
Unit-1 

 

Evaluation of programming languages: 

 
1. Zuse’s Plankalkül 

2. Pseudocodes 

3. The IBM 704 and Fortran 

4. Functional Programming: LISP 

5. The First Step Toward Sophistication: ALGOL 60 

6. Computerizing Business Records: COBOL 

7. The Beginnings of Timesharing: BASIC 

8. Everything for Everybody: PL/I 

9. Two Early Dynamic Languages: APL and SNOBOL 

10. The Beginnings of Data Abstraction: SIMULA 67 

11. Orthogonal Design: ALGOL 68 

12. Some Early Descendants of the ALGOLs 

13. Programming Based on Logic: Prolog 

14. History’s Largest Design Effort: Ada 

15. Object-Oriented Programming: Smalltalk 

16. Combining Imperative and Object-Oriented Features: C++ 

17. An Imperative-Based Object-Oriented Language: Java 

18. Scripting Languages 

19. The Flagship .NET Language: C# 

20. Markup/Programming Hybrid Languages  
 

Zuse’s Plankalkül: 1945 

 It is the first programming language, and is highly unusual in several respects.


 For one thing, it was never implemented.




 Furthermore, although developed in 1945, its description was not published until 1972.




 In those days only few people were familiar with the language, some of its capabilities did not 
appear in other languages until 15 years after its development.



 
Pseudocodes: 1949  
The code written using any natural language like English is called "psuedocode". These codes 
help us to understand the logic. 

What was wrong with using machine code?  
a. Poor readability  
b. Poor modifiability  
c. Expression coding was tedious (boring)  
d. Machine deficiencies--no indexing 

 
-Short code: expressions were coded, left to right - Some 

operations 1n => (n+2)nd power  
2n => (n+2)nd root  
07 => addition  
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The IBM 704 AND FORTRAN I - 1957  
(FORTRAN 0 - 1954 - not implemented)  
- Designed for the new IBM 704, which had index registers and floating point 

hardware  
- Environment of development: 

 Computers were small and unreliable


 Applications were scientific




 No programming methodology or tools


 Machine efficiency was most important




- Impact of environment on design 
 No need for dynamic storage



 Need good array handling and counting loops




 No string handling, decimal arithmetic, or powerful input/output 
(commercial stuff)



- First implemented version of FORTRAN has following things 
 Names could have up to six characters



 Post test counting loop (DO)


 Formatted i/o




 User-defined subprograms




 Three-way selection statement (arithmetic IF)


 No data typing statements




 No separate compilation


 Compiler released in April 1957, after 18 worker/ years of effort




 Programs larger than 400 lines rarely compiled correctly, mainly due to poor 
reliability of the 704



 Code was very fast


 Quickly became widely used


 
 

FORTRAN II - 1958 
 Independent compilation



 Fix the bugs


 

FORTRAN IV - 1960-62 
 FORTRAN III was developed, but never widely distributed.



 Explicit type declarations




 Logical selection statement


 Subprogram names could be parameters




 ANSI standard in 1966


 

FORTRAN 77 - 1978 
 Character string handling



 Logical loop control statement


 IF-THEN-ELSE statement




FORTRAN 90 - 1990


 Modules

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 Dynamic arrays


 Pointers




 Recursion


 CASE statement


 Parameter type checking




FORTRAN Evaluation




- Dramatically changed forever the way computers are used 

 

Functional Programming: LISP  
 

 List Processing language (Designed at MIT by 
McCarthy)



 AI research needed a language that:


o Process data in lists (rather than arrays) 

o Symbolic computation (rather than numeric) 
 Only two data types: atoms and lists




 Syntax is based on lambda calculus




 Pioneered functional programming




o No need for variables or assignment 
o Control via recursion and conditional expressions  

 Still the dominant language for AI




 COMMON LISP and Scheme are contemporary dialects of LISP




 ML, Miranda, and Haskell are related languages


 

The First Step Toward Sophistication: ALGOL 60 

 

- Environment of development: 
 FORTRAN had (barely) arrived for IBM 70x




 Many other languages were being developed, all for specific 
machines



 No portable language; all were machine-dependent




 No universal language for communicating algorithms


 

ALGOL 58 (continued)  
-  ACM and GAMM met for four days for design  

- Goals of the language: 
 Close to mathematical notation



 Good for describing algorithms




 Must be translatable to machine code




- Language Features: 
 Concept of type was formalized




 Names could have any length




 Arrays could have any number of subscripts

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 Parameters were separated by mode (in & out)




 Subscripts were placed in brackets




 Compound statements (begin ... end)




 Semicolon as a statement separator




 Assignment operator was :=


 if had an else-if clause






- Comments: 
 Not meant to be implemented, but variations of it were (MAD, JOVIAL)




 Although IBM was initially enthusiastic, all support was dropped by mid-1959


 
 

 

ALGOL 60 - 1960  

- New Features: 
 Block structure (local scope)




 Two parameter passing methods




 Subprogram recursion




 Stack-dynamic arrays




 Still no i/o and no string handling




- Successes: 
 It was the standard way to publish algorithms for over 20 years




 All subsequent imperative languages are based on it




 First machine-independent language




 First language whose syntax was formally defined (BNF)


 
 

- Failure: 

 

 No i/o and the character set made programs nonportable




 Too flexible--hard to implement




 Entrenchment of FORTRAN




 Formal syntax description




 Lack of support of IBM


 

Computerizing Business Records: COBOL 1960 

 

- Environment of development: 
 UNIVAC was beginning to use FLOW-MATIC




 USAF was beginning to use AIMACO




 IBM was developing COMTRAN


 Based on FLOW-MATIC

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- FLOW-MATIC features:  
o Names up to 12 characters, with embedded hyphens 
o English names for arithmetic operators  
o Data and code were completely separate 

o Verbs were first word in every statement  
- Design goals: 

 Must look like simple English




 Must be easy to use, even if that means it will be less powerful




 Must broaden the base of computer users




 Must not be biased by current compiler problems




 Design committee were all from computer manufacturers and DoD branches




 Design Problems: arithmetic expressions? subscripts? Fights among manufacturers


 
 

 First macro facility in a high-level language




 Hierarchical data structures (records)




 Nested selection statements




 Long names (up to 30 characters), with hyphens




 Data Division




- Comments: 
 First language required by DoD; would have failed without DoD




 Still the most widely used business applications language


 

The Beginnings of Timesharing: BASIC 

 

BASIC - 1964 
 Designed by Kemeny & Kurtz at Dartmouth




 Design Goals:




 Easy to learn and use for non-science students




 Must be ‖pleasant and friendly"




