING

A major weakness with equivalence class partitioning is that it does not allow testers
to combine conditions. Combinations can be covered in some cases by test cases generated
from the classes. Cause-and-effect graphing is a technique that can be used to combine
conditions and derive an effective set of test cases that may disclose inconsistencies in a
specification.

However, the specification must be transformed into a graph that resembles a
digital logic circuit. The graph must be converted to a decision table that the tester uses to
develop test cases. Tools are available for the latter process and allow the derivation of test
cases to be more practical using this approach.
The steps in developing test cases with a cause-and-effect graph are as follows:

1. The tester must decompose the specification of a complex software component
into lower-level units.

2. For each specification unit, the tester needs to identify causes and their effects. A
cause is a distinct input condition or an equivalence class of input conditions. An
effect is an output condition or a system transformation. Putting together a table
of causes and effects helps the tester to record the necessary details. The logical
relationships between the causes and effects should be determined. It is useful to
express these in the form of a set of rules.

3. From the cause-and-effect information, a Boolean cause-and-effect graph is
created. Nodes in the graph are causes and effects. Causes are placed on the left
side of the graph and effects on the right. Logical relationships are expressed
using standard logical operators such as AND, OR, and NOT, and are associated
with arcs. An example of the notation is shown in the following Figure. Myers
shows additional examples of graph notations.

4. The graph may be annotated with constraints that describe combinations of causes
and/or effects that are not possible due to environmental or syntactic constraints.

5. The graph is then converted to a decision table.
6. The columns in the decision table are transformed into test cases.

Example
The following example illustrates the application of this technique. Suppose we have

a specification for a module that allows a user to perform a search for a character in an
existing string. The specification states that the user must input the length of the string and
the character to search for.

Page 22

FIG. Samples of cause-and-effect graph notations

If the string length is out-of-range an error message will appear. If the character

appears in the string, its position will be reported. If the character is not in the string the
message ―not found‖ will be output.

The input conditions, or causes are as follows:
C1: Positive integer from 1 to 80
C2: Character to search for is in string

The output conditions, or effects are:
E1: Integer out of range
E2: Position of character in string
E3: Character not found

The rules or relationships can be described as follows:
If C1 and C2, then E2.
If C1 and not C2, then E3.
If not C1, then E1.

Based on the causes, effects, and their relationships, a cause-and-effect graph to
represent this information is shown in the following Figure.

Page 23

FIG. Cause-and-effect graph for the character search example

The next step is to develop a decision table. The decision table reflects the rules and
the graph and shows the effects for all possible combinations of causes. Columns list each
combination of causes, and each column represents a test case. Given n causes this could lead
to a decision table with 2n entries, thus indicating a possible need for many test cases.

A decision table will have a row for each cause and each effect. The entries are a
reflection of the rules and the entities in the cause and effect graph. Entries in the table can be
represented by a ―1‖ for a cause or effect that is present, a ―0‖ represents the absence of a

cause or effect, and a ―—‖ indicates a ―don‘t care‖ value. A decision table for our simple
example is shown in Table 4.3 where C1, C2, C3 represent the causes, E1, E2, E3 the effects,
and columns T1, T2, T3 the test cases.

The tester can use the decision table to consider combinations of inputs to generate
the actual tests. In this example, three test cases are called for. If the existing string is
―abcde,‖ then possible tests are the following:

Page 24

The major problem is developing a graph and decision table when there are many causes and
effects to consider. A possible solution to this is to decompose a complex specification into lower-
level, simpler components and develop cause-and-effect graphs and decision tables for these.

TABLE- Decision table for character search example

5.5 BLACK BOX TESTING AND COMMERCIAL OFF-THE-SHELF (COTS)
COMPONENTS

 As software development evolves into an engineering discipline, the reuse of software
components will play an increasingly important role. Reuse of components means that
developers need not reinvent the wheel; instead they can reuse an existing software
component with the required functionality.

 The reusable component may come from a code reuse library within their organization or, as
is most likely, from an outside vendor who specializes in the development of specific types
of software components.

 Components produced by vendor organizations are known as commercial off-the-shelf, or
COTS, components. Using COTS components can save time and money. However, the
COTS component must be evaluated before becoming a part of a developing system. This
means that the functionality, correctness, and reliability of the component must be
established. In addition, its suitability for the application must be determined, and any
unwanted functionality must be identified and addressed by the developers.

 When a COTS component is purchased from a vendor it is basically a black box. It can
range in size from a few lines of code, for example, a device driver, to thousands of lines of
code, as in a telecommunication subsystem. If the COTS component is small in size, and a
specification of its inputs/outputs and functionality is available, then equivalence class
partitioning and boundary value analysis may be useful for detecting defects and establishing
component behavior. The tester should also use this approach for identifying any unwanted
or unexpected functionality or side effects.

CHAPTER 6

Page 25

WHITE BOX TEST CASE DESIGN TECHNIQUES

6.1 DIFFERENT METHODS USED IN THE WHITE BOX TESTING STRATEGIES
 Control flow testing/coverage:

- Statement coverage - Branch (or decision) coverage
-Condition coverage - Branch and condition coverage
- Modified condition/decision coverage - Multiple condition coverage
- Independent path coverage - Path coverage

 Data flow testing/coverage
 Class testing/coverage
 Mutation testing

6.2 TEST ADEQUACY CRITERIA

 The goal for white box testing is to ensure that the internal components of a program are
working properly. A common focus is on structural elements such as statements and
branches. The tester develops test cases that exercise these structural elements to determine if
defects exist in the program structure.

 Testers need a framework for deciding which structural elements to select as the focus of
testing, for choosing the appropriate test data, and for deciding when the testing efforts are
adequate enough to terminate the process with confidence that the software is working
properly. Such a framework exists in the form of test adequacy criteria. The application
scope of adequacy criteria also includes:
(i) helping testers to select properties of a program to focus on during test;
(ii) helping testers to select a test data set for a program based on the selected properties;
(iii) supporting testers with the development of quantitative objectives for testing;
(iv) indicating to testers whether or not testing can be stopped for that program. For example,
an adequacy criterion that focuses on statement/branch properties is expressed as the
following:
A test data set is statement, or branch, adequate if a test set T for program P causes all the
statements, or branches, to be executed respectively.

6.3 DECISION (OR) BRANCH COVERAGE

 Execute every branch of a program :
each possible outcome of each decision occurs at least once

 Example:
o simple decision: IF b THEN s1 ELSE s2
o multipledecision:

CASE x OF
1 : ….
2 : ….

Page 26

3 : ….
 Stronger than statement coverage

o IF THEN without ELSE – if the condition is always true all the statements are
executed, but branch coverage is not achieved

Example: decision (or branch) coverage

Example : decision (or branch) coverage

Tests for complete

statement (node) coverage:

Take:

N < 0 N := -N;Yes

(i < N) and

(result <= maxint)

i := i+1;

result := result + i;
Yes

result <= maxint

No

Start

No

Exit

result := 0;

i := 0;

output(“too large”);output(result);

Yes No

branch not
tested

inputs outputs

maxint N result

10 -1 1

0 -1 too large

are not sufficient for

decision (branch) coverage!

inputs outputs

maxint N result

10 3 6

0 -1 too large

for complete decision

(branch) coverage
16

6.4 DATA FLOW TESTING

 Add data flow information to the control flow graph
o statements that write variables (a value is assigned or changed)
o statements that read variables

 Generate test cases that exercise all write-read pairs of statements for each variable
 Several variants of this technique

Data flow testing : Example
1 PROGRAM sum (maxint, N : INT)

write-read pairs for variable result:

Page 27

2 INT result := 0 ; i := 0 ;
3 IF N < 0
4 THEN N := - N ;
5 WHILE (i < N) AND (result <= maxint)
6 DO i := i + 1 ;
7 result := result + i ;
8 OD;
9 IF result <= maxint
10 THEN OUTPUT (result)
11 ELSE OUTPUT (―too large‖)
12 END.

6.5 CONTROL FLOW TESTING/COVERAGE
 Logic Elements Considered For Coverage And Control Flow Graph In White Box Test Design

 Program Statements
 Decision/Branch
 Conditions
 Combination of Decisions & Conditions
 Paths

Control flow analysis

1 PROGRAM sum (maxint, N : INT)
2 INT result := 0 ; i := 0 ;
3 IF N < 0
4 THEN N := - N ;
5 WHILE (i < N) AND (result <= maxint)
6 DO i := i + 1 ;
7 result := result + i ;
8 OD;
9 IF result <= maxint
10 THEN OUTPUT (result)
11 ELSE OUTPUT (―too large‖)
12 END.

6.6 MCCABE’S CYCLOMATIC COMPLEXITY
 (OR) INDEPENDENT PATH (OR)BASIS PATH COVERAGE

 Obtain a maximal set of linearly independent paths (also called a basis of independent
paths)

N < 0 N := -N;Yes

(i < N) and

(result <= maxint)

i := i+1;

result := result + i;
Yes

result <= maxint

No

Start

No

Exit

result := 0;

i := 0;

output(“too large”);output(result);

Yes No

Page 28

o If each path is represented as a vector with the number of times that each edge of
the control flow graph is traversed, the paths are linearly independent if it is not
possible to express one of them as a linear combination of the others

 Generate a test case for each independent path
 The number of linearly independent paths is given by the McCabe's cyclomatic

complexity of the program
o Number of edges - Number of nodes + 2 in the control flow graph
o Measures the structural complexity of the program

 Problem: some paths may be impossible to execute
 Also called structured testing (see McCabe for details)
 McCabe's argument: this approach produces a number of test cases that is proportional to

the complexity of the program (as measured by the cyclomatic complexity), which, in
turn, is related to the number of defects expected.

Example: Independent path coverage

N < 0 N := -N;Yes

(i < N) and

(result <= maxint)

i := i+1;

result := result + i;
Yes

result <= maxint

No

Start

No

Exit

result := 0;

i := 0;

output(“too large”);output(result);

Yes No

number of independent paths
 cyclomatic complexity

= number of edges - number of nodes + 2
= 12 – 10 + 2
= 4

3

Test cases

Path inputs outputs

maxint N result

1 1 0 0

2 -1 0 too large

3 -1 -1 too large

4 10 1 1

421

25

Path coverage

 Execute every possible path of a program, i.e., every possible sequence of statements
 Strongest white-box criterion (based on control flow analysis)
 Usually impossible: infinitely many paths (in case of loops)

Page 29

 So: not a realistic option
 But note : enormous reduction w.r.t. all possible test cases(each sequence of statements

executed for only one value) (doesn't mean exhaustive testing)

6.7 MUTATION TESTING

 Starts with a code component and its associated test cases (in a state such that the code passes
all test cases)

 The original code component is modified in a simple way (replace operators, constants, etc.)
to provide a set of similar components that are called mutants, based on typical errors

 The original test cases are run with each mutant
 If a mutant passes all the test cases (the mutant is not "killed"), then either the mutant is

equivalent to the original code (and is ignored), or it is not equivalent, in which case
additional test cases should be developed

 The rate of mutants "killed" (after removing mutants that are equivalent to the original code)
gives an indication of the rate of undetected defects that may exist in the original code.
To measure the mutation adequacy of a test set T for a program P we can use what is called a

mutation score (MS), which is calculated as follows:

MS (P,T) = # of dead mutants/ (# total mutants - # of equivalent mutants)

 Additional test cases can be defined in order to kill all mutants

6.8 EVALUATE TEST SELECTION/ADEQUACY/COVERAGE/STOP CRITERIA
 ―A selection criteria can be used for selecting the test cases or for checking whether or nor a

selected test suite is adequate, that is, to decide whether or not the testing can be stopped‖
 Adequacy criteria - Criteria to decide if a given test suite is adequate, i.e., to give us

―enough‖ confidence that ―most‖ of the defects are revealed
o In practice, reduced to coverage criteria

 Coverage criteria
o Requirements/specification coverage

 At least one test case for each requirement
 Cover all statements in a formal specification

o Model coverage
 State-transition coverage, Use-case and scenario coverage

o Code coverage
 Statement coverage, Data flow coverage, ...

o Fault coverage

Support for evaluating test adequacy criteria comes from a theoretical treatment developed
by Weyuker. She presents a set of axioms that allow testers to formalize properties which should be
satisfied by any good program-based test data adequacy criterion.
Testers can use the axioms to

Page 30

• recognize both strong and weak adequacy criteria; a tester may decide to use a weak
criterion, but should be aware of its weakness with respect to the properties described by the
axioms; focus attention on the properties that an effective test data adequacy criterion should
exhibit;

• select an appropriate criterion for the item under test;
• stimulate thought for the development of new criteria; the axioms are the framework with

which to evaluate these new criteria.

