

Data can be corrupted during transmission, for reliable communication errors must be detected and corrected

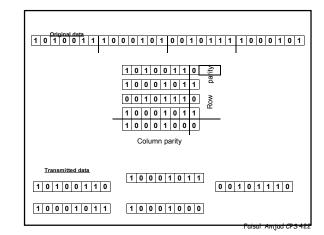
Faisal Amjad CPS 422

ERROR DETECTION (Contd...)

‰ Types of error detection techniques

- o Parity Check
 - f Simple f Two-Dimensional
- Cyclic Redundancy Check (CRC)
- o Checksum

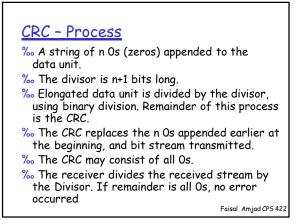
Simple Parity Check

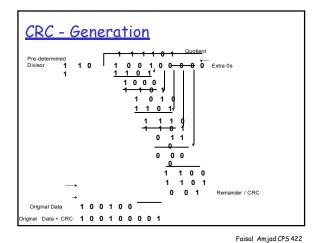

% A redundant "Parity-bit" added to every data unit
% In "Even" parity, the total number of 1s including the parity bit must be even.
% In "Odd" parity, the total number of 1s including the parity bit must be Odd

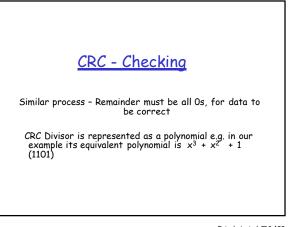
Faisal Amjad CPS 422

Two-Dimensional Parity Check

 Block of bits is organized in a table (rows and columns)
 Parity bits for each row and each column
 calculated and appended to the end of respective row/column.

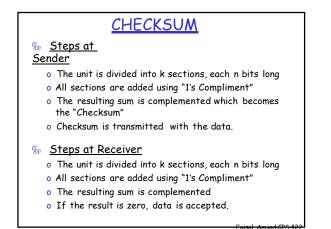


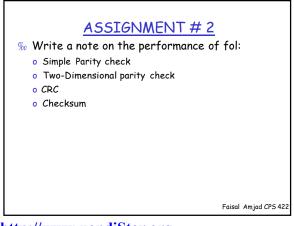

Faisal Amjad CPS 422


Cyclic Redundancy Check (CRC)

- ‰ Based on "binary Division"
- ‰ A sequence of redundant bits, called the CRC Remainder or simply "CRC" is appended to the end of data unit.
- ‰ Resulting data unit becomes exactly divisible by a second, "predetermined" binary number called the "Divisor".

Faisal Amjad CPS 422




Faisal Amjad CPS 422

Faisal Amjad CPS 422

<u>Checksum - Generation</u>

Original data	1 0	0	1	0	1	0	0	0	1	1	1	0	0							
Sender					1	0	1	0	1	0	D									
Ň					1 0 1	0 1	1 1		<u>0</u>	0			um heck	sum	1					
Transmitted date	<u>a</u>				0 0 1	0	0	1		1	D									
	1 1	0	1	0	1 (° °	() ()	1	1	1	ſ	0	0	0	0	1	1	1	0
<u>Recei</u> ver					1			1 0	1	0	0	1								
Rec					0) (1) 1 1	1 1 _1	0 1 1	0 0 1		Sum							
					1) () (0	0	0	0		Corr	plen	ner	It				

<u>CPS 422</u> <u>Computer Networks</u>

DATA LINK LAYER

Faisal Amjad CPS 422 THE PERSPECTIVE TCP/IP OSI Application Application Presentatio Session DATA LINK LAYER Transport tost-to-hos Addressi Packetizing Transport Internet Media Access Control Network Network Flow Control Error Control Data Link Access Physical Physical

Faisal Amjad CPS 422

ERROR CORRECTION

ERROR CORRECTION BY RETRANSMISSION

FORWARD ERROR CORRECTION

FORWARD ERROR CORRECTION

A Receiver can use error correcting codes to automatically correct certain errors.
 Theoretically any number of errors can be

corrected.

‰ To "Correct" an error the receiver must

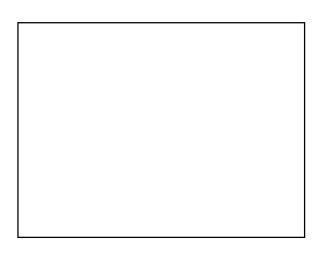
know the "location" of error in received data.

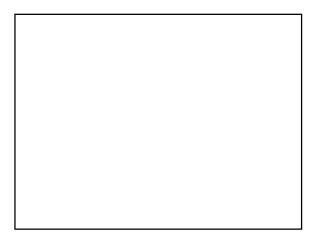
Faisal Amjad CPS 422

Faisal Amjad CPS 422

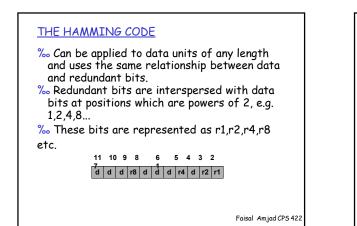
FORWARD ERROR CORRECTION (Contd...)

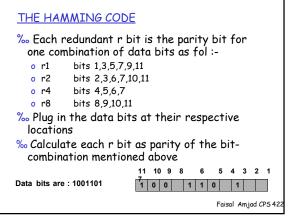
- % To correct a "single-bit" error in an ASCII character, the error correcting code must determine which of the 7 bits has changed.
- ‰ So it has to distinguish between eight different states:
 - o No error
 - o Error in position 1
 - o Error in position 2
 - **o** ...
 - Error in position 7
- ‰ It "seems" 3 redundant bits are required to represent these 8 states (000 111).

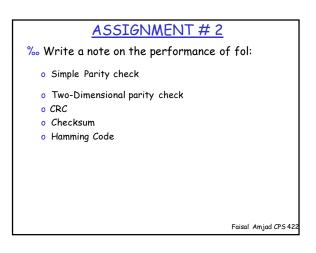

FORWARD ERROR CORRECTION (Contd...)


- ‰ What if an error occurs in redundancy bits???
- ‰ So we have to cater for 10 bits (7 data + 3 redundant)
 - ‰ Hence 3 bits are insufficient for 7 bit data.
- ‰ To calculate "r" redundant bits for "m" data bits, consider this:
 - o r must be able to indicate m + r +1 states. <u>Why????</u>
 - o For m + r <u>error</u> states and 1 <u>no-error</u> state.
 % Since r can represent 2^r states, so 2^r

must


be greater than or equal to m+r+1


o 2^r →= m + r + 1



Faisal Amjad CPS 422