 Fast turnaround for homework




 Free and private access




 User time is more important than computer time




 Current popular dialects: QuickBASIC and Visual BASIC


 

Everything for Everybody: PL/I 

 

It is the first large-scale attempt to design a language that could be used for broad spectrum of 
application areas, such as science, Artificial Intelligence, and Business.  
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- Designed by IBM and SHARE  
- Computing situation in 1964 (IBM's point of view)  

1. Scientific computing  
- IBM 1620 and 7090 computers  
- FORTRAN  
- SHARE user group 

 
 

2. Business computing 
 IBM 1401, 7080 computers




 COBOL




 GUIDE user group




- By 1963, however,   
o Scientific users began to need more elaborate i/o, like COBOL had; 

Business users began to need fl. pt. and arrays (MIS) 
 

o It looked like many shops would begin to need two kinds of computers, 
languages, and support staff--too costly  

- The obvious solution: 
 Build a new computer to do both kinds of applications




 Design a new language to do both kinds of applications




- PL/I contributions: 
 First unit-level concurrency




 First exception handling




 Switch-selectable recursion




 First pointer data type




 First array cross sections




- Comments: 
 Many new features were poorly designed




 Too large and too complex




 Was (and still is) actually used for both scientific and business 
applications



 

Two Early Dynamic Languages: APL and SNOBOL 
 

 Characterized by dynamic typing and dynamic storage allocation




 APL (A Programming Language) 1962




- Designed as a hardware description language (at IBM by Ken Iverson)  
- Highly expressive (many operators, for both scalars and arrays of various 

dimensions)  
- Programs are very difficult to read 

 SNOBOL(1964)

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- Designed as a string manipulation language  
(at Bell Labs by Farber, Griswold, and Polensky)  

- Powerful operators for string pattern matching 

 

The Beginnings of Data Abstraction: SIMULA 67  
- Designed primarily for system simulation (in Norway by Nygaard and 

Dahl)  
- Based on ALGOL 60 and SIMULA I  
- Primary Contribution:  

- Coroutines - a kind of subprogram  
- Implemented in a structure called a class  

- Classes are the basis for data abstraction  
- Classes are structures that include both local data and 

functionality 
 
 

Orthogonal Design: ALGOL 68 

 

- From the continued development of ALGOL 60, but it is not a superset of that 

language  
- Design is based on the concept of orthogonality  
- Contributions:  

1. User-defined data structures  
2. Reference types  
3. Dynamic arrays (called flex arrays) 

 
- Comments: 

- Had even less usage than ALGOL 60  
- Had strong influence on subsequent languages, especially Pascal, C, and Ada 

 

Some Early Descendants of the ALGOLs 

 

Pascal -1971  
- Designed by Wirth, who quit the ALGOL 68 committee (didn't like the direction of that 

work)  
- Designed for teaching structured programming - Small, simple, nothing really new  

- Still the most widely used language for teaching programming in colleges (but use is 
shrinking) 

 

C - 1972  
- Designed for systems programming (at Bell Labs by Dennis 

Richie)  
- Evolved primarily from B, but also ALGOL 68  
- Powerful set of operators, but poor type checking - Initially spread through UNIX  

 

PPL Page 7 



Unit-1 

 

Perl 
- It is related to ALGOL through C language 

- Variable names begin with $sign 

- array names begin with @sign 

 

Programming Based on Logic: Prolog 

 

Developed at the University of Aix-Marseille,  
by Comerauer and Roussel, with some help from Kowalski at the University 

of Edinburgh  
- Based on formal logic  
- Non-procedural  

Can be summarized as being an intelligent database system that uses an inferencing process 
to infer the truth of given queries. 

 

History’s Largest Design Effort: Ada 

 

- Huge design effort, involving hundreds of people, much money, and about eight years 
 

- It was developed for DoD (Department of Defence, USA)  
- Contributions:  

1. Packages - support for data abstraction  
2. Exception handling - elaborate 

3. Generic program units 

4. Concurrency - through the tasking model 
 

- Comments:  
- Competitive design  
- Included all that was then known about software engineering and 

language design  
- First compilers were very difficult; the first really usable compiler came nearly 

five years after the language design was completed  
- Ada 95 (began in 1988)  

- Support for OOP through type derivation  
- Better control mechanisms for shared data (new concurrency 

features) More flexible libraries 

 

Object-Oriented Programming: Smalltalk 

 

- Developed at Xerox PARC, initially by Alan Kay, later by Adele Goldberg  
- First full implementation of an object-oriented language (data abstraction, 

inheritance, and dynamic type binding)  
- Pioneered the graphical user interface everyone now uses 

 

Combining Imperative and Object-Oriented Features: C++  
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- Developed at Bell Labs by Bjarne Stroustrup in the year 1979.  
- Evolved from C and SIMULA 67  
- Facilities for object-oriented programming, taken partially from SIMULA 67, were added 

to C  
- Also has exception handling  
- A large and complex language, in part because it supports both procedural and OO 

programming  
- Rapidly grew in popularity, along with OOP  
- ANSI standard approved in November, 1997 

- Eiffel - a related language that supports OOP  
- (Designed by Bertrand Meyer - 1992)  
- Not directly derived from any other language   

Smaller and simpler than C++, but still has most of the power 

An Imperative-Based Object-Oriented Language: Java 

 

- Developed at Sun in the early 1990s 

- Based on C++  
- Significantly simplified 
- Supports only OOP 
- Has references, but not pointers 
- Includes support for applets and a form of concurrency 

 

Scripting Languages: Java Script, PHP, Python and Ruby 

 

- These are used in web applications 
- Java Script is a HTML Resident client side scripting language 
- PHP is an HTML Resident server side scripting language 
- Python and Ruby are used for Common Gateway Interface programming 

 

The Flagship .NET Language: C# 

 

- C#, along with new development platform .NET was , developed by Microsoft in the 
year 2000 

- It is based on C++ and Java 
- The purpose of C# is to provide a language for component based software development 
- Components from different languages such as Visual Basics .NET, Managed C++, J# 

.NET, and Jscript can be easily combined to form systems. 
 

Markup/Programming Hybrid Languages 

 

-XSLT –eXtensible Style Sheet language used for for transforming the markup languages 
- JSP –Java Server pages are used for Server Side Programming  
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Fig: Genealogy of High Level Programming Languages  
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The General Problem of Describing Syntax 

 

A language, whether natural (such as English) or artificial (such as Java), is a set of strings of 

characters from some alphabet. The strings of a language are called sentences or statements. 

