
Unit-1

Evaluation of programming languages:

1. Zuse’s Plankalkül

2. Pseudocodes

3. The IBM 704 and Fortran

4. Functional Programming: LISP

5. The First Step Toward Sophistication: ALGOL 60

6. Computerizing Business Records: COBOL

7. The Beginnings of Timesharing: BASIC

8. Everything for Everybody: PL/I

9. Two Early Dynamic Languages: APL and SNOBOL

10. The Beginnings of Data Abstraction: SIMULA 67

11. Orthogonal Design: ALGOL 68

12. Some Early Descendants of the ALGOLs

13. Programming Based on Logic: Prolog

14. History’s Largest Design Effort: Ada

15. Object-Oriented Programming: Smalltalk

16. Combining Imperative and Object-Oriented Features: C++

17. An Imperative-Based Object-Oriented Language: Java

18. Scripting Languages

19. The Flagship .NET Language: C#

20. Markup/Programming Hybrid Languages

Zuse’s Plankalkül: 1945

 It is the first programming language, and is highly unusual in several respects.


 For one thing, it was never implemented.




 Furthermore, although developed in 1945, its description was not published until 1972.




 In those days only few people were familiar with the language, some of its capabilities did not
appear in other languages until 15 years after its development.



Pseudocodes: 1949
The code written using any natural language like English is called "psuedocode". These codes
help us to understand the logic.

What was wrong with using machine code?
a. Poor readability
b. Poor modifiability
c. Expression coding was tedious (boring)
d. Machine deficiencies--no indexing

-Short code: expressions were coded, left to right - Some

operations 1n => (n+2)nd power
2n => (n+2)nd root
07 => addition

PPL Page 1

Unit-1

The IBM 704 AND FORTRAN I - 1957
(FORTRAN 0 - 1954 - not implemented)
- Designed for the new IBM 704, which had index registers and floating point

hardware
- Environment of development:

 Computers were small and unreliable


 Applications were scientific




 No programming methodology or tools


 Machine efficiency was most important




- Impact of environment on design
 No need for dynamic storage



 Need good array handling and counting loops




 No string handling, decimal arithmetic, or powerful input/output
(commercial stuff)



- First implemented version of FORTRAN has following things
 Names could have up to six characters



 Post test counting loop (DO)


 Formatted i/o




 User-defined subprograms




 Three-way selection statement (arithmetic IF)


 No data typing statements




 No separate compilation


 Compiler released in April 1957, after 18 worker/ years of effort




 Programs larger than 400 lines rarely compiled correctly, mainly due to poor
reliability of the 704



 Code was very fast


 Quickly became widely used


FORTRAN II - 1958
 Independent compilation



 Fix the bugs


FORTRAN IV - 1960-62
 FORTRAN III was developed, but never widely distributed.



 Explicit type declarations




 Logical selection statement


 Subprogram names could be parameters




 ANSI standard in 1966


FORTRAN 77 - 1978
 Character string handling



 Logical loop control statement


 IF-THEN-ELSE statement




FORTRAN 90 - 1990


 Modules


PPL Page 2

Unit-1

 Dynamic arrays


 Pointers




 Recursion


 CASE statement


 Parameter type checking




FORTRAN Evaluation




- Dramatically changed forever the way computers are used

Functional Programming: LISP

 List Processing language (Designed at MIT by
McCarthy)



 AI research needed a language that:


o Process data in lists (rather than arrays)

o Symbolic computation (rather than numeric)
 Only two data types: atoms and lists




 Syntax is based on lambda calculus




 Pioneered functional programming




o No need for variables or assignment
o Control via recursion and conditional expressions

 Still the dominant language for AI




 COMMON LISP and Scheme are contemporary dialects of LISP




 ML, Miranda, and Haskell are related languages


The First Step Toward Sophistication: ALGOL 60

- Environment of development:
 FORTRAN had (barely) arrived for IBM 70x




 Many other languages were being developed, all for specific
machines



 No portable language; all were machine-dependent




 No universal language for communicating algorithms


ALGOL 58 (continued)
- ACM and GAMM met for four days for design

- Goals of the language:
 Close to mathematical notation



 Good for describing algorithms




 Must be translatable to machine code




- Language Features:
 Concept of type was formalized




 Names could have any length




 Arrays could have any number of subscripts


PPL Page 3

Unit-1

 Parameters were separated by mode (in & out)




 Subscripts were placed in brackets




 Compound statements (begin ... end)




 Semicolon as a statement separator




 Assignment operator was :=


 if had an else-if clause






- Comments:
 Not meant to be implemented, but variations of it were (MAD, JOVIAL)




 Although IBM was initially enthusiastic, all support was dropped by mid-1959


ALGOL 60 - 1960

- New Features:
 Block structure (local scope)




 Two parameter passing methods




 Subprogram recursion




 Stack-dynamic arrays




 Still no i/o and no string handling




- Successes:
 It was the standard way to publish algorithms for over 20 years




 All subsequent imperative languages are based on it




 First machine-independent language




 First language whose syntax was formally defined (BNF)