The axioms are based on the following set of assumptions:
(i) programs are written in a structured programming language;
(ii) programs are SESE (single entry/single exit);
(iii) all input statements appear at the beginning of the program;
(iv) all output statements appear at the end of the program.

The axioms/properties described by Weyuker are the following:

1 . Applicability Property
2 . Nonexhaustive Applicability Property
3 . Monotonicity Property
4 . Inadequate Empty Set
5 . Antiextensionality Property
6 . General Multiple Change Property
7 . Antidecomposition Property
8 . Anticomposition Property
9 . Renaming Property
10. Complexity Property
11. Statement Coverage Property

CHAPTER 7
LEVELS OF TESTING – UNIT TESTING

7.1 INTRODUCTION
Different Levels of Software Testing

 Unit testing
 Integration testing
 System testing
 Acceptance testing

The Need for Level of Software Testing

 Unit test - Individual component.
 Integration test - component groups.
 System test - system as a whole.

Page 31

 Acceptance test - system as a whole with customer requirements.

The Task Required for Preparing Unit Test by the Developer/Tester
To prepare for unit test by the developer/tester must perform several tasks. They are

 Plan the general approach to unit testing.
 Design the test cases, and test procedures.
 Define the relationship between the tests.
 Prepare the support code necessary for unit test.

The Tasks Required for Planning of a Unit Test

 Describe unit test approach and risks.
 Identify unit features to be tested.
 Add levels of detail to the plan.

 The Components Suitable for Conduct the Unit Test
 Procedure and function
 Class/object and manuals.
 Procedure-sized reusable component.

7.2 UNIT TESTING
Functions, Procedures, Classes, and Methods as Units
A workable definition for a software unit is as follows:
A unit is the smallest possible testable software component.
It can be characterized in several ways. For example, a unit in a typical procedure- oriented software
system:

• performs a single cohesive function;
• can be compiled separately;
• is a task in a work breakdown structure (from the manager‘s point of view);
• contains code that can fit on a single page or screen.

Some components suitable for unit test

Fig. Some components suitable for unit test.

Page 32

The principal goal for unit testing
The principal goal for unit testing is insure that each individual software unit is functioning

according to its specification. Good testing practice calls for unit tests that are planned and public.
Planning includes designing tests to reveal defects such as functional description defects, algorithmic
defects, data defects, and control logic and sequence defects. The unit should be tested by an
independent tester (someone other than the developer) and the test results and defects found should
be recorded as a part of the unit history.
To prepare for unit test the developer/tester must perform several tasks. These are:

(i) plan the general approach to unit testing;
(ii) design the test cases, and test procedures (these will be attached to the test plan);
(iii) define relationships between the tests;
(iv) prepare the auxiliary code necessary for unit test.

7.3 UNIT TEST PLANNING

• A general unit test plan should be prepared. It may be prepared as a component of the master
test plan or as a stand-alone plan.

• It should be developed in conjunction with the master test plan and the project plan for each
project.

• Documents that provide inputs for the unit test plan are the project plan, as well the
requirements, specification, and design documents that describe the target units.

• Components of a unit test plan are described in detail the IEEE Standard for Software Unit
Testing.

A brief description of a set of development phases for unit test planning is found below. In
each phase a set of activities is assigned based on those found in the IEEE Standard for
Software Unit Testing.

Phase 1: Describe Unit Test Approach and Risks
In this phase of unit testing planning the general approach to unit testing is outlined. The test
planner:

(i) identifies test risks;
(ii) describes techniques to be used for designing the test cases for the units;
(iii) describes techniques to be used for data validation and recording of test results;
(iv) describes the requirements for test harnesses and other software that interfaces with the
units to be tested, for example, any special objects needed for testing object-oriented units.

Phase 2: Identify Unit Features to be Tested

Page 33

This phase requires information from the unit specification and detailed design description. The
planner determines which features of each unit will be tested, for example: functions,
performance requirements, states, and state transitions, control structures, messages, and data
flow patterns.

Phase 3: Add Levels of Detail to the Plan

In this phase the planner refines the plan as produced in the previous two phases. The planner
adds new details to the approach, resource, and scheduling portions of the unit test plan.
As an example, existing test cases that can be reused for this project can be identified in this
phase. Unit availability and integration scheduling information should be included in the revised
version of the test plan. The planner must be sure to include a description of how test results will
be recorded.

The next steps in unit testing consist of designing the set of test cases, developing the auxiliary
code needed for testing, executing the tests, and recording and analyzing the results.

7.4 DESIGNING THE UNIT TESTS

• Part of the preparation work for unit test involves unit test design.

• It is important to specify

(i) the test cases (including input data, and expected outputs for each test case)
(ii) the test procedures (steps required run the tests).

• As part of the unit test design process, developers/testers should also describe the
relationships between the tests.

• Test suites can be defined that bind related tests together as a group.
• All of this test design information is attached to the unit test plan.
• Test cases, test procedures, and test suites may be reused from past projects if the

organization has been careful to store them so that they are easily retrievable and reusable.
• We design test cases for functions and procedures. They are also useful for designing tests

for the individual methods (member functions) contained in a class. This approach gives the
tester the opportunity to exercise logic structures and/or data flow sequences, or to use
mutation analysis, all with the goal of evaluating the structural integrity of the unit.

• In the case of a smaller-sized COTS component selected for unit testing, a black box test
design approach may be the only option. It should be mentioned that for units that perform
mission/safely/business critical functions, it is often useful and prudent to design stress,
security, and performance tests at the unit level if possible.

7.5 UNIT TEST ON CLASS / OBJECTS

 Unit testing on object oriented systems
• Testing levels in object oriented systems

– operations associated with objects

Page 34

• usually not tested in isolation because of encapsulation and dimension (too
small)

– classes -> unit testing
– clusters of cooperating objects -> integration testing
– the complete OO system -> system testing

• Complete test coverage of a class involves
– Testing all operations associated with an object
– Setting and interrogating all object attributes
– Exercising the object in all possible states

• Inheritance makes it more difficult to design object class tests as the information to be
tested is not localised

Challenges/issues of Class Testing
If the class is the selected component, testers may need to address special issues related to the
testing and retesting of these components.
Some of these issues are described follow:

• Issue 1: Adequately Testing Classes

The potentially high costs for testing each individual method in a class have been
described. These high costs will be particularly apparent when there are many methods in
a class; the numbers can reach as high as 20 to 30. Finally, a tester might use a
combination of approaches, testing some of the critical methods on an individual basis as
units, and then testing the class as a whole.

• Issue 2: Observation of Object States and State Changes

Methods may not return a specific value to a caller. They may instead change the state of
an object. The state of an object is represented by a specific set of values for its attributes
or state variables.

• Issue 3: Encapsulation
– Difficult to obtain a snapshot of a class without building extra methods which

display the classes‘ state
• Issue 4 :Inheritance

– Each new context of use (subclass) requires re-testing because a method may be
implemented differently (polymorphism).

– Other unaltered methods within the subclass may use the redefined method and
need to be tested

• Issue 5:White box tests
Basis path, condition, data flow and loop tests can all be applied to individual methods
within a class.

7.6 THE TEST HARNESS

Page 35

The auxiliary code developed to support testing of units and components is called a test
harness. The harness consists of drivers that call the target code and stubs that represent
modules it calls.

Fig. The test harness

7.7 RUNNING THE UNIT TESTS AND RECORDING RESULTS

Unit tests can begin when
(i) the units becomes available from the developers (an estimation of availability is part of

the test plan),
(ii) the test cases have been designed and reviewed, and
(iii) the test harness, and any other supplemental supporting tools, are available.

The testers then proceed to run the tests and record results. Documents called test logs that
can be used to record the results of specific tests. The status of the test efforts for a unit, and a
summary of the test results, could be recorded in a simple format such as shown in Table.

It is very important for the tester at any level of testing to carefully record, review, and check
test results. The tester must determine from the results whether the unit has passed or failed the
test. If the test is failed, the nature of the problem should be recorded in what is sometimes called
a test incident report Differences from expected behavior should be described in detail. This
gives clues to the developers to help them
locate any faults.

TABLE- Summary work sheet for unit test results

Page 36

When a unit fails a test there may be several reasons for the failure. The most likely reason
for the failure is a fault in the unit implementation (the code). Other likely causes that need to be
carefully investigated by the tester are the following:

• a fault in the test case specification (the input or the output was not specified correctly);
• a fault in test procedure execution (the test should be rerun);
• a fault in the test environment (perhaps a database was not set up properly);
• a fault in the unit design (the code correctly adheres to the design specification, but the

latter is incorrect).
The causes of the failure should be recorded in a test summary report, which is a summary of
testing activities for all the units covered by the unit test plan.

CHAPTER 8
LEVELS OF TESTING – INTEGRATION TESTING

8.1 INTEGRATION TESTING

The Major Goals of Integration Test
Integration test for procedural code has two major goals

 To detect that occur on the interface of units.
 To assemble the individual units into working subsystems and finally a complete system

that is ready for system test.

Cluster Test Plan Used In Integration Testing For OO Systems
• A cluster consists of classes that are related, for example, they may work together

(cooperate) to support a required functionality for the complete system.
• The clusters Test Plan include the following items:

o A natural languages description of the function of the cluster to be tested;
o List of classes in the cluster;
o clusters this cluster is dependent on;
o A set of cluster test cases.

8.2 DESIGN AN INTEGRATION TEST

Page 37

• Testing of groups of components integrated to create a sub-system
• Usually the responsibility of an independent testing team (except sometimes in small

projects)
• Integration testing should be black-box testing with tests derived from the specification
• A principal goal is to detect defects that occur on the interfaces of units
• Main difficulty is localising errors
• Incremental integration testing (as opposed to big-bang integration testing) reduces this

problem

Test drivers and stubs
• Auxiliary code developed to support testing
• Test drivers

– call the target code
– simulate calling units or a user
– where test procedures and test cases are coded (for automatic test case execution) or a

user interface is created (for manual test case execution)
• Test stubs

– simulate called units
– simulate modules/units/systems called by the target code

Incremental integration testing

Approaches to integration testing
• Top-down testing

– Start with high-level system and integrate from the top-down replacing individual
components by stubs where appropriate

• Bottom-up testing
– Integrate individual components in levels until the complete system is created

Page 38

• In practice, most integration involves a combination of these strategies
• Appropriate for systems with a hierarchical control structure

– Usually the case in procedural-oriented systems
– Object-oriented systems may not have such a hierarchical control structure

Top-down integration testing

Bottom-up integration testing

Advantages and disadvantages

• Architectural validation
– Top-down integration testing is better at discovering errors in the system

architecture
• System demonstration

– Top-down integration testing allows a limited demonstration at an early stage in
the development

• Test implementation
– Often easier with bottom-up integration testing

• Test observation

Page 39

– Problems with both approaches. Extra code may be required to observe tests

8.3 INTEGRATION TEST PLANING

Integration test must be planned. Planning can begin when high-level design is complete so
that the system architecture is defined. Other documents relevant to integration test planning are
the requirements document, the user manual, and usage scenarios. These documents contain
structure charts, state charts, data dictionaries, cross-reference tables, module interface
descriptions, data flow descriptions, messages and event descriptions, all necessary to plan
integration tests.