The syntax rules of a language specify which strings of characters from the language’s 

alphabet are in the language. A lexeme is the lowest level syntactic unit of a language (e.g., *, 

sum, begin). A token is a category of lexemes (e.g., identifier). The lexemes of a programming 

language include its numeric literals, operators, and special words, among others. Program is 

strings of lexemes rather than of characters. Lexemes are partitioned into groups—for 

example, the names of variables, methods, classes, and so forth in a programming language 

form a group called identifiers. Each lexeme group is represented by a name, or token. For 

example, an identifier is a token that can have lexemes, or instances, such as sum and total. In 

some cases, a token has only a single possible lexeme. For example, the token for the 

arithmetic operator symbol + has just one possible lexeme. Consider the following Java 

statement:  
 

index = 2 * count + 17; 

 

The lexemes and tokens of this statement are 

 

Lexemes Tokens 

index identifier 

= equal_sign  
2 int_literal  
* mult_op 
count identifier 

+plus_op 
17 int_literal  
;semicolon 

 

Language Recognizers 

 

In general, languages can be formally defined in two distinct ways: by recognition and by 

generation. Suppose we have a language L that uses an alphabet of characters. To define L 

formally using the recognition method, we would need to construct a mechanism R, called a 

recognition device, capable of reading strings of characters from the alphabet. The syntax 

analysis part of a compiler is a recognizer for the language the compiler translates. In this role, 

it determine whether given programs are in the language. In effect then, the syntax analyzer 

determines whether the given programs are syntactically correct. The structure of syntax 

analyzers, also known as parsers, 

 

Language Generators  
A language generator is a device that can be used to generate the sentences of a language. It is 
often possible to determine whether the syntax of a particular statement is correct by 

comparing it with the structure of the generator. There is a close connection between formal 
generation and recognition devices  
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Formal Methods of Describing Syntax 

 

1. Backus-Naur Form 

 
2. Context-Free Grammars 

 

 

Backus-Naur Form  
 

In the mid 1950s, two men, Noam Chomsky and John Backus, in unrelated research efforts, 

developed the same syntax description formalism, which became the most widely used method 

for describing programming language syntax. The new notation of Backus was later modified 

slightly by Peter Naur for the description of ALGOL 60 (Naur, 1960). This revised method of 

syntax description became known as Backus-Naur Form, or simply BNF. BNF is a natural 

notation for describing syntax. BNF is nearly identical to Chomsky’s generative devices for 

context-free languages, called context-free grammars. we refer context-free grammars 

simply as grammars. Furthermore, the terms BNF and grammar are used interchangeably. 

 

Context-Free Grammars 

 

In the mid-1950s, Chomsky described four classes of generative devices or grammars that 
define four classes of language. Two of these grammar classes, named context-free and 

regular, useful for describing the syntax of programming languages. The forms of the tokens 
of programming languages can be described by regular grammars. The syntax of whole 

programming languages, can be described by context-free grammars. 

 

Fundamentals 

 

A metalanguage is a language that is used to describe another language. BNF is a meta 

language for programming languages. BNF uses abstractions for syntactic structures. A simple 

Java assignment statement, for example, might be represented by the abstraction <assign> 

(pointed brackets are often used to delimit names of abstractions). The actual definition of 

<assign> can be given by 

<assign> -> <var> = <expression>  
The text on the left side of the arrow, which is called the left-hand side (LHS), The text to the 

right of the arrow is the definition of the LHS. It is called the right-hand side (RHS) and 

consists of some mixture of tokens, lexemes. Altogether, the definition is called a rule, or 

production.This particular rule specifies that the abstraction <assign> is defined as an 

instance of the abstraction <var>, followed by the lexeme =, followed by an instance of the 

abstraction <expression>. One example sentence whose syntactic structure is described by the 

rule is  
total = subtotal1 + subtotal2  
The abstractions in a BNF description, or grammar, are often called nonterminal 
symbols, or simply nonterminals, and the lexemes and tokens of the  
rules are called terminal symbols, or simply terminals. A BNF description,  
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or grammar, is a collection of rules.  
Nonterminal symbols can have two or more distinct definitions, representing two or more 

possible syntactic forms in the language. Multiple definitions can be written as a single rule, 

with the different definitions separated by the symbol |, meaning logical OR. For example, a 

Java if statement can be described with the rules <if_stmt> →if ( <logic_expr> ) <stmt> 

 

<if_stmt> →if ( <logic_expr> ) <stmt> else <stmt> 
or with the rule  
<if_stmt> →if ( <logic_expr> ) <stmt>  
| if ( <logic_expr> ) <stmt> else <stmt> 

In these rules, <stmt> represents either a single statement or a compound statement. 
 

Describing Lists 

 

Variable-length lists in mathematics are often written using an ellipsis (. . .); BNF does not 

include the ellipsis, so an alternative method is required for describing lists of syntactic 
elements in programming languages (for example, a list of identifiers appearing on a data 

declaration statement). For BNF, the alternative is recursion. A rule is recursive if its  
LHS appears in its RHS. The following rules illustrate how recursion is used to describe lists:  
<ident_list> identifier  

| identifier, <ident_list> 

 

This defines <ident_list> as either a single token (identifier) or an identifier 
followed by a comma and another instance of <ident_list>. Recursion is used 
to describe lists in many of the example grammas. 

 

Grammars and Derivations 

 

A grammar is a generative device for defining languages. The sentences of the language are 

generated through a sequence of applications of the rules, beginning with a special 

nonterminal of the grammar called the start symbol. This sequence of rule applications is 

called a derivation. In a grammar for a complete programming language, the start symbol 

represents a complete program and is often named <program>. The simple grammar is 

following. 
 

 

EXAMPLE :  A Grammar for a Small Language 

 

<program> ->begin <stmt_list> end 

<stmt_list> -><stmt> 
| <stmt> ; <stmt_list>  

<stmt> <var> = <expression>  
<var>  a | b | c  
<expression> <var> + <var>  
 | <var> – <var> 

 | <var> 
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The language described by the grammar above has only one statement form: assignment. A program 
consists of the special word begin, followed by a list of statements separated by semicolons, followed 
by the special word end. An expression is either a single variable or two variables separated by either a  
+ or - operator. The only variable names in this language are a, b, and c. 
Derivation: Generating sentences of grammar  
A derivation of a program in this language 
follows: <program> => begin <stmt_list> end  

=> begin <stmt> ; <stmt_list> end  
=> begin <var> = <expression> ; <stmt_list> 

end => begin a = <expression> ; <stmt_list> 

end => begin a = <var> + <var> ; <stmt_list> 

end => begin a = b + <var> ; <stmt_list> end  
=> begin a = b + c ; <stmt_list> end  
=> begin a = b + c ; <stmt> end  
=> begin a = b + c ; <var> = <expression> end 

=> begin a = b + c ; b = <expression> end  
=> begin a = b + c ; b = <var> end 

=> begin a = b + c ; b = c end  
This derivation, like all derivations, begins with the start symbol, in this case <program>. The 

symbol => is read ―derives.‖ Each successive string in the sequence is derived from the 
previous string by replacing one of the nonterminals with one of that nonterminal’s definitions. 

Each of the strings in the derivation, including <program>, is called a sentential form.  
In this derivation, the leftmost nonterminal is replaced at each step are called leftmost 

derivations. If the rightmost nonterminal is replaced at each step, it is called right most 

derivation 

 

EXAMPLE 3.2: A Grammar for Simple Assignment Statements 

<assign> <id> = <expr>  
<id> a | b | c  

<expr> <id> + <expr>  
|<id> * <expr>  
| ( <expr> )  
| <id>  

The above grammar describes assignment statements whose right sides are arithmetic expressions 
with multiplication and addition operators and parentheses. For example, the statement 
a = b * ( a+ c )  
is generated by the leftmost derivation: 
<assign> => <id> = <expr>  

=> a = <expr>  
=> a = <id> * <expr>  
=> a = b * <expr>  
=> a = b * ( <expr> )  
=> a = b * ( <id> + <expr> )  
=> a = b * ( a + <expr> )  
=> a = b * ( a + <id> ) 
=> a = b * ( a + c ) 

 

Parse Trees 

 

One of the most attractive features of grammars is that they naturally describe the hierarchical syntactic 
structure of the sentences of the languages they define. These hierarchical structures are called parse  
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trees. For example, the parse tree in Figure 3.1 shows the structure of the assignment 
statement derived previously.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

figure 3.1 : parse tree for a = b * ( a + c ) 

 

Every internal node of a parse tree is labeled with a nonterminal symbol; every leaf is 
labeled with a terminal symbol. Every subtree of a parse tree describes one instance of an 
abstraction in the sentence. 

 

Ambiguity 

 

A grammar that generates a sentential form for which there are two or more distinct parse trees 
is said to be ambiguous. Consider the grammar shown in Example 3.3, which is a minor 
variation of the grammar shown in Example 3.2.  
EXAMPLE 3.3 An Ambiguous Grammar for Simple Assignment Statements 

<assign> →<id> = <expr> 

<id> →a | b| c 

<expr> →<expr> + <expr> 

| <expr> * <expr> 

| ( <expr> ) 

| <id>  
The grammar of Example 3.3 is ambiguous because the 
sentence a = b + c * a  
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has two distinct parse trees, as shown in Figure 3.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If a language structure has more than one parse tree, then the meaning in two specific 
examples in the following subsections.  

There are several other characteristics of a grammar that useful in determining whether 
a grammar is ambiguous.They include the following:  
(1) if the grammar generates a sentence with more than one leftmost derivation and (2) if the 

grammar generates a sentence with more than one rightmost derivation. . In many cases, an 

ambiguous grammar can be rewritten to be unambiguous to generate the desired language. 

 

Operator Precedence 

 

When an expression includes two different operators, for example, x + y * z, For example, if * 
has been assigned higher precedence than + (by the language designer), multiplication will be 
done first later addition. If we use precedence levels of operators , we cannot have ambiguity. 

 

EXAMPLE 3.4 An Unambiguous Grammar for Expressions 
<assign> <id> = <expr>  
<id> a | b | c  
<expr> <expr> + <term>  

| <term>  
<term> <term> * <factor>  

| <factor>  
<factor> ( <expr> )  

| <id> 

 
The following derivation of the sentence 

 
 
a = b + c * a 

 
 
uses the above grammar 
  

<assign> => 
  
<id> = 

  
<expr>  
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=> <id> = <expr> + <term>  
=> <id> = <expr> + <term> * <factor>  
=> <id> = <expr> + <term> * <id>  
=> <id> = <expr> + <term> * a  
=> <id> = <expr> + <factor> * a  
=> <id> = <expr> + <id> * a  
=> <id> = <expr> + c * a  
=> <id> = <term> + c * a  
=> <id> = <factor> + c * a  
=> <id> = <id> + c * a  
=> <id> = b + c * a  
=> a = b + c * a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Associativity of Operators 

 

Operator associativity can also be indicated by a grammar  
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An Unambiguous Grammar for if-then-else  
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Extended BNF (EBNF) 

 

For example, a C if-else statement can be described in EBNF as 

<if_stmt> if (<expression>) <statement> {else <statement>}  
Without the use of the brackets, the syntactic description of this statement would require the 
following two rules: 

<if_stmt> if (<expression>) <statement>  
| if (<expression>) <statement> else 

<statement> <ident_list> <identifier> {, <identifier>} 
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Attribute grammar 

 

An attribute grammar is a device used to describe more of the structure of a programming 
language than can be described with a context-free grammar. An attribute grammar is an 

extension to a context-free grammar. Attribute Grammars allows certain language rules to 
be conveniently described, such as type compatibility. Before we formally define the form 

of attribute grammars, we must clarify the concept of static semantics.  
 

Static Semantics 

 

There are some characteristics of the structure of programming languages that are difficult to 

describe with BNF, As an example of a syntax rule that is difficult to specify with BNF, 

consider type compatibility rules. As an example of a syntax rule that cannot be specified in 

BNF, consider the common rule that all variables must be declared before they are referenced. 

It has been proven that this rule cannot be specified in BNF. These problems exemplify the 

categories of language rules called static semantics rules. The static semantics of a language 

is only indirectly related to the meaning of programs during execution; Many static semantic 

rules of a language state its type constraints. Static semantics is so named because the 

analysis required to check these specifications can be done at compile time. Because of the 

problems of describing static semantics with BNF, a variety of more powerful mechanisms has 

been devised for that task. One such mechanism, attribute grammars, was designed by Knuth 

(1968) to describe both the syntax and the static semantics of programs. Attribute grammars 

are a formal approach both to describing and checking the correctness of the static semantics 

rules of a program.  
Dynamic semantics, which is the meaning of expressions, statements, and program units 

 

Basic Concepts 

 

Attribute grammars are context-free grammars to which have been added attributes, attribute 

computation functions, and predicate functions. Attributes, which are associated with 

grammar symbols (the terminal and nonterminal symbols), are similar to variables in the sense 

that they can have values assigned to them. Attribute computation functions, sometimes 

called semantic functions, are associated with grammar rules. They are used to specify how 

attribute values are computed. Predicate functions, which state the static semantic rules of the 

language, are ssociated with grammar rules. 