For readers integrating object-oriented systems Murphy et al. has a detailed description of a
Cluster Test Plan. The plan includes the following items:
(i) clusters this cluster is dependent on; (ii) a natural language description of the functionality of
the cluster to be tested; (iii) list of classes in the cluster; (iv) a set of cluster test cases.

CHAPTER 9

LEVELS OF TESTING – SYSTEM TESTING

9.1 SEVERAL TYPES OF SYSTEM TESTS
 Functional test
 Performance test
 Stress test
 Configuration test
 Security test
 Recovery test

Page 40

Fig. Types of system tests

9.2 FUNCTIONAL TESTING

• Ensure that the behavior of the system adheres to the requirements specification
• Black-box in nature
• Equivalence class partitioning, boundary-value analysis and state-based testing are

valuable techniques
• Document and track test coverage with a (tests to requirements) traceability matrix
• A defined and documented form should be used for recording test results from functional

and other system tests
• Failures should be reported in test incident reports

– Useful for developers (together with test logs)
– Useful for managers for progress tracking and quality assurance purposes

• The tests should focus on the following goals.
– All types or classes of legal inputs must be accepted by the software.
– All classes of illegal inputs must be rejected (however, the system should remain

available).
– All possible classes of system output must exercised and examined.
– All effective system states and state transitions must be exercised and examined.
– All functions must be exercised.

9.3 PERFORMANCE TESTING

• Goals:
– See if the software meets the performance requirements

Page 41

– See whether there any hardware or software factors that impact on the system's
performance

– Provide valuable information to tune the system
– Predict the system's future performance levels

• Results of performance test should be quantified, and the corresponding environmental
conditions should be recorded

• Resources usually needed
– a source of transactions to drive the experiments, typically a load generator
– an experimental test bed that includes hardware and software the system under

test interacts with
– instrumentation of probes that help to collect the performance data (event logging,

counting, sampling, memory allocation counters, etc.)
– a set of tools to collect, store, process and interpret data from probes

9.4 C O N F I G U R A T I O N T E S T I N G

• Configuration testing allows developers/testers to evaluate system performance and
availability when hardware exchanges and reconfigurations occur.

• Configuration testing also requires many resources including the multiple hardware
devices used for the tests. If a system does not have specific requirements for device
configuration changes then large-scale configuration testing is not essential.

• Several types of operations should be performed during configuration test. Some sample
operations for testers are
(i) rotate and permutate the positions of devices to ensure physical/ logical device
permutations work for each device (e.g., if there are two printers A and B, exchange their
positions);
(ii) induce malfunctions in each device, to see if the system properly handles the
malfunction;
(iii) induce multiple device malfunctions to see how the system reacts. These operations
will help to reveal problems (defects) relating to hardware/ software interactions when
hardware exchanges, and reconfigurations occur.

The Objectives of Configuration Testing

 Show that all the configuration changing commands and menus work properly.
 Show that all the interchangeable devices are really interchangeable, and that they each

enter the proper state for the specified conditions.
 Show that the systems‘ performance level is maintained when devices are interchanged,

or when they fail.

9.5 SECURITY TESTING

Page 42

• Evaluates system characteristics that relate to the availability, integrity and confidentiality of
system data and services

• Computer software and data can be compromised by
– criminals intent on doing damage, stealing data and information, causing denial of

service, invading privacy
– errors on the part of honest developers/maintainers (and users?) who modify, destroy,

or compromise data because of misinformation, misunderstandings, and/or lack of
knowledge

• Both can be perpetuated by those inside and outside on an organization
• Attacks can be random or systematic. Damage can be done through various means such as:

(i) Viruses; (ii) Trojan horses;
(iii) Trap doors; (iv) illicit channels.

• The effects of security breaches could be extensive and can cause:

(i) loss of information; (ii) corruption of information;
(iii) misinformation; (iv) privacy violations;
(v) denial of service.

• Other Areas to focus on Security Testing: password checking, legal and illegal entry with
passwords, password expiration, encryption, browsing, trap doors, viruses, …

• Usually the responsibility of a security specialist

9.6 RECOVERY TESTING
• Subject a system to losses of resources in order to determine if it can recover properly from

these losses
• Especially important for transaction systems
• Example: loss of a device during a transaction
• Tests would determine if the system could return to a well-known state, and that no

transactions have been compromised
– Systems with automated recovery are designed for this purpose

• Areas to focus [Beizer] on Recovery Testing:

– Restart – the ability of the system to restart properly on the last checkpoint after a
loss of a device

– Switchover – the ability of the system to switch to a new processor, as a result of a
command or a detection of a faulty processor by a monitor

• In each of these testing situations all transactions and processes must be carefully examined
to detect:

(i) loss of transactions;
(ii) merging of transactions;
(iii) incorrect transactions;
(iv) an unnecessary duplication of a transaction.

Page 43

A good way to expose such problems is to perform recovery testing under a stressful load.
Transaction inaccuracies and system crashes are likely to occur with the result that defects and
design flaws will be revealed.

9.7 ACCEPTANCE TEST, ALPHA AND BETA TESTING

• For tailor made software(customized software):
– acceptance tests – performed by users/customers
– much in common with system test

• For packaged software (market made software):
– alpha testing – on the developers site
– beta testing – on a user site

For more information: Refer Ilene Berstein book.,

CHAPTER 10
TESTING GOALS AND TEST PLANING

10.1 INTRODUCTION

This topic focuses on two fundamental maturity goals at level 2 of the TMM:
(i) developing organizational goals/ policies relating to testing and debugging,

(ii) test planning.

These maturity goals are managerial in nature. They are essential to support testing as a managed
process. According to R. Thayer, a managed process is one that is planned, monitored, directed,
staffed, and organized.

Goals/polices
Simple examples of the three types of goals mentioned are shown below.

1. Business goal: to increase market share 10% in the next 2 years in the area of financial software.

2. Technical goal: to reduce defects by 2% per year over the next 3 years.

3. Business/technical goal: to reduce hotline calls by 5% over the next 2 years.

4. Political goal: to increase the number of women and minorities in high management positions

by 15% in the next 3 years.

10.2 TESTING AND DEBUGGING GOALS AND POLICIES

 A goal can be described as (i) a statement of intent, or (ii) a statement of a accomplishment that an

individual or an organization wants to achieve.

 A policy can be defined as a high-level statement of principle or course of action that is used to

govern a set of activities in an organization.

Page 44

Testing Policy: Organization X
To ensure that our testing process is effective and that our software products meet the client‘s

requirements we have developed and adopted the following testing policy statement.

1. Delivering software of the highest quality is our company goal. The presence of defects has a

negative impact on software quality. Defects affect the correctness, reliability, and usability of a

software product, thus rendering it unsatisfactory to the client. We define a testing activity as a set

of tasks whose purpose is to reveal functional and quality- related defects in a software deliverable.

Testing activities include traditional execution of the developing software, as well as reviews of the

software deliverables produced at all stages of the life cycle. The aggregation of all testing activities

performed in a systematic manner supported by organizational policies, procedures, and standards

constitutes the testing process.

2. A set of testing standards must be available to all interested parties on an intraorganizational web

site. The standards contain descriptions of all test-related documents, prescribed templates, and the

methods, tools, and procedures to be used for testing. The standards must specify the types of

projects that each of these items is to be associated with.

3. In our organization the following apply to all software development/ maintenance projects:

 Execution-based tests must be performed at several levels such as unit, integration, system, and

acceptance tests as appropriate for each software product.

 Systematic approaches to test design must be employed that include application of both white

and black box testing methods.

 Reviews of all major product deliverables such as requirements and design documents, code,

and test plans are required.

 Testing must be planned for all projects. Plans must be developed for all levels of execution-

based testing as well as for reviews of deliverables.

o Test plan templates must be included in organizational standards documents and

implemented online. A test plan for a project must be compatible with the project plan

for that project. Test plans must be approved by the project manager and technical

staff. Acceptance test plans must also be approved by the client.

 Testing activities must be monitored using measurements and milestones to ensure that they

are proceeding according to plan.

 Testing activities must be integrated into the software life cycle and carried out in parallel with

other development activities. The extended modified V-model as shown in the testing standards

document has been adopted to support this goal.

 Defects uncovered during each test must be classified and recorded.

 There must be a training program to ensure that the best testing practices are employed by the

testing staff.

4. Because testing is an activity that requires special training and an impartial view of the software, it

must be carried out by an independent testing group. Communication lines must be established to

Page 45

support cooperation between testers and developers to ensure that the software is reliable, safe,

and meets client requirements.

5. Testing must be supported by tools, and, test-related measurements must be collected and used to

evaluate and improve the testing process and the software product.

6. Resources must be provided for continuos test process improvement.

7. Clients/developer/tester communication is important, and clients must be involved in acceptance

test planning, operational profile development, and usage testing when applicable to the project.

Clients must sign off on the acceptance test plan and give approval for all changes in the acceptance

test plan.

8. A permanent committee consisting of managerial and technical staff must be appointed to be

responsible for distribution and maintenance of organizational test policy statements.

Debugging Policy: Organization X

Our debugging policy is founded on our quality goal to remove all defects from our software that
impact on our customers‘ ability to use our software effectively, safely, and economically. To
achieve this goal we have developed the following debugging policy statement.

1. Testing and debugging are two separate processes. Testing is the process used to detect (reveal)

defects. Debugging is the process dedicated to locating the defects, repairing the code, and retesting

the software. Defects are anomalies that impact on software functionality as well as on quality

attributes such as performance, security, ease of use, correctness, and reliability.

2. Since debugging is a timely activity, all project schedules must allow for adequate time to make

repairs, and retest the repaired software.

3. Debugging tools, and the training necessary to use the tools, must be available to developers to

support debugging activities and tasks.

4. Developers/testers and SQA staff must define and document a set of defect classes and defect

severity levels. These must be must be available to all interested parties on an intraorganizational

web site, and applied to all projects.

5. When failures are observed during testing or in operational software they are documented. A

problem, or test incident, report is completed by the developer/tester at testing time and by the

users when a failure/ problem is observed in operational software. The problem report is forwarded

to the development group. Both testers/developers and SQA staff must communicate and work with

users to gain an understanding of the problem.

6. A fix report must be completed by the developer when the defect is repaired and code retested.

Standard problem and fix report forms must be available to all interested parties on an

intraorganizational web site, and applied to all projects.

7. All defects identified for each project must be cataloged according to class and severity level and

stored as a part of the project history.

8. Measurement such as total number of defects, total number of defects/ KLOC, and time to repair a

defect are saved for each project.

Page 46

9. A permanent committee consisting of managerial and technical staff must be appointed to be

responsible for distribution and maintenance of organizational debugging policy statements.

10.3 DOCUMENT TYPES (The IEEE Standard 829-1998)

TEST PLANNING:

• Test plan
- prescribes the scope, approach, resources, and schedule of the testing

activities
- identifies the items to be tested, the features to be tested, the testing tasks to be

performed, the personnel responsible for each task, and the risks associated
with the plan

TEST SPECIFICATION/(TEST PLAN ATTACHMENTS):

• Test design specification
- refines the test approach and identifies the features to be covered by the

design and its associated tests
- identifies the test cases and test procedures, if any, required to accomplish the

testing and specifies the feature pass/fail criteria.
• Test case specification

- documents the actual values used for input along with the anticipated outputs
- also identifies constraints on the test procedures resulting from use of that

specific test case (Test cases are separated from test designs to allow for use in
more than one design and to allow for reuse in other situations.)

• Test procedure specification
- identifies all steps required to operate the system and exercise the specified

test cases in order to implement the associated test design (Test procedures are
separated from test design specifications as they are intended to be followed
step by step and should not have extraneous detail.)

TEST REPORTING:

• Test item transmittal report
- identifies the test items being transmitted for testing in the event that separate

development and test groups are involved or in the event that a formal
beginning of test execution is desired

• Test log
- used by the test team to record what occurred during test execution

• Test incident report
- describes any event that occurs during the test execution which requires

further investigation
• Test summary report

- summarizes the testing activities associated with one or more test design
specifications

Page 47

10.4 TEST PLANING

A plan is a document that provides a framework or approach for achieving a set of goals. A
plan can be defined in the following way.
A plan is a document that provides a framework or approach for achieving a set of goals.
In order to meet a set of goals, a plan describes what specific tasks must be accomplished, who is
responsible for each task, what tools, procedures, and techniques must be used, how much time and
effort is needed, and what resources are essential.
A plan also contains milestones.
Milestones are tangible events that are expected to occur at a certain time in the project’s

lifetime. Managers use them to determine project status.

Tracking the actual occurrence of the milestone events allows a manager to determine if the
project is progressing as planned. Finally, a plan should assess the risks involved in carrying out the
project.

Test plans for software projects are very complex and detailed documents. The planner
usually includes the following essential high-level items.

1. Overall test objectives. As testers, why are we testing, what is to be achieved by the tests, and what

are the risks associated with testing this product?

2. What to test (scope of the tests). What items, features, procedures, functions, objects, clusters, and

subsystems will be tested?

3. Who will test. Who are the personnel responsible for the tests?

4. How to test. What strategies, methods, hardware, software tools, and techniques are going to be

applied? What test documents and deliverable should be produced?

5. When to test. What are the schedules for tests? What items need to be available?

6. When to stop testing. It is not economically feasible or practical to plan to test until all defects have

been revealed.

All of the quality and testing plans should also be coordinated with the overall software

project plan. A sample plan hierarchy is shown in the following Figure. At the top of the plan
hierarchy there may be a software quality assurance plan. This plan gives an overview of all
verification and validation activities for the project, as well as details related to other quality issues
such as audits, standards, configuration control, and supplier control.

Page 48

Figure: A Hierarchy of Test plans

Below that in the plan hierarchy there may be a master test plan that includes an overall description
of all execution-based testing for the software system. A master verification plan for reviews
inspections/walkthroughs would also fit in at this level. The master test plan itself may be a
component of the overall project plan or exist as a separatedocument.

10.5 TEST PLAN COMPONENTS/CONTENTS (The IEEE Standard 829-1998)
(Applicable to master test plan and each of the level based test plans (unit, integration, etc.))

1. Test plan identifier
• Can serve to identify it as a configuration item

2. Introduction (why)
• Overall description of the project, the software system being developed or

maintained, and the software items and/or features to be tested
• Overall description of testing goals (objectives) and the testing approaches to be used
• References to related or supporting documents

3. Test items (what)
• List the items to be tested: procedures, classes, modules, libraries, components,

subsystems, systems, etc.
• Include references to documents where these items and their behaviors are described

(requirements and design documents, user manuals, etc.)
• List also items that will not be tested

4. Features to be tested (what)

• Features are distinguishing characteristics (functionalities, quality attributes). They
are closely related to the way we describe software in terms of its functional and
quality requirements

• Identify all software features and combinations of software features to be tested.
Identify the test design specification associated with each feature and each
combination of features.

Page 49

5. Features not to be tested (what)
• Identify all features and significant combinations of features that will not be tested

and the reasons.
6. Approach (how)

• Description of test activities, so that major testing tasks and task durations can be
identified

• For each feature or combination of features, the approach that will be taken to ensure
that each is adequately tested

• Tools and techniques
• Expectations for test completeness (such as degree of code coverage for white box

tests)
• Testing constraints, such as time and budget limitations
• Stop-test criteria

7. Item pass-fail criteria
• Given a test item and a test case, the tester must have a set of criteria to decide

whether the test has been passed or failed upon execution
• The test plan should provide a general description of these criteria
• Failures to a certain severity level may be accepted

8. Suspension criteria and resumption requirements
• Specify the criteria used to suspend all or a portion of the testing activity on the test

items associated with this plan
• Specify the testing activities that must be repeated, when testing is resumed
• Testing is done in cycles: test – fix - (resume) test (suspend) – fix - ...
• Tests may be suspended when a certain number of critical defects has been observed

9. Test deliverables
• Test documents (possibly a subset of the ones described in the IEEE standard)
• Test harness (drivers, stubs, tools developed especially for this project, etc.)

10. Testing Tasks
• Identify all test-related tasks, inter-task dependencies and special skills required
• Work Breakdown Structure (WBS)

11. Environmental needs
• Software and hardware needs for the testing effort

12. Responsibilities
• Roles and responsibilities to be fulfilled
• Actual staff involved (?)

13. Staffing and training needs
• Description of staff and skills needed to carry out test-related responsibilities

14. Scheduling
• Task durations and calendar
• Milestones
• Schedules for use of staff and other resources (tools, laboratories, etc.)

15. Risks and contingencies
• Risks should be (i) identified, (ii) evaluated in terms of their probability of

occurrence, (iii) prioritized, and (iv) contingency plans should be developed that can
be activated if the risk occurs

• Example of a risk: some test items not delivered on time to the testers

Page 50

• Example of a contingency plan: flexibility in resource allocation so that testers and
equipment can operate beyond normal working hours (to recover from delivery
delays)

16. Testing costs (not included in the IEEE standard)
• Kinds of costs:

- costs of planning and designing the tests
- costs of acquiring the hardware and software necessary
- costs of executing the tests
- costs of recording and analyzing test results
- tear-down costs to restore the environment

• Cost estimation may be based on:
- Models (such as COCOMO for project costs) and heuristics (such as 50% of

project costs)
- Test tasks and WBS
- Developer/tester ratio (such as 1 tester to 2 developers)
- Test impact items (such as number of procedures) and test cost drivers (or

factors, such as KLOC)
- Expert judgment(Delphi)

17. Approvals
• Dates and signatures of those that must approve the test plan

10.6 TEST COST ESTIMATION METHODS
COCOMO model

One approach to test cost estimation makes use of the COCOMO model in an indirect way.
The test planner can use the COCOMO model to estimate total project costs, and then allocate a
fraction of those costs for test. Application of the COCOMO model is based on a group of project
constants that depend on the nature of the project and items known as cost drivers. A cost driver can
be described as a process or product factor that has an impact on overall project costs. Project
constants and cost drivers are available for overall project development efforts. To use the
COCOMO model a project manager must first estimate the size of the new project and identify its
type. This is facilitated by the availability of historical project data.
The simple COCOMO equation used for an initial estimate is

 (1)
where E is estimated effort in man-months, and a and b are constants that can be determined from
tables provided by Boehm or by the organization itself based on its own historical data. Selection of
values from the table depend on project types.

The intermediate COCOMO model, used when more project details are known, incorporates
project cost drivers and uses a slightly more complex set of calculations. Cost drivers for project the
include:

• product attributes such as the required level of reliability;

Page 51

• hardware attributes such as memory constraints;

• personnel attributes such as experience level;

• project attributes such as use of tools and methods.

The project cost drivers are rated on an ordinate scale and folded into what Boehm calls an

effort adjustment factor (EAF). The results from equation (1) can be multiplied by the EAF to give a
revised estimate.

Work Breakdown Structure (WBS)

An alternative test cost estimation method uses a bottom-up, testing task– oriented
approach. This approach will work well if the testing tasks, task durations, and resources (such as
hardware and software tools) for similar projects are well defined and documented in the historical
database. Testing tasks can be represented in the database as a test-oriented Work Breakdown
Structure (WBS), which is a hierarchical representation of all test-related tasks.

High-level components of a test WBS are shown in Table 10.1. These represent high-level
testing tasks. Each of these is broken down into lower-level tasks. Table 10.2 shows a breakdown for
the higher-level ―test planning‖ task. The historical record should also contain values for the time
and manpower needed to perform each task in the testing WBS.

The new project is compared to those in the database in terms of size and complexity. The
most similar project provides the best support for the cost estimation. Reuse of existing tests,
regression tests and test harnesses should be folded into the estimating process. When tasks, and
durations of the tasks have been calculated for the new project, the test planner can use the sum of
the time estimated for all the tasks, adjusted to account for differences between the completed and
new projects, to estimate total test time and expenses.

TABLE 10.1 Example WBS elements for testing.

Page 52

TABLE 10.2 A breakdown of testing planning element from table 10.1.

Delphi method

Finally, test planners can use the Delphi method for estimating test costs. This
technique, which involves a group of cost estimation experts lead by a
moderator(Chairman), is often used to estimate the size/costs of an entire project. It can be
applied to estimate test costs as well.

 The group members are given appropriate documentation relating to the project before the

estimation meeting.

 The group comes together in the meeting and may have a discussion about the project and

its characteristics.

 n the testing domain, test-related issues would be discussed. After the discussion each

group member gives an anonymous estimate to the moderator.

 The moderator calculates an average and mean of the estimates and distributes the values

to the group.

 Each group member can determine where his/her individual estimate falls with respect to

the group, and reestimate based on this information and additional discussion.

Page 53

 The group may have several cycles of “discussion, estimate, and analysis,” until consensus

on the estimate is reached.

10.7 TEST PLAN ATTACHEMENTS
Test Design Specifications (The IEEE Standard 829-1998)
One or more documents.
A test design specification describes how a group of features and/or test items is tested by a
set of test cases and test procedures.
May include a (test case to) features/requirements traceability matrix
Contents:

• Test Design Specification Identifier
• Features to be tested

- Test items and features covered by this document
• Approach refinements

- Test techniques
• Test case identification
• Feature pass/fail criteria

Test Case Specifications (The IEEE Standard 829-1998)
Contents:

• Test case specification identifier
• Test items

- List of items and features to be tested by this test case
• Input specifications
• Output specifications
• Environmental needs
• Special procedural requirements
• Intercase dependencies

Test Procedure Specifications (The IEEE Standard 829-1998)

A procedure in general is a sequence of steps required to carry out a specific
task.

Describe steps required for executing a set of test cases or, more generally, the steps
used to analyze a software item in order to evaluate a set of features.
Contents:

• Test procedure specification identifier
• Purpose
• Specific requirements
• Procedure steps

- Log, set up, proceed, measure, shut down, restart, stop, wrap up,
contingencies

10.8 LOCATING TEST ITEMS: TEST ITEM TRANSMITTAL REPORT

Page 54

(The IEEE Standard 829-1998)
Accompanies a set of test items that are delivered for testing.
Contents

• Transmittal report identifier
• Transmitted items

- version/revision level
- references to the items documentation and the test plan related to the

transmitted items
- persons responsible for the items

• Location
• Status

- deviations from documentation, from previous transmissions or from test plan
- incident reports that are expected to be resolved
- pending modifications to documentation

• Approvals

CHAPTER 11
TEST REPORTS

11.1 REPORTING TEST RESULTS
(The IEEE Standard 829-1998 for Software Test Documentation)

The following Figure shows the relationships between all the test-related documents we have
discussed in this topic as described in the IEEE standards document. In the figure it is assumed that
an overall Master Test Plan (MTP) is developed at first, and this is followed by more detailed test
plans for the different levels of testing, unit, integration, system, acceptance, and so on.