 

Attribute Grammars Defined 

 

An attribute grammar is a grammar with the following additional features: • Associated with 
each grammar symbol X is a set of attributes A(X). The set A(X) consists of two disjoint 

sets S(X) and I(X), called synthesized and inherited attributes, respectively. Synthesized 

attributes are used to pass semantic information up a parse tree, while inherited attributes 

pass semantic information down and across a tree.  
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Let X0 -> X1 ... Xn  be a rule. 
 

Functions of the form S(X0) = f(A(X1), ... A(Xn)) define synthesized attributes 

 

Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), for i <= j <= n, define 

inherited attributes  
. If all the attribute values in a parse tree have been computed, the tree is said to be fully 
attributed.  
Intrinsic attributes are synthesized attributes of leaf nodes whose values are determined 

outside the parse tree. For example, the type of an instance of a variable in a program could 

come from the symbol table, which is used to store variable names . The attribute grammar 
specifies these static semantic rules.  
The syntax portion of our example(3.6) attribute grammar is 

<assign> → <var> = <expr> 

<expr> → <var> + <var> 

| <var> 

<var> → a | b | c 

 

The attributes for the nonterminals in the example attribute grammar 
are described in the following paragraphs:  
• actual_type—A synthesized attribute associated with the nonterminals <var> and <expr>. It 

is used to store the actual type, int or real, of a variable or expression. In the case of a variable, 
the actual type is intrinsic. In the case of an expression, it is determined from the actual types 

of the child node or children nodes of the <expr> nonterminal.  
• expected_type—An inherited attribute associated with the nonterminal <expr>. It is used to 
store the type, either int or real, that is expected for the expression, as determined by the 

type of the variable on the left side of the assignment statement.  
The complete attribute grammar follows in Example 3.6. 

EXAMPLE 3.6 An Attribute Grammar for Simple Assignment Statements 

1. Syntax rule: <assign> → <var> = <expr> 

Semantic rule: <expr>.expected_type ← <var>.actual_type 

2. Syntax rule: <expr> → <var>[2] + <var>[3] 

Semantic rule: <expr>.actual_type ← 

if (<var>[2].actual_type = int) and  
(<var>[3].actual_type = int) 

then int 

else real 

end if 

Predicate: <expr>.actual_type == <expr>.expected_type 

3. Syntax rule: <expr> → <var> 

Semantic rule: <expr>.actual_type ← <var>.actual_type 

Predicate: <expr>.actual_type == <expr>.expected_type  
4. Syntax rule: <var> → a | b | c 

Semantic rule: <var>.actual_type ← look-up(<var>.string) 

The look-up function looks up a given variable name in the symbol table and  
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returns the variable’s type.  
A parse tree of the sentence a = a + b generated by the grammar in Example 3.6 is shown 
in Figure 3.6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As in the grammar, bracketed numbers are added after the repeated node labels in the tree so 

they can be referenced unambiguously.Consider the process of computing the attribute values 
of a parse tree, which is sometimes called decorating the parse tree. If all attributes were 

inherited, this could proceed in a completely top-down order, from the  
root to the leaves. Alternatively, it could proceed in a completely bottomup order, from the 

leaves to the root, if all the attributes were synthesized. Because our grammar has both 
synthesized and inherited attributes, the evaluation process cannot be in any single direction. 

The following is an evaluation of the attributes, in an order in which it is possible to compute 
them:  
1. <var>.actual_type ← look-up(A) (Rule 4) 

2. <expr>.expected_type ← <var>.actual_type (Rule 1)  
3. <var>[2].actual_type ← look-up(A) (Rule 4) 
<var>[3].actual_type ← look-up(B) (Rule 4)  
4. <expr>.actual_type ← either int or real (Rule 2) 

5. <expr>.expected_type == <expr>.actual_type is either TRUE or FALSE (Rule 2)  
The tree in Figure 3.7 shows the flow of attribute values in the example of Figure 3.6. Solid 
lines are used for the parse tree; dashed lines show attribute flow in the tree.  
The tree in Figure 3.8 shows the final attribute values on the nodes. In this example, a is 
defined as a real and b is defined as an int.  
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describing meaning of the expressions, statements, and program units of a programming 
language.  
Dynamic semantics are of 3 types 

 

1.Operational Semantics 

2. Axiomatic semantics 

3. Denotational Semantics  
 

Operational semantics describing the meaning of program by translating it into more easily 
understandable form  
-The idea behind operational semantics is to describe the meaning of a statement or program 
by specifying the effects of running it on a machine.The effects on the machine are viewed as 

the sequence of changes in its state, where the machine’s state is the collection of the values in 
its storage. 

 

For example, the semantics of the C for construct can be described in terms of 
simpler statements, as in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

- Evaluation of operational semantics:  
- Good if used informally  
- Extremely complex if used formally (e.g., VDL)  
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Axiomatic semantics was defined in conjunction with the development of an approach to roving 

the correctness of programs. In a proof, each statement of a program is both preceded and 

followed by a logical expression that specifies constraints on program variables. These, rather 

than the entire state of an abstract machine (as with operational semantics), are used to specify 

the meaning of the statement. Axiomatic semantics are based on mathematical logic. 

 

Assertions 

 

The logical expressions used in axiomatic semantics are called predicates, or assertions. An 

assertion immediately preceding a program statement describes the constraints on the program 

variables at that point in the program. An assertion immediately following a statement 

describes the new constraints on those variables (and possibly others) after execution of the 

statement. These assertions are called the precondition and postcondition, respectively, of the 

statement. For two adjacent statements, the postcondition of the first serves as the precondition 

of the second. Developing an axiomatic description or proof of a given program requires that 

every statement in the program has both a precondition and a postcondition. We assume all 

variables are integer type.  
As a simple example, consider the following assignment statement and postcondition: 

sum = 2 * x + 1 {sum > 1} 

 

One possible precondition for this statement is {x > 10}.  
In axiomatic semantics, the meaning of a specific statement is defined by its precondition and 
its post condition. 

 

Weakest Preconditions 

 

The weakest precondition is the least restrictive precondition that will guarantee the validity 

of the associated postcondition. For example, in the statement and postcondition given in 

Section 3.5.3.1, {x > 10}, {x > 50}, and {x > 1000} are all valid preconditions. The weakest 
of all preconditions in this case is {x > 0}. 