Page 55

FIG. Test-related documents as recommended by IEEE

The test plan and its attachments are test-related documents that are prepared prior to test
execution. There are additional documents related to testing that are prepared during and after
execution of the tests.

The IEEE Standard for Software Test Documentation describes the following documents:

Test Log (The IEEE Standard 829-1998)
Records detailed results of test execution
Contents

• Test log identifier
• Description

- Identify the items being tested including their version/revision levels
- Identify the attributes of the environments in which the testing is conducted

• Activity and event entries
- Execution description

Page 56

- Procedure results
- Environmental information
- Anomalous events
- Incident report identifiers

Test Incident Report
Also called a problem report
Contents:

• Test incident report identifier
• Summary

- Summarize the incident
- Identify the test items involved indicating their version/revision level
- References to the appropriate test procedure specification, test case

specification, and test log
• Incident description

- inputs, expected results, actual results, anomalies, date and time, procedure
step, environment, attempts to repeat, testers, observers

- any information useful for reproducing and repairing
• Impact

- If known, indicate what impact this incident will have on test plans, test
design specifications, test procedure specifications, or test case specifications

- severity rating (?)

Test Summary Report (The IEEE Standard 829-1998)
Contents
Test summary report identifier

• Summary
- Summarize the evaluation of the test items
- Identify the items tested, indicating the environment in which the testing

activities took place
• Variances

- of the test items from their original design specifications
• Comprehensiveness assessment

- Evaluate the comprehensiveness of the testing process against the
comprehensiveness criteria specified in the test plan if the plan exists

- Identify features or feature combinations that were not sufficiently tested and
explain the reasons

• Summary of results
- Summarize the results of testing
- Identify all resolved incidents and summarize their resolutions
- Identify all unresolved incidents.

• Evaluation
- Provide an overall evaluation of each test item including its limitations
- This evaluation shall be based upon the test results and the item level pass/fail

criteria
- An estimate of failure risk may be included

Page 57

• Summary of activities
- Summarize the major testing activities and events
- Summarize resource consumption data, e.g., total staffing level, total machine

time, and total elapsed time used for each of the major testing activities
• Approvals

11.2 THE ROLE OF THE THREE CRITICAL GROUPS IN TESTING, PLANNING AND
TEST POLICY DEVELOPMENT

TMM framework three groups were identified as critical players in the testing process.
These groups were managers, developers/testers, and users/clients. In TMM terminology they are
called the three critical views (CV).

Each group views the testing process from a different perspective that is related to their
particular goals, needs, and requirements.

 The manager’s view involves commitment and support for those activities and tasks related to

improving testing process quality.

 The developer/tester’s view encompasses the technical activities and tasks that when applied,

constitute best testing practices.

 The user/client view is defined as a cooperating or supporting view. The developers/testers work

with client/user groups on quality-related activities and tasks that concern user-oriented needs. The

focus is on soliciting client/user support, consensus, and participation in activities such as

requirements analysis, usability testing, and acceptance test planning.

At each TMM level the three groups play specific roles in support of the maturity goals at that
level. Critical group participation for all three TMM level 2 maturity goals is summarized in the
following Figure:

Page 58

FIG. Reaching TMM level 2: summary of critical group roles

For the TMM maturity goal, ―Develop Testing and Debugging Goals,‖ the TMM

recommends that project and upper management:
 Provide access to existing organizational goal/policy statements and sample testing policies from

other sources. These serve as policy models for the testing and debugging domains.

 Provide adequate resources and funding to form the committees (team or task force) on testing and

debugging. Committee makeup is managerial, with technical staff serving as co members.

 Support the recommendations and policies of the committee by:

- distributing testing/debugging goal/policy documents to project managers, developers, and

other interested staff,

- appointing a permanent team to oversee compliance and policy change making.

 Ensure that the necessary training, education, and tools to carry out defined testing/debugging

goals is made available.

 Assign responsibilities for testing and debugging.

The activities, tasks, and responsibilities for the developers/testers include:
 Working with management to develop testing and debugging policies and goals.

 Participating in the teams that oversee policy compliance and change management.

Page 59

 Familiarizing themselves with the approved set of testing/debugging goals and policies, keeping up-

to-date with revisions, and making suggestions for changes when appropriate.

 When developing test plans, setting testing goals for each project at each level of test that reflect

organizational testing goals and policies.

 Carrying out testing activities that are in compliance with organizational policies.

Users and clients play an indirect role in the formation of an organization‘s testing goals and polices

since these goals and policies reflect the organizations efforts to ensure customer/client/user
satisfaction. Feedback from these groups and from the marketplace in general has an influence on
the nature of organizational testing goals and policies. Successful organizations are sensitive to
customer/client/user needs.

11.3 PROCESS AND THE ENGINEERING DISCIPLINES
 The Role of the Individual as a Process Facilitator Testing is such a process.

 If you are a member of a TMM level 1 organization, there is a great opportunity for you become

involved in process issues.

 You can initiate the implementation of a defined testing process by working with management and

users/clients toward achievement of the technical and managerial-oriented maturity goals at TMM

level 2.

 You can also encourage management in your organization to develop testing goals and policies, you

can participate in the committees involved, and you can help to develop test planning standards

that can be applied organizationwide.

 Finally, you can become proficient in, and consistently apply, black and white box testing

techniques, and promote testing at the unit, integration, and system levels.

CHAPTER 12
THE TEST ORGANIZATION

12.1 INTRODUCING THE TEST SPECIALIST
 When an organization has reached TMM level 2 it has accomplished a great deal.
Fundamental testing maturity goals have been achieved. There are testing and debugging policies in
place, which are available for all project personnel to access. There is management support for these
policies.
 Management ensures they are applied to all projects. Testing for each project is planned.
The test plan is prepared in conjunction with the project plan so that project goals can be achieved.
 Moving up to TMM level 3 requires further investment of organizational resources in the
testing process. One of the maturity goals at TMM level 3 calls for the ―Establishment of a test

Page 60

organization.‖ It implies a commitment to better testing and higher-quality software. This
commitment requires that testing specialists be hired, space be given to house the testing group,
resources be allocated to the group, and career paths for testers be established.
 By supporting a test group an organization acquires leadership in areas that relate to
testing and quality issues. For example, there will be staff with the necessary skills and motivation to
be responsible for: maintenance and application of test policies;

 development and application of test-related standards;

 participating in requirements, design, and code reviews;

 test planning;

 test design;

 test execution;

 test measurement;

 test monitoring (tasks, schedules, and costs);

 defect tracking, and maintaining the defect repository;

 acquisition of test tools and equipment;

 identifying and applying new testing techniques, tools, and methodologies;

 mentoring and training of new test personnel;

 test reporting.

 The staff members of such a group are called test specialists or test engineers. Their
primary responsibly is to ensure that testing is effective and productive, and that quality issues are
addressed. Testers are not developers, or analysts, although background in these areas is very helpful
and necessary. Testers don‘t repair code. However, they add value to a software product in terms of
higher quality and customer satisfaction.
12.2 SKILLS NEEDED BY A TEST SPECIALIST
 Given the nature of technical and managerial responsibilities assigned to the tester
many managerial and personal skills are necessary for success in the area of work.

On the personal and managerial level a test specialist must have:

 organizational, and planning skills;

 the ability to keep track of, and pay attention to, details;

 the determination to discover and solve problems;

 the ability to work with others and be able to resolve conflicts;

 the ability to mentor and train others;

 the ability to work with users and clients;

 strong written and oral communication skills;

 the ability to work in a variety of environments;

 the ability to think creatively

Page 61

In addition, test specialists must be creative, imaginative, and experiment oriented. They need to be
able to visualize the many ways that a software item should be tested, and make hypotheses about
the different types of defects that could occur and the different ways the software could fail.

On the technical level testers need to have:

• an education that includes an understanding of general software engineering principles, practices,

and methodologies;

• strong coding skills and an understanding of code structure and behavior;

• a good understanding of testing principles and practices;

• a good understanding of basic testing strategies, methods, and techniques;

• the ability and experience to plan, design, and execute test cases and test procedures on multiple

levels (unit, integration, etc.);

• a knowledge of process issues;

• knowledge of how networks, databases, and operating systems are organized and how they work;

• a knowledge of configuration management;

• a knowledge of test-related documents and the role each documents plays in the testing process;

• the ability to define, collect, and analyze test-related measurements;

• the ability, training, and motivation to work with testing tools and equipment;

• a knowledge of quality issues.

12.3 BUILDING A TESTING GROUP
 Establishing a specialized testing group is a major decision for an organization. The steps
in the process are summarized in the following Figure. To initiate the process, upper management
must support the decision to establish a test group and commit resources to the group. Decisions
must be made on how the testing group will be organized, what career paths are available, and how
the group fits into the organizational structure (See: The Structure of the Test Group).
 When hiring staff to fill test specialist positions, management should have a clear idea of
the educational and skill levels required for each testing position and develop formal job descriptions
to fill the test group slots.

Page 62

FIG. Steps in forming a test group

12.4 THE STRUCTURE OF THE TEST GROUP
 It is important for a software organization to have an independent testing group. The
group should have a formalized position in the organizational hierarchy. A reporting structure should
be established and resources allocated to the group. The group should be staffed by people who have
the skills and motivation. They should be dedicated to establishing awareness of, and achieving,
existing software quality goals, and also to strengthening quality goals for the future software
products. They are quality leaders—the test and quality policy makers. They measure quality,
and have responsibilities for ensuring the software meets the customers‘ requirements.
 A test organization is expensive, it is a strategic commitment. Given the complex nature
of the software being built, and its impact on society, organizations must realize that a test
organization is necessary and that it has many benefits. By investing in a test organization a
company has access to a group of specialists who have the responsibilities and motivation to:

• maintain testing policy statements;

• plan the testing efforts;

• monitor and track testing efforts so that they are on time and within budget;

• measure process and product attributes;

• provide management with independent product and process quality information;

• design and execute tests with no duplication of effort;

• automate testing;

• participate in reviews to insure quality;

• work with analysts, designers, coders, and clients to ensure quality goals are meet;

• maintain a repository of test-related information;

Page 63

• give greater visibility to quality issues organization wide;

• support process improvement efforts.

The duties of the team members
 The duties of the team members may vary in individual organizations. The following
gives a brief description of the duties for each tester that are common to most organizations:

• The Test Manager: In most organizations with a testing function, the test manager (or test director)

is the central person concerned with all aspects of testing and quality issues.

 The test manager is usually responsible for test policy making, customer interaction, test

planning, test documentation, controlling and monitoring of tests, training, test tool acquisition,

participation in inspections and walkthroughs, reviewing test work, the test repository, and staffing

issues such as hiring, firing, and evaluation of the test team members. He or she is also the liaison

with upper management, project management, and the quality assurance and marketing staffs.

• The Test Lead: The test lead assists the test manager and works with a team of test engineers on

individual projects. He or she may be responsible for duties such as test planning, staff supervision,

and status reporting. The test lead also participates in test design, test execution and reporting,

technical reviews, customer interaction, and tool training.

FIG. The test team hierarchy

Page 64

• The Test Engineer: The test engineers design, develop, and execute tests, develop test harnesses,

and set up test laboratories and environments. They also give input to test planning and support

maintenance of the test and defect repositories.

• The Junior Test Engineer: The junior test engineers are usually new hires. They gain experience by

participating in test design, test execution, and test harness development. They may also be asked

to review user manuals and user help facilities defect and maintain the test and defect repositories.

CHAPTER 13
CONTROLLING AND MONITORING

13.1 INTRODUCTION

Engineers monitor and control the processes that drive each engineering project. Monitoring
and controlling are engineering management activities, and should be practiced by software
engineers as a part of their professional engineering duties. The TMM supports controlling and
monitoring of testing with a maturity goal at level 3. A description of these two activities follows.

Project monitoring (or tracking) refers to the activities and tasks managers engage in to

periodically check the status of each project. Reports are prepared that compare the actual
work done to the work that was planned.
Monitoring requires a set of tools, forms, techniques, and measures. A precondition for monitoring a
project is the existence of a project plan.

Project controlling consists of developing and applying a set of corrective actions to get
a project on track when monitoring shows a deviation from what was planned.
If monitoring results show deviations from the plan have occurred, controlling mechanisms must be
put into place to direct the project back on its proper track.

Thayer partitions what he calls ―project controlling‖ into six major tasks. The following is a
modified description of the tasks suggested by Thayer.

1. Develop standards of performance. These set the stage for defining goals that will be
achieved when project tasks are correctly accomplished.

2. Plan each project. The plan must contain measurable goals, milestones, deliverables, and
well-defined budgets and schedules that take into consideration project types, conditions, and
constraints.

3. Establish a monitoring and reporting system. In the monitoring and reporting system
description the organization must describe the measures to be used, how/when they will be
collected, what questions they will answer, who will receive the measurement reports, and
how these will be used to control the project. If status meetings are required, then their
frequency, attendees, and resulting documents must be described.

4. Measure and analyze results. Measurements for monitoring and controlling must be
collected, organized, and analyzed. They are then used to compare the actual achievements

Page 65

with standards, goals, and plans.
5. Initiate corrective actions for projects that are off track. These actions may require

changes in the project requirements and the project plan.
6. Reward and discipline. Reward those staff who have shown themselves to be good

performers, and discipline, retrain, relocate those that have consistently performed poorly.
7. Document the monitoring and controlling mechanisms. All the methods, forms, measures,

and tools that are used in the monitoring and controlling process must be documented in
organization standards and be described in policy statements.

8. Utilize a configuration management system. A configuration management system is
needed to manage versions, releases, and revisions of documents, code, plans, and reports.

It was Thayer‘s intent that these activities and actions be applied to monitor and control software
development projects and l testing efforts as well.

13.2 MEASUREMENTS AND MILESTONES FOR MONITORING AND CONTROLLING
Introduction
All processes should have measurements (metrics) associated with them. The measurements help to
answer questions about status and quality of the process, as well as the products that result from its
implementation. Measurements in the testing domain can help to track test progress, evaluate the
quality of the software product, manage risks, classify and prevent defects, evaluate test
effectiveness, and determine when to stop testing. Level 4 of the TMM calls for a formal test
measurement program. To begin the collection of meaningful measurements each organization
should answer the following questions:

• Which measures should we collect?
• What is their purpose (what kinds of questions can they answer)?
• Who will collect them?
• Which forms and tools will be used to collect the data?
• Who will analyze the data?
• Who to have access to reports?

The following sections describe a collection of measurements that support monitoring of test over
time. Each measurement is shown in italics to highlight it. It is recommended that measurements
followed by an asterisk (*) be collected by all organizations, even those at TMM level 1. Now we
will address the question of how a testing process can be monitored for each project. A test manager
needs to start with a test plan. What the manager wants to measure and evaluate is the actual work
that was done and compare it to work that was planned. To help support this goal, the test plan must
contain testing milestones.
Milestones are tangible events that are expected to occur at a certain time in the project’s

lifetime. Managers use them to determine project status.

Test milestones can be used to monitor the progress of the testing efforts associated with a software
project. Each level of testing will have its own specific milestones. Some examples of testing

Page 66

milestones are:
• completion of the master test plan;
• completion of branch coverage for all units (unit test);
• implementation and testing of test harnesses for needed integration of major subsystems;
• execution of all planned system tests;
• completion of the test summary report. At the status meetings, project and test leaders present

up-to-date

Measurements, graphs and plots showing the status of testing efforts. Testing milestones met/not met
and problems that have occurred are discussed. Test logs, test incident reports, and other test-related
documents may be examined as needed. Managers will have questions about the progress of the test
effort.
Mostly, they will want to know if testing is proceeding according to schedules and budgets, and if
not, what the barriers are. Some of the typical questions a manager might ask at a status meeting
are:

• Have all the test cases been developed that were planned for this date?
• What percent of the requirements/features have been tested so far?
• How far have we proceeded on achieving coverage goals: Are we ahead or behind what we

scheduled?
• How many defects/KLOC have been detected at this time?Howmany repaired? How many

are of high severity?
• What is the earned value so far? Is it close to what was planned (see Section 9.1.3)?
• How many available test cases have been executed? How many of these were passed?
• How much of the allocated testing budget has been spent so far? Is it more or less than we

estimated?
• How productive is tester X? How many test cases has she developed? How many has she

run? Was she over, or under, the planned amount?

The measurement data collected helps to answer these questions.

Goal/Question/Metric Paradigm
The links between measurements and question are described in the Goals/ Questions/Metrics
(GQM) paradigm reported by Basili.

• In the case of testing, a major goal is to monitor and control testing efforts (a maturity goal
at TMM level 3).

• An organizational team (developers/testers, SQA staff, project/test managers) constructs a set
of likely questions that test/project managers are likely to ask in order to monitor and control
the testing process. The sample set of questions previously described is a good starting point.

• Finally, the team needs to identify a set of measurements that can help to answer these
questions.

Page 67

A sample set of measures is provided in the following sections. Any organizational team can use
them as a starting point for selecting measures that help to answer testrelated monitoring and
controlling questions.

Four key items are recommended to test managers for monitoring and controlling the test efforts for
a project. These are:

(i) testing status;
(ii) tester productivity;
(iii) testing costs;
(iv) errors, faults, and failures.

we will examine the measurements required to track these items.

13.3 MEASUREMENTS FOR MONITORING TESTING STATUS
Monitoring testing status means identifying the current state of the testing process. The manager
needs to determine if the testing tasks are being completed on time and within budget. Given the
current state of the testing effort some of the questions under consideration by a project or test
manager would be the following:

• Which tasks are on time?
• Which have been completed earlier then scheduled, and by how much?
• Which are behind schedule, and by how much?
• Have the scheduled milestones for this date been meet?
• Which milestones are behind schedule, and by how much?

The following set of measures will help to answer these questions. The test status measures are
partitioned into four categories as shown in Figure.

Page 68

.
FIG. Types of testing status measurements

1. Coverage Measures
Depending on coverage goals for white box testing, a combination of the following are
recommended.
Degree of statement, branch, data flow, basis path, etc., coverage (planned, actual)*
Tools can support the gathering of this data. Testers can also use ratios such as:
Actual degree of coverage/planned degree of coverage to monitor coverage to date.
For black box coverage the following measures can be useful:
Number of requirements or features to be tested*
Number of equivalence classes identified
Number of equivalence classes actually covered
Number or degree of requirements or features actually covered*
Testers can also set up ratios during testing such as:
Number of features actually covered/total number of features*

2. Test Case Development
The following measures are useful to monitor the progress of test case development, and can be
applied to all levels of testing.
Number of planned test cases, Number of available test cases, Number of unplanned test cases

3. Test Execution

Page 69

As testers carry out test executions, the test manager will want to determine if the execution process
is going occurring to plan. This next group of measures is appropriate.
Number of available test cases executed*
Number of available tests cases executed and passed*
Number of unplanned test cases executed
Number of unplanned test cases executed and passed.
For a new release where there is going to be regression testing then these are useful:
Number of planned regression tests executed
Number of planned regression tests executed and passed
Testers can also set up ratios to help with monitoring test execution. For example:
Number of available test cases executed/number of available test cases
Number of available test cases executed/number of available test cases executed and passed
These would be derived measures.

4. Test Harness Development
Some useful measurements are:
Lines of Code (LOC) for the test harnesses (planned, available)*
We use lines of code in the measurements listed above as it is the most common size metric and can
be easily applied to estimating the size of a test harness. Ratios such as:
Available LOC for the test harness code/planned LOC for the test harnesses
are useful to monitor the test harness development effort over time.

13.4 MEASUREMENTS TO MONITOR TESTER PRODUCTIVITY
Managers have an interest in learning about the productivity of their staff, and how it changes as the
project progresses. Measuring productivity in the software development domain is a difficult task
since developers are involved in many activities, many of which are complex, and not all are
readily measured. For each developer/tester, where relevant, we measure both planned and actual:
Time spent in test planning
Time spent in test case design*
Time spent in test execution*
Time spent in test reporting
Number of test cases developed*
Number of test cases executed*
Productivity for a tester could be estimated by a combination of:
Number of test cases developed/unit time*
Number of tests executed/unit time*
Number of LOC test harness developed/unit time*
Number of defects detected in testing/unit time
The last item could be viewed as an indication of testing efficiency. This measure could be
partitioned for defects found/hour in each of the testing phases to enable a manager to evaluate the
efficiency of defect detection for each tester in each of these activities. For example:
Number of defects detected in unit test/hour
Number of defects detected in integration test/hour, etc.
Marks suggests as a tester productivity measure

Page 70

Number of test cases produced/week

13.5 MEASUREMENTS FOR MONITORING TESTING COSTS
To calculate planned earned values we need the following measurement data:
Total estimated time or budget for the overall testing effort Estimated time or budget for each
testing task
Earned values can be calculated separately for each level of testing. This would facilitate monitoring
the budget/resource usage for each individual testing phase (unit, integration, etc.). We want to
compare the above measures to:
Actual cost/time for each testing task*
We also want to calculate:
Earned value for testing tasks to date
Finally, the ratio of:
Estimated costs for testing/Actual costs for testing
can be applied to a series of releases or related projects to evaluate and promote more accurate test
cost estimation and higher test cost effectiveness through test process improvement.
13.6 MEASUREMENTS FOR MONITORING ERROR, FAULTS, AND FAILURES
Monitoring errors, faults, and failures is very useful for:

• evaluating product quality;
• evaluating testing effectiveness;
• making stop-test decisions;
• defect casual analysis;
• defect prevention;
• test process improvement;
• development process improvement.

Some useful measures for defect tracking are:
Total number of incident reports (for a unit, subsystem, system)*
Number of incident reports resolved/unresolved (for all levels of test)*
Number of defects found of each given type*
Number of defects causing failures of severity level greater than X found (where X is an
appropriate integer value)
Number of defects/KLOC (This is called the defect volume. The division by KLOC normalizes the
defect count)*
Number of failures*
Number of failures over severity level Y (where Y is an appropriate integer value)
Number of defects repaired*
Estimated number of defects (from historical data)

A sample severity level hierarchy

• Catastrophic: a failure that could cause loss of life or property and/or loss of a system.
• Critical: a failure that could cause major harm or major injury to life or property and/or

cause major damage to a software system.

Page 71

• Marginal: a failure that could cause minor harm or minor injury to life, or cause a software
system to perform poorly or reduce its availability.

• Minor or Annoying: a failure that does not cause any significant harm or injury to life,
property or a software system, but does require repair.