 

An inference rule is a method of inferring the truth of one assertion on the basis of the 
values of other assertions. The general form of an inference rule is as follows:  
S1, S2, ………. Sn 

 

S 

 

This rule states that if S1, S2, . . . , and Sn are true, then the truth of S can be inferred. The 
top part of an inference rule is called its antecedent; the bottom part is called its consequent.  
An axiom is a logical statement that is assumed to be true. Therefore, an axiom is an 
inference rule without an antecedent.  
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Assignment Statements 

 

The precondition and postcondition of an assignment statement together define precisely its 
meaning. To define the meaning of an assignment statement, given a postcondition, there must 
be a way to compute its precondition from that postcondition.  
Let x = E be a general assignment statement and Q be its postcondition. 

Then, its precondition, P, is defined by the axiom  
P = Qx->E  
which means that P is computed as Q with all instances of x replaced by E. For example, if we 

have the assignment statement and postcondition a = b / 2 - 1 {a < 10}  
 

the weakest precondition is computed by substituting b / 2 - 1 for a in the postcondition 

{a < 10}, as follows: 

b / 2 - 1 < 10 

b < 22  
Thus, the weakest precondition for the given assignment statement and postcondition 
is {b < 22}.  
The usual notation for specifying the axiomatic semantics of a given statement 

form is 

{P}S{Q} 

As another example of computing a precondition for an assignment statement, 

consider the following: 

x = 2 * y - 3 {x > 25} 

The precondition is computed as follows: 

2 * y - 3 > 25 

y > 14  
So {y > 14} is the weakest precondition for this assignment statement 
and postcondition. 

 

Sequences 

 

The weakest precondition for a sequence of statements cannot be described by an axiom, 

because the precondition depends on the particular kinds of statements in the sequence. In this 

case, the precondition can only be described with an inference rule. Let S1 and S2 be adjacent 

program statements. If S1 and S2 have the following pre- and postconditions {P1} S1 {P2} 

 

{P2} S2 {P3} 

the inference rule for such a two-statement sequence is 

 

{P1} S1 {P2}, {P2} S2 {P3} 

 

{P1} S1, S2 {P3} 

 

So, for our example, {P1} S1; S2 {P3} describes the axiomatic semantics of the sequence S1; 
S2. The inference rule states that to get the sequence precondition, the precondition of the  
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second statement is computed. This new assertion is then used as the postcondition of the first 
statement, which can then be used to compute the precondition of the first statement, which is 
also the precondition of the whole sequence. 

 

Selection 

 

We consider the inference rule for selection statements, the general form of which is 
if B then S1 else S2  
We consider only selections that include else clauses. The inference rule is  

 

{B and P} S1 {Q}, {(not B) and P} S2{Q} 

 

{P} if B then S1 else S2 {Q} 

 

This rule indicates that selection statements must be proven both when the Boolean control 

expression is true and when it is false. The first logical statement above the line represents the 

then clause; the second represents the else clause. According to the inference rule, we need a 

precondition P that can be used in the precondition of both the then and else clauses. 

 

Consider the following example of the computation of the precondition using the selection 
inference rule. The example selection statement is  
if x > 0 then 

y = y - 1  
else 

y = y + 1  
Suppose the postcondition, Q, for this selection statement is {y > 0}. We can use the axiom for 

assignment on the then clause 

y = y - 1 {y > 0}  
This produces {y - 1 > 0} or {y > 1}. It can be used as the P part of the precondition for the 

then clause. Now we apply the same axiom to the else clause y = y + 1 {y > 0} 

 

which produces the precondition {y + 1 > 0} or {y > -1}. Because 
{y > 1} => {y > -1}, the rule of consequence allows us to use {y 
> 1} for the precondition of the whole selection statement. 

 

Logical Pretest Loops 

 

Another essential construct of imperative programming languages is the logical pretest, or 

while loop. Computing the weakest precondition for a while loop is inherently more difficult 

than for a sequence, because the number of iterations cannot always be predetermined. In a 

case where the number of iterations is known, the loop can be unrolled and treated as a 

sequence. The corresponding step in the axiomatic semantics of a while loop is finding an 

assertion called a loop invariant, which is crucial to finding the weakest precondition. 

 

The inference rule for computing the precondition for a while loop is  
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{I and B} S {I} 

 

{I} while B do S end {I and (not B)} 

 

where I is the loop invariant. This seems simple, but it is not. The complexity lies in finding an 
appropriate loop invariant. 

 

The axiomatic description of a while loop is written as  
 

{P} while B do S end {Q} 

 

The loop invariant must satisfy a number of requirements to be useful. First, the weakest 

precondition for the while loop must guarantee the truth of the loop invariant. In turn, the loop 

invariant must guarantee the truth of the post condition upon loop termination. These 

constraints move us from the inference rule to the axiomatic description. During execution of 

the loop, the truth of the loop invariant must be unaffected by the evaluation of the loop 

controlling. Boolean expression and the loop body statements. Hence, the name invariant.  
Another complicating factor for while loops is the question of loop termination. A loop that 

does not terminate cannot be correct, and in fact computes nothing. If Q is the post condition 
that holds immediately after loop exit, then a precondition P for the loop is one that guarantees 

Q at loop exit and also guarantees that the loop terminates. The complete axiomatic description 
of a while construct requires all of the following to be true, in which I is the loop invariant: 

 

P => I 

{I and B} S {I} 

(I and (not B)) => Q  
the loop terminates 

 

 

As example of finding a loop invariant using the approach used in mathematical induction, 

consider the following loop statement: 

while s > 1 do s = s / 2 end {s = 1}  
As before, we use the assignment axiom to try to find a loop invariant and a precondition for 
the loop. For zero iterations, the weakest precondition is {s = 1}. For one iteration, it is wp(s = 

s / 2, {s = 1}) = {s / 2 = 1}, or {s = 2}  
For two iterations, it is 

wp(s = s / 2, {s = 2}) = {s / 2 = 2}, or {s = 4} 

For three iterations, it is 

wp(s = s / 2, {s = 4}) = {s / 2 = 4}, or {s = 8} 

From these cases, we can see clearly that the invariant is {s is a nonnegative power of 2} 
 
 

 

Denotational semantics  
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Denotational semantics most widely known formal method for describing the meaning of 
programs. In D.S, the syntactic entities are mapped into mathematical objects with concrete 
meaning  
The process of constructing a denotational semantics specification for a programming 
language requires one to define for each language entity both a mathematical object and a 
function that maps instances of that language entity onto instances of the mathematical object.  
The method is named denotational because the mathematical objects denote the meaning of 
their corresponding syntactic entities.  

 

Two Simple Examples 

 

We use a very simple language construct, character string representations of binary numbers, 
to introduce the denotational method. The syntax of such binary numbers can be described by 
the following grammar rules: 

 

<bin_num> -> '0' 

| '1' 

| <bin_num> '0' 

| <bin_num> '1' 

 

A parse tree for the example binary number, 110, is shown in Figure 3.9. Notice that we put 
apostrophes around the syntactic digits to show they are not mathematical digits. This is 

similar to the relationship between ASCII coded digits and mathematical digits. When a 

program reads a number as a string, it must be converted to a mathematical number before it 
can be used as a value in the program.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PPL Page 30 



Unit-1 

 

The semantic function, named Mbin, maps the syntactic objects, as described in the previous 

grammar rules, to the objects in N, the set of nonnegative decimal numbers. The function 

Mbin is defined as follows: 

Mbin('0') = 0 

Mbin('1') = 1  
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>) 

Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1  
The meanings, or denoted objects (which in this case are decimal numbers), can be attached to 
the nodes of the parse tree shown on the previous page, yielding the tree in Figure 3.10. This is 

syntax-directed semantics. Syntactic entities are mapped to mathematical objects with 
concrete meaning.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Grammar for describing Decimal numbers as follows 

 

<dec_num>  -> '0' | '1' | '2' |'3' | '4' | '5' | '6' | '7' | '8' |'9' 

|<dec_num> ('0' | '1' | '2' | '3' |'4' | '5' | '6' | '7' | '8' | '9')  
The denotational mappings for these syntax rules are 

Mdec('0') = 0, Mdec('1') = 1, Mdec('2') = 2, . . ., Mdec('9') = 

9 Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>) 

Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1 . . . 
 

Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9 

 

The State of a Program  
Let the state s of a program be represented as a set of ordered pairs, 
as follows:  
s = {<i1, v1>, <i2, v2>, . . . , <in, vn>} 

Each i is the name of a variable, and the associated v’s are the current values of those variables  
 

 

PPL Page 31 



Unit-1 

 
 

 

Lexical analysis 

 

A lexical analyzer is essentially a pattern matcher. A pattern matcher attempts to find a 

substring of a given string of characters that matches a given character pattern. Pattern 

matching is a traditional part of computing. Lexical analyzers extract lexemes from a given 

input string and produce the corresponding tokens. In the early days of compilers, lexical 

analyzers often processed an entire ource program file and produced a file of tokens and 

lexemes. Now, however, most lexical analyzers are subprograms that locate the next lexeme in 

the input, determine its associated token code, and return them to the caller, which is the 

syntax analyzer. So, each call to the lexical analyzer returns a single lexeme and its token. The 

only view of the input program seen by the syntax analyzer is the output of the lexical 

analyzer, one token at a time. The lexical-analysis process includes skipping comments and 

white space outside lexemes, as they are not relevant to the meaning of the program. Also,the 

lexical analyzer inserts lexemes for user-defined names into the symbol table, which is used by 

later phases of the compiler. Finally, lexical analyzers detect syntactic errors in tokens, such as 

ill-formed floating-point literals, and report such errors to the user.  
Consider the following example of an assignment statement: 
result = oldsum – value / 100;  
Following are the tokens and lexemes of this statement: 

 
Token Lexeme 
IDENT result 
ASSIGN_OP = 

IDENT oldsum 
SUB_OP - 
IDENT value 

DIV_OP / 
INT_LIT 100 
SEMICOLON ; 

 

There are three approaches to building a lexical analyzer: 

 

1. Write a formal description of the token patterns of the language using a descriptive language 
related to regular expressions.1 These descriptions are used as input to a software tool that 

automatically generates a lexical analyzer. There are many such tools available for this. The 
oldest of these, named lex, is commonly included as part of UNIX systems.  
2. Design a state transition diagram that describes the token patterns of the language and write 
a program that implements the diagram.  
3. Design a state transition diagram that describes the token patterns of the language and hand-
construct a table-driven implementation of the state diagram. 

 

 

The following is a C implementation of a lexical analyzer specified in  
the state diagram of Figure 4.1, including a main driver function for 
testing purposes:  
/* front.c - a lexical analyzer system for 

simple arithmetic expressions */ #include 

<stdio.h>  
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#include <ctype.h> 
/* Global declarations */  
/* Variables */  
int charClass; 

char lexeme [100]; 

char nextChar; 

int lexLen; 

int token; 

int nextToken; 
FILE *in_fp, *fopen();  
4.2 Lexical Analysis 173  
/* Function declarations */  
void addChar(); 

void getChar(); 

void getNonBlank(); 

int lex(); 
/* Character classes */  
#define LETTER 0  
#define DIGIT 1 
#define UNKNOWN 99  
/* Token codes */  
#define INT_LIT 10 
#define IDENT 11  
#define ASSIGN_OP 20  
#define ADD_OP 21 
#define SUB_OP 22  
#define MULT_OP 23  
#define DIV_OP 24 
#define LEFT_PAREN 25  
#define RIGHT_PAREN 26  
/******************************************************/  
/* main driver */ 
main() {  
/* Open the input data file and process its contents 

*/ if ((in_fp = fopen("front.in", "r")) == NULL) 
printf("ERROR - cannot open front.in \n");  
else { 
getChar();  
do { 
lex();  
} while (nextToken != EOF); 
} 
}  
/*****************************************************/  
/* lookup - a function to lookup operators and parentheses 

and return the token */  
int lookup(char ch) 

{ switch (ch) {  
case '(': 
addChar();  
nextToken = 

LEFT_PAREN; break;  
case ')': 
addChar();  
nextToken = RIGHT_PAREN; 

break;  
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case '+': 
addChar(); 
nextToken = ADD_OP;  
break; 

case '-': 
addChar();  
nextToken = SUB_OP;  
break; 

case '*': 
addChar(); 
nextToken = MULT_OP;  
break;  
4.2 Lexical Analysis 175 
case '/': 
addChar();  
nextToken = DIV_OP;  
break; 

default: 
addChar();  
nextToken = EOF;  
break; 
}  
return nextToken; 
}  
/*****************************************************/  
/* addChar - a function to add nextChar to lexeme */  
void addChar() { 

if (lexLen <= 98) { 
lexeme[lexLen++] = nextChar; 
lexeme[lexLen] = 0; 
}  
else 
printf("Error - lexeme is too long \n"); 
}  
/*****************************************************/  
/* getChar - a function to get the next character of 
input and determine its character class */  
void getChar() { 