13.7 MONITORING TEST EFFECTIVENESS
To complete the discussion of test controlling and monitoring and the role of test measurements we
need to address what is called test effectiveness. Test effectiveness measurements will allow
managers to determine if test resources have been used wisely and productively to remove defects
and evaluate product quality. Test effectiveness evaluations allow managers to learn which testing
activities are or are not productive. We can make such an evaluation in several ways, both before
and after release.
1. Before release. Compare the numbers of defects found in testing for this software product to the

number expected from historical data. The ratio is:
Number of defects found during test/number of defects estimated
This will give some measure of how well we have done in testing the current software as compared
to previous similar products.
2. After release. Continue to collect defect data after the software has been released in the field. In

this case the users will prepare problem reports that can be monitored. Marks suggests we use
measures such as ―field fault density‖ as a measure of test effectiveness. This is equal to:

Number of defects found/thousand lines of new and changed code
This measure is applied to new releases of the software. Another measure suggested is a ratio of:
Pre-ship fault density/Post-ship fault density
Other measurements for test effectiveness have been proposed. For example, a measurement
suggested by Graham is:
Number of defects detected in a given test phase/total number of defects found in testing.
Another useful measure, called the ―detect removal leverage (DRL)‖ described as a review
measurement, can be applied to measure the relative effectiveness of: reviews versus test phases, and
test phases with respect to one another. The DRL sets up ratios of defects found. The ratio
denominator is the base line for comparison. For example, one can compare:

The costs of each testing phase relative to its defect detecting ability can be expressed as:

The effectiveness metric called the TCE is defined as follows:

Page 72

The total number of defects in this equation is the sum of the defects found by the test cases, plus the
defects found by what Chernak calls side effects. Side effect are based on so-called ―test-escapes.‖

These are software defects that a test suite does not detect but are found by chance in the testing
cycle.

13.8 STATUS MEETINGS, REPORTS, AND CONTROL ISSUES
Status Meetings

Measurement-related data, and other useful test-related information such as test documents
and problem reports, should be collected and organized by the testing staff. The test manager can
then use these items for presentation and discussion at the periodic meetings used for project
monitoring and controlling. These are called project status meetings.

Test-specific status meetings can also serve to monitor testing efforts, to report test progress,

and to identify any test-related problems. Testers can meet separately and use test measurement data
and related documents to specifically discuss test status. Following this meeting they can then
participate in the overall project status meeting, or they can attend the project meetings as an integral
part of the project team and present and discuss test-oriented status data at that time.

Each organization should decide how to organize and partition the meetings. Some deciding
factors may be the size of the test and development teams, the nature of the project, and the scope of
the testing effort.

Status meetings usually result in some type of status report published by the project manager
that is distributed to upper management. Test managers should produce similar reports to inform
management of test progress.

Rakos recommends that the reports be brief and contain the following items
• Activities and accomplishments during the reporting period. All tasks that were attended

to should be listed, as well as which are complete. The latter can be credited with earned
value amounts. Progress made since the last reporting period should also be described.

• Problems encountered since the last meeting period. The report should include a
discussion of the types of new problems that have occurred, their probable causes, and how
they impact on the project. Problem solutions should be described.

• Problems solved. At previous reporting periods problems were reported that have now been
solved. Those should be listed, as well as the solutions and the impact on the project.

• Outstanding problems. These have been reported previously, but have not been solved to
date. Report on any progress.

• Current project (testing) state versus plan. This is where graphs using process
measurement data play an important role. Examples will be described below. These plots
show the current state of the project (testing) and trends over time.

• Expenses versus budget. Plots and graphs are used to show budgeted versus actual
expenses. Earned value charts and plots are especially useful here.

Page 73

• Plans for the next time period. List all the activities planned for the next time period as well
as the milestones.

Milestone Meetings

• Another type of project-monitoring meeting is the milestone meeting that occurs when a
milestone has been met. A milestone meeting is an important event; it is a mechanism for the
project team to communicate with upper management and in some cases user/client groups.

• Major testing milestones should also precipitate such meetings to discuss accomplishments and
problems that have occurred in meeting each test milestone, and to review activities for the next
milestone phase. Testing staff, project managers, SQA staff, and upper managers should attend.

• In some cases process improvement group and client attendance is also useful. Milestone
meetings have a definite order of occurrence; they are held when each milestone is completed.

• Typical test milestone meeting attendees are shown in the following Figure.

FIG. Test milestone meetings, participants, inputs, and outputs.

• It is important that all test-related information be available at the meeting, for example,
measurement data, test designs, test logs, test incident reports, and the test plan itself.

13.9 CRITERIA FOR TEST COMPLETION

Tester managers and staff should do their best to take actions to get the testing effort on track.
In any event, whether progress is smooth or bumpy, at some point every project and test manager has

Page 74

to make the decision on when to stop testing.
Part of the task of monitoring and controlling the testing effort is making this decision about

when testing is complete under conditions of uncertainly and risk. Managers should not have to use
guesswork to make this critical decision. The test plan should have a set of quantifiable stop-test
criteria to support decision making.

The weakest stop test decision criterion is to stop testing when the project runs out of time
and resources.

There are five stop-test criteria that are based on a more quantitative approach. Managers

should use a combination of criteria and cross-checking for better results.

The stop-test criteria are as follows.

1. All the Planned Tests That Were Developed Have Been Executed and Passed.
2. All Specified Coverage Goals Have Been Met.
3. The Detection of a Specific Number of Defects Has Been Accomplished.
4. The Rates of Defect Detection for a Certain Time Period Have Fallen Below a Specified

Level.
5. Fault Seeding Ratios Are Favourable.

FIG. Some possible stop-test criteria

13.10 SOFTWARE CONFIGURATION MANAGEMENT

• Software systems are constantly undergoing change during development and maintenance.
By software systems we include all software artifacts such as requirements and design
documents, test plans, user manuals, code, and test cases.

• Different versions, variations, builds, and releases exist for these artifacts.

• Organizations need staff, tools, and techniques to help them track and manage these artifacts
and changes to the artifacts that occur during development and maintenance.

Page 75

• The Capability Maturity Model includes configuration management as a Key Process Area at
level 2. This is an indication of its fundamental role in support of repeatable, controlled, and
managed processes. To control and monitor the testing process, testers and test mangers also
need access to configuration management tools and staff.

• There are four major activities associated with configuration management.

These are:

1. Identification of the Configuration Items

o The items that will be under configuration control must be selected, and the relationships
between them must be formalized. An example relationship is ―part-of‖ which is relevant to

composite items. Relationships are often expressed in a module interconnection language
(MIL). The following Figure shows four configuration items, a design specification, a test
specification, an object code module, and source code module as they could exist in a
configuration management system (CMS) repository.

o The arrows indicate links or relationships between them. Note in this example that the
configuration management system is aware that these four items are related only to one
another and not to other versions of these items in the repository.

o In addition to identification of configuration items, procedures for establishment of baseline
versions for each item must be in place.

Baselines are formally reviewed and agreed upon versions of software artifacts, from which
all changes are measured. They serve as the basis for further development and can be
changed only through formal change procedures.

Baselines plus approved changes from those baselines constitute the correct configuration
identification for the item.

Page 76

FIG. Sample configuration items

2. Change Control

• There are two aspects of change control—one is tool-based, the other team-based. The team
involved is called a configuration control board. This group oversees changes in the software
system. The members of the board should be selected from SQA staff, test specialists,
developers, and analysts.

• It is this team that oversees, gives approval for, and follows up on changes. They develop
change procedures and the formats for change request forms. To make a change, a change
request form must be prepared by the requester and submitted to the board.

• It then reviews and approves/ disapproves. Only approved changes can take place. The board
also participates in configuration reporting and audits as described further on in this section.

3. Configuration status reporting

These reports help to monitor changes made to configuration items. They contain a history of all
the changes and change information for each configuration item. Each time an approved change is
made to a configuration item, a configuration status report entry is made. The reports can answer
questions such as:

Page 77

• who made the change;
• what was the reason for the change;
• what is the date of the change;
• what is affected by the change.

Reports for configuration items can be disturbed to project members and discussed at status
meetings.

4. Configuration audits

• After changes are made to a configuration item, how do software engineers follow up to
ensure the changes have been done properly? One way to do this through a technical review,
another through a configuration audit.

• The audit is usually conducted by the SQA group or members of the configuration control
board.

• They focuses on issues that are not cov ered in a technical review.

• A checklist of items to cover can serve as the agenda for the audit.

• For each configuration item the audit should cover the following:
(i) Compliance with software engineering standards. For example, for the source code
modules, have the standards for indentation, white space, and comments been followed?
(ii) The configuration change procedure. Has it been followed correctly?
(iii) Related configuration items. Have they been updated?
(iv) Reviews. Has the configuration item been reviewed?

SUMMARY

For review, a summary of the contributions of the three critical groups to TMM level 3
maturity goals is shown in Figure.

Page 78

FIG. Contributions of three critical groups to TMM level 3 maturity goals

CHAPTER 14
SOFTWARE REVIEWS

14.1 INTRODUCTION

Page 79

• One powerful tool that we can use is a manual static testing technique that is generally
known as the technical review. Most software deliverables can be tested using review
techniques.

• The technical review involves a group of people who meet to evaluate a software-related
item. A general definition for a review is given below:
A review is a group meeting whose purpose is to evaluate a software artifact or a
set of software artifacts.

• The general goals for the reviewers are to:

• identify problem components or components in the software artifact that need
improvement;

• identify components of the software artifact that do not need improvement;

• identify specific errors or defects in the software artifact (defect detection);

• ensure that the artifact conforms to organizational standards. the many benefits of a
review program are:

• higher-quality software;

• increased productivity (shorter rework time);

• closer adherence to project schedules (improved process control);

• increased awareness of quality issues; • teaching tool for junior staff;

• opportunity to identify reusable software artifacts;

• reduced maintenance costs;

• higher customer satisfaction;

• more effective test planning;

• a more professional attitude on the part of the development staff.

14.2 TYPES OF REVIEWS

• Reviews can be formal or informal. They can be technical or managerial.

• Managerial reviews usually focus on project management and project status.
• There are two major types of technical reviews—inspections and walkthroughs— which

are more formal in nature and occur in a meeting-like setting.

• Formal reviews require written reports that summarize findings, and in the case of one type
of review called an inspection, a statement of responsibility for the results by the reviewers is
also required.

• The two most widely used types of reviews will be described
1 Inspections as a Type of Technical Review
2 Walkthroughs as a Type of Technical Review

Page 80

Target / Review Item (What)

14.3 TYPES OF REVIEWS ACCORDING TO FORMALITY

o Desk check
o Peer reviews
o Walkthroughs
o Inspections
o Audits

Desk check

 Also called self check
 Informal review performed by the author of the artifact

Peer reviews

 ―I show you mine and you show me yours‖
 The author of the reviewed item does not participate in the review
 Effective technique that can be applied when there is a team (with two or more persons) for

each role (analyst, designer, programmer, technical writer, etc.)
 The peer may be a senior colleague (senior/chief analyst, senior/chief architect, senior/chief

programmer, senior/chief technical writer, etc.)

Walkthroughs

 Type of technical review where the producer of the reviewed material serves as the review
leader and actually guides the progression of the review (as a review reader)

 Traditionally applied to design and code
 In the case of code walkthrough, test inputs may be selected and review participants then

literally walk through the design or code

Page 81

 Checklist and preparation steps may be eliminated

Inspections

 A formal evaluation technique in which software requirements, design, or code are
examined in detail by a person or group other than the author to detect faults, violations of
development standards, and other problems.

FIG. Steps in the inspection process

 Generally involve the author of a product.
 The inspector team may consist of different expertise, such as domain expertise, or design

method expertise, or language expertise, etc. Inspections are usually conducted on a
relatively small section of the product.

 Often the inspection team may have had a few hours to prepare, perhaps by applying an
analytic technique to a small section of the product, or to the entire product with a focus only
on one aspect, e.g., interfaces.

 A checklist, with questions germane to the issues of interest, is a common tool used in
inspections.

 Inspection sessions can last a couple of hours or less, whereas reviews and audits are usually
broader in scope and take longer.