if ((nextChar = getc(in_fp)) != EOF) { 

if (isalpha(nextChar)) 
charClass = LETTER;  
else if (isdigit(nextChar)) 
charClass = DIGIT;  
else charClass = UNKNOWN; 
}  
else 
charClass = EOF;  
}  
/*****************************************************/ 
/* getNonBlank - a function to call getChar until it  
returns a non-whitespace character */  
void getNonBlank() { 

while (isspace(nextChar)) 
getChar(); 
}  
176 Chapter 4 Lexical and Syntax Analysis  
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/ 
*****************************************************/  
/* lex - a simple lexical analyzer for 

arithmetic expressions */  
int lex() { 
lexLen = 0; 
getNonBlank();  
switch (charClass) { 
/* Parse identifiers */  
case LETTER: 
addChar(); 
getChar();  
while (charClass == LETTER || charClass == DIGIT) { 
addChar();  
getChar(); 
}  
nextToken = IDENT;  
break; 
/* Parse integer literals */  
case DIGIT: 
addChar();  
getChar();  
while (charClass == DIGIT) { 
addChar();  
getChar(); 
}  
nextToken = INT_LIT;  
break; 
/* Parentheses and operators */  
case UNKNOWN: 
lookup(nextChar);  
getChar();  
break; 
/* EOF */  
case EOF: 
nextToken = EOF;  
lexeme[0] = 'E';  
lexeme[1] = 'O'; 
lexeme[2] = 'F';  
lexeme[3] = 0;  
break; 
} /* End of switch */  
4.3 The Parsing Problem 177  
printf("Next token is: %d, Next lexeme is %s\n", 

nextToken, lexeme);  
return nextToken; 
} /* End of function lex */  
This code illustrates the relative simplicity of lexical analyzers. 

 

Consider the following expression: 
(sum + 47) / total  
Following is the output of the lexical analyzer of front.c when used on this 
expression: 
Next token is: 25 Next lexeme is (  
Next token is: 11 Next lexeme is sum  
Next token is: 21 Next lexeme is +  
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Next token is: 10 Next lexeme is 47 
Next token is: 26 Next lexeme is )  
Next token is: 24 Next lexeme is /  
Next token is: 11 Next lexeme is total 
Next token is: -1 Next lexeme is EOF  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Recursive Descent Parsing 

 

Consider the following EBNF description of simple arithmetic expressions: 

<expr> <term> {(+ | -) <term>}  
<term> <factor> {(* | /) <factor>}  
<factor> id | int_constant | ( <expr> )  
The recursive-descent subprogram for the first rule in the previous example 
grammar, written in C, is 
/* expr 
Parses strings in the language generated by the rule:  
<expr> -> <term> {(+ | -) <term>}  
*/  
void expr() { 
printf("Enter <expr>\n"); 
/* Parse the first term */  
term();  
/* As long as the next token is + or -, get 

the next token and parse the next term */  
while (nextToken == ADD_OP || nextToken == SUB_OP) {  
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lex(); 
term();  
}  
printf("Exit <expr>\n"); 
} /* End of function expr */ 

 
/* term  
Parses strings in the language generated by the rule: 
<term> -> <factor> {(* | /) <factor>)  
*/  
void term() { 
printf("Enter <term>\n");  
/* Parse the first factor */ 
factor();  
/* As long as the next token is * or /, get the 

next token and parse the next factor */  
while (nextToken == MULT_OP || nextToken == DIV_OP) { 
lex();  
factor();  
} 
printf("Exit <term>\n");  
} /* End of function term */ 

/* factor  
Parses strings in the language generated by the 

rule: <factor> -> id | int_constant | ( <expr )  
*/  
void factor() { 
printf("Enter <factor>\n"); 

/* Determine which RHS */  
if (nextToken == IDENT || nextToken == 
INT_LIT) /* Get the next token */  
lex();  
/* If the RHS is ( <expr>), call lex to pass over 

the left parenthesis, call expr, and check for the 

right parenthesis */  
else {  
if (nextToken == LEFT_PAREN) 
{ lex();  
expr();  
if (nextToken == RIGHT_PAREN) 
lex();  
else 
error();  
} /* End of if (nextToken == ... */  
/* It was not an id, an integer literal, or a 

left parenthesis */  
else 
error();  
} /* End of else */ 

printf("Exit <factor>\n");; 
} /* End of function factor */  
Following is the trace of the parse of the example expression (sum + 47) / 
total, using the parsing functions expr, term, and factor, and the function 

lex from Section 4.2. Note that the parse begins by calling lex and the start 

symbol routine, in this case, expr. 
Next token is: 25 Next lexeme is ( 
Enter <expr>  
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Enter <term> 
Enter <factor>  
Next token is: 11 Next lexeme is sum  
Enter <expr> 
Enter <term>  
Enter <factor>  
Next token is: 21 Next lexeme is +  
Exit <factor> 
Exit <term>  
Next token is: 10 Next lexeme is 47  
Enter <term> 
Enter <factor>  
Next token is: 26 Next lexeme is )  
Exit <factor> 
Exit <term>  
Exit <expr>  
Next token is: 24 Next lexeme is / 
Exit <factor>  
Next token is: 11 Next lexeme is total  
Enter <factor> 
Next token is: -1 Next lexeme is EOF  
Exit <factor>  
Exit <term> 
Exit <expr>  
The parse tree traced by the parser for the preceding expression is shown in 
Figure 4.2.  
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Following is a grammatical description of the Java if statement: 
<ifstmt> ->if (<boolexpr>) <statement> [else <statement>] 

The recursive-descent subprogram for this rule follows: /* 
Function ifstmt  
Parses strings in the language generated by the rule: 

<ifstmt> -> if (<boolexpr>) <statement> 

[else <statement>]  
*/ 

void ifstmt() {  
/* Be sure the first token is 'if' */ 

if (nextToken != IF_CODE) 

error(); 

else { 

/* Call lex to get to the next token */ 

lex(); 

/* Check for the left parenthesis */ 

if (nextToken != LEFT_PAREN) 

error(); 

else {  
/* Call boolexpr to parse the Boolean expression */ 
boolexpr();  
/* Check for the right parenthesis */ 

if (nextToken != RIGHT_PAREN) 

error(); 

else { 

/* Call statement to parse the then clause */ 

statement(); 

/* If an else is next, parse the else clause */ 

if (nextToken == ELSE_CODE) { 

/* Call lex to get over the else */ 

lex(); 

statement();  
} /* end of if (nextToken == ELSE_CODE ... */ } 

/* end of else of if (nextToken != RIGHT ... */ } 

/* end of else of if (nextToken != LEFT ... */  
} /* end of else of if (nextToken != IF_CODE ... 
*/ } /* end of ifstmt */  
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