Page 82

Audits

 An audit is an independent evaluation of conformance of software products and processes
to applicable regulations, standards, plans, and procedures

 An audit is a formally organized activity, with participants having specific roles, such as lead
auditor, other auditors, a recorder, an initiator, and a representative of the audited
organization

 Audits may examine plans like recovery, SQA, design documentation, etc.
 Audits can occur on almost any product at any stage of the development or maintenance

process

14.4 REVIEWS AND TESTING

• A software system is more than the code; it is a set of related artifacts; these may contain
defects or problem areas that should be reworked or removed; quality-related attributes of
these artifacts should be evaluated

• Reviews allow us to detect and eliminate errors/defects early in the software life cycle
(even before any code is available for testing), where they are less costly to repair

• Most problems have their origin in requirements and design; requirements and design
artifacts can be reviewed but not executed and tested

– Early prototyping is equally important to reveal problems in requirements and
high-level architectural design

• A code review usually reveals directly the location of a bug, while testing requires a
debugging step to locate the origin of a bug

• Adherence to coding standards cannot be checked by testing

14.5 TECHNICAL AND MANAGEMENT REVIEWS

• Technical Reviews - examine work products of the software project (code, requirement
specifications, software design documents, test documentation, user documentation,
installation procedures) for V&V and QA purposes

– Multiple forms: Desk checking, Walkthroughs, Inspections, Peer Reviews,
Audits

– Covered here

• Management Reviews - determine adequacy of and monitor progress or
inconsistencies against plans and schedules and requirements

– Includes what Ian Somerville calls Progress Reviews

– May be exercised on plans and reports of many types (risk management plans,
project management plans, software configuration management plans, audit
reports, progress reports, V&V reports, etc.)

Page 83

14.6 COMPONENTS OF A REVIEW PLAN

• Review goals

• Items being reviewed

• Preconditions for the review

• Roles, team size, participants

• Training requirements

• Review steps and procedures

• Checklists and other related documents to be distributed to participants

• Time requirements

• Nature of the review log and summary report

• Rework and follow-up

 Review Goals
(i) identification of problem components or components in the software artifact that need
improvement,
(ii) identification of specific errors or defects in the software artifact,
(iii) ensuring that the artifact conforms to organizational standards, and
(iv) communication to the staff about the nature of the product being developed.

Additional goals might be to establish traceability with other project documents, and
familiarization with the item being reviewed.

Preconditions and Items to Be Reviewed
In many organizations the items selected for review include:

• requirements documents;
• design documents;
• code;
• test plans (for the multiple levels);
• user manuals;
• training manuals;
• standards documents.

The preconditions need to be described in the review policy statement and specified in the review
plan for an item. General preconditions for a review are:

(i) the review of an item(s) is a required activity in the project plan. (Unplanned reviews are
also possible at the request of management, SQA or software engineers. Review policy
statements should include the conditions for holding an unplanned review.)
(ii) a statement of objectives for the review has been developed;
(iii) the individuals responsible for developing the reviewed item indicate readiness for the
review;
(iv) the review leader believes that the item to be reviewed is sufficiently complete for the
review to be useful the design document for a procedure-oriented system may be reviewed in
parts that encompass:

Page 84

(i) the overall architectural design;
(ii) data items and module interface design;
(iii) component design.

Review Roles, Responsibilities and Attendance
Two major roles that need filling for a successful review are

(i) a leader or moderator, and
(ii) a recorder.

These are shown in the following Figure – Review Roles.

Figure: Review Roles

It is the author‘s option that testers take part in all major milestone reviews to ensure:

• effective test planning;
• traceability between tests, requirements, design and code elements;
• discussion, and support of testability issues;
• support for software product quality issues;
• the collection and storage of review defect data;

Page 85

• support for adequate testing of ―trouble-prone‖ areas.

Figure: Review Team Members

Review Procedures
For each type of review that an organization wishes to implement, there should be a set of
standardized steps that define the given review procedure. These are initiation, preparation,
inspection meeting, reporting results, and rework and follow-up. For each step in the procedure the
activities and tasks for all the reviewer participants should be defined. The review plan should refer
to the standardized procedures where applicable.

Review Training
1. Review of Process Concepts.
Reviewers should understand basic process concepts, the value of process improvement, and the role
of reviews as a product and process improvement tool.
2. Review of Quality Issues.
Reviewers should be made familiar with quality attributes such as correctness, testability,
maintainability, usability, security, portability, and so on, and how can these be evaluated in a
review.
3. Review of Organizational Standards for Software A r t i f a c t s .
Reviewers should be familiar with organizational standards for software artifacts.
4. Understanding the Material to Be Reviewed.
Concepts of understanding and how to build mental models during comprehension of code and
software-related documents should be covered.
5. Defect and Problem Types.
Review trainees need to become aware of the most frequently occurring types of problems or errors
that are likely to occur during development. They need to be aware what their causes are, how they
are transformed into defects, and where they are likely to show up in the individual deliverables.
6. Communication and Meeting Management S k i l l s .
These topics are especially important for review leaders. It is their responsibility to communicate
with the review team, the preparers of the reviewed document, management, and in some cases
clients/user group members. Review leaders need to have strong oral and written communication
skills and also learn how to conduct a review meeting.
7. Review Documentation and Record Keeping.
Review leaders need to learn how to prepare checklists, agendas, and logs for review meetings.
8. Special Instructions.

Page 86

During review training there may be some topics that need to be covered with the review
participants.
9. Practice Review Sessions.
Review trainees should participate in practice review sessions. There are very instructive and
essential. One option is for instructors to use existing documents that have been reviewed in the past
and have the trainees do a practice review of these documents.

FIG. Topics for review training sessions.

14.7 CHECKLIST FOR REVIEWING
A Sample General Checklist for Reviewing Software Documents/Requirements Review

• Coverage and completeness
– Are all essential items completed?
– Have all irrelevant items been omitted?
– Is the technical level of each topic addressed properly for this document?
– Is there a clear statement of goals for this document?
– (Don't forget: more documentation does not mean better documentation)

• Correctness
– Are there incorrect items?
– Are there any contradictions?
– Are the any ambiguities?

• Clarity and Consistency
– Are the material and statements in the document clear?
– Are the examples clear, useful, relevant and correct?

Page 87

– Are the diagrams, graphs and illustrations clear, correct, use the proper notation,
effective, in the proper place?

– Is the terminology clear and correct?
– Is there a glossary of technical terms that is complete and correct?
– Is the writing style clear (nonambiguous)?

 References and Aids to Document Comprehension
– Is there an abstract or introduction?
– Is there a well placed table of contents?
– Are the topics or items broken down in a manner that is easy to follow and is

understandable?
– Is there a bibliography that is clear, complete and correct?
– Is there an index that is clear, complete and correct?
–Is the page and figure numbering correct and consistent?

A sample supplementary checklist for design reviews
(for high-level architectural design and detailed design)
• Are the high-level and detailed designs consistent with requirements? Do they address all the

functional and quality requirements? Is detailed design consistent with high-level design?
• Are design decisions properly highlighted and justified and traced back to requirements? Are

design alternatives identified and evaluated?
• Are design notations (ex: UML), methods (ex: OOD, ATAM) and standards chosen and used

adequately?
• Are naming conventions being followed appropriately?
• Is the system structuring (partitioning into sub-systems, modules, layers, etc.) well defined and

explained? Are the responsibilities of each module and the relationships between modules well
defined and explained? Do modules exhibit strong cohesion and weak coupling?

• Is there a clear and rigorous description of each module interface, both at the syntactic and
semantic level? Are dependencies identified?

• Have user interface design issues, including standardization, been addressed properly?
• Is there a clear description of the interfaces between this system and other software and

hardware systems?
• Have reuse issues been properly addressed, namely the possible reuse of COTS (commercial

off the shelf) components (buy-or-build decision) and in-house reusable components?
• Is the system designed so that it can be tested at various levels (unit, integration and system)?

A sample general code review checklist

• Design Issues
– Does each unit implement a single function?
– Are there instances where the unit should he partitioned?
– Is code consistent with detailed design?

Page 88

– Does the code cover detailed design?

• Data Items
– Is there an input validity check?
– Arrays-check array dimensions, boundaries, indices.
– Variables - are they all defined, initiated? have correct types and scopes been checked?
– Are all variables used?

• Computations
– Are there computations using variables with inconsistent data types?
– Are there mixed-mode computations?
– Is the target value of an assignment smaller than the right-hand expression?
– Is over- or underflow a possibility (division by zero)?
– Are there invalid uses of integers or floating point arithmetic?
– Are there comparisons between floating point numbers?
– Are there assumptions about the evaluation order in Boolean expressions?
– Are the comparison operators correct?

• Control Flow Issues
– Will the program, module or, unit eventually terminate?
– Is there a possibility of an infinite loop, a loop with a premature exit, a loop that never

executes?

• Interface Issues
– Do the number and attributes of the parameters used by a caller match those of the called

routine? Is the order of parameters also correct and consistent in caller and callee?
– Does a function or procedure alter a parameter that is only meant as an input parameter?
– If there are global variables, do they have corresponding definitions and attributes in all

the modules that use them?

• Input/output Issues
– Have all files been opened for use?
– Are all files properly closed at termination?
– If files are declared are their attributes correct?
– Are EOF or I/O errors conditions handed correctly?
– Is I/O buffer size and record size compatible?

• Portability Issues
– Is there an assumed character set, and integer or floating point representation?
– Are their service calls that mar need to be modified?

• Error Messages
– Have all warnings and informational messages been checked and used appropriately?

• Comments/Code Documentation
– Has the code been properly documented? Are there global, procedures, and line

comments where appropriate?

Page 89

– Is the documentation clear, and correct, and does it support understanding?

• Code Layout and White Space
– Has white space and indentation been used to support understanding of code logic and

code intent?

• Maintenance
– Does each module have a single exit point?
– Are the modules easy to change (low coupling and high cohesion)?

A sample code review checklist for C programs

• Data Items
– Are all variables lowercase?
– Are all variables initialized?
– Are variable names consistent, and do they reflect usage?
– Are all declarations documented (except for those that are very simple to understand)?
– Is each name used for a singe function (except for loop variable names)?
– Is the scope of the variable as intended?

• Constants
– Are all constants in uppercase?
– Are all constants defined with a "#define"?
– Are all constants used in multiple files defined in an INCLUDE header file?

• Pointers
– Are pointers declared properly as pointers?
– Are the pointers initialized properly?

• Control
– Are if/then, else, and switch statements used clearly and properly?

• Strings
– Strings should have proper pointers.
– Strings should end with a NULL.

• Brackets
– All curly brackets should have appropriate indentations and be matched

• Logic Operators
– Do all initializations use an " = " and not an " = ="?
– Check to see that all logic operators are correct, for example, use of = / = =, and ||

• Computations
– Are parentheses used in complex expressions and are they used properly for specifying

precedences?
– Are shifts used properly?

Page 90

14.8 REPORTING REVIEW RESULTS
Contents of a formal review report

• Checklist will all items covered (with a check mark) and comments relating to each item

• List of defects found, with

– description

– type

– frequency

– defect class, e.g.
• missing
• incorrect
• superfluous

– location
• cross-reference to the place or places in the reviewed document where the defect

occurs

– severity, e.g.
• major
• minor

• Summary report, with

– list of attendees

– review metrics, such as
• number of participants
• duration of the meeting
• size of the item being reviewed (usually LOC or number of pages)
• number of defects found
• total preparation time for the review team
• number of defects found per hour of review time
• number of defects found per page or LOC
• LOC or pages reviewed per hour
• ...

– status of the reviewed item (requirements document, etc.)
• accept – the item is accepted in its present form or with minor rework required

that does not need further verification
• conditional accept – the item needs rework and will be accepted after the

moderator has checked and verified the rework
• reinspect – considerable rework must be done to the item. The inspection needs

to be repeated when the rework is done.

– estimate of rework effort and the estimated date for completion of the rework

– signatures and date