- Failure:

 No i/o and the character set made programs nonportable




 Too flexible--hard to implement




 Entrenchment of FORTRAN




 Formal syntax description




 Lack of support of IBM


Computerizing Business Records: COBOL 1960

- Environment of development:
 UNIVAC was beginning to use FLOW-MATIC




 USAF was beginning to use AIMACO




 IBM was developing COMTRAN


 Based on FLOW-MATIC


PPL Page 4

Unit-1

- FLOW-MATIC features:
o Names up to 12 characters, with embedded hyphens
o English names for arithmetic operators
o Data and code were completely separate

o Verbs were first word in every statement
- Design goals:

 Must look like simple English




 Must be easy to use, even if that means it will be less powerful




 Must broaden the base of computer users




 Must not be biased by current compiler problems




 Design committee were all from computer manufacturers and DoD branches




 Design Problems: arithmetic expressions? subscripts? Fights among manufacturers


 First macro facility in a high-level language




 Hierarchical data structures (records)




 Nested selection statements




 Long names (up to 30 characters), with hyphens




 Data Division




- Comments:
 First language required by DoD; would have failed without DoD




 Still the most widely used business applications language


The Beginnings of Timesharing: BASIC

BASIC - 1964
 Designed by Kemeny & Kurtz at Dartmouth




 Design Goals:




 Easy to learn and use for non-science students




 Must be ‖pleasant and friendly"




 Fast turnaround for homework




 Free and private access




 User time is more important than computer time




 Current popular dialects: QuickBASIC and Visual BASIC


Everything for Everybody: PL/I

It is the first large-scale attempt to design a language that could be used for broad spectrum of
application areas, such as science, Artificial Intelligence, and Business.

PPL Page 5

Unit-1

- Designed by IBM and SHARE
- Computing situation in 1964 (IBM's point of view)

1. Scientific computing
- IBM 1620 and 7090 computers
- FORTRAN
- SHARE user group

2. Business computing
 IBM 1401, 7080 computers




 COBOL




 GUIDE user group




- By 1963, however,
o Scientific users began to need more elaborate i/o, like COBOL had;

Business users began to need fl. pt. and arrays (MIS)

o It looked like many shops would begin to need two kinds of computers,
languages, and support staff--too costly

- The obvious solution:
 Build a new computer to do both kinds of applications




 Design a new language to do both kinds of applications




- PL/I contributions:
 First unit-level concurrency




 First exception handling




 Switch-selectable recursion




 First pointer data type




 First array cross sections




- Comments:
 Many new features were poorly designed




 Too large and too complex




 Was (and still is) actually used for both scientific and business
applications



Two Early Dynamic Languages: APL and SNOBOL

 Characterized by dynamic typing and dynamic storage allocation




 APL (A Programming Language) 1962




- Designed as a hardware description language (at IBM by Ken Iverson)
- Highly expressive (many operators, for both scalars and arrays of various

dimensions)
- Programs are very difficult to read

 SNOBOL(1964)


PPL Page 6

Unit-1

- Designed as a string manipulation language
(at Bell Labs by Farber, Griswold, and Polensky)

- Powerful operators for string pattern matching

The Beginnings of Data Abstraction: SIMULA 67
- Designed primarily for system simulation (in Norway by Nygaard and

Dahl)
- Based on ALGOL 60 and SIMULA I
- Primary Contribution:

- Coroutines - a kind of subprogram
- Implemented in a structure called a class

- Classes are the basis for data abstraction
- Classes are structures that include both local data and

functionality

Orthogonal Design: ALGOL 68

- From the continued development of ALGOL 60, but it is not a superset of that

language
- Design is based on the concept of orthogonality
- Contributions:

1. User-defined data structures
2. Reference types
3. Dynamic arrays (called flex arrays)

- Comments:

- Had even less usage than ALGOL 60
- Had strong influence on subsequent languages, especially Pascal, C, and Ada

Some Early Descendants of the ALGOLs

Pascal -1971
- Designed by Wirth, who quit the ALGOL 68 committee (didn't like the direction of that

work)
- Designed for teaching structured programming - Small, simple, nothing really new

- Still the most widely used language for teaching programming in colleges (but use is
shrinking)

C - 1972
- Designed for systems programming (at Bell Labs by Dennis

Richie)
- Evolved primarily from B, but also ALGOL 68
- Powerful set of operators, but poor type checking - Initially spread through UNIX

PPL Page 7

Unit-1

Perl
- It is related to ALGOL through C language

- Variable names begin with $sign

- array names begin with @sign

Programming Based on Logic: Prolog

Developed at the University of Aix-Marseille,
by Comerauer and Roussel, with some help from Kowalski at the University

of Edinburgh
- Based on formal logic
- Non-procedural

Can be summarized as being an intelligent database system that uses an inferencing process
to infer the truth of given queries.

History’s Largest Design Effort: Ada

- Huge design effort, involving hundreds of people, much money, and about eight years

- It was developed for DoD (Department of Defence, USA)
- Contributions:

1. Packages - support for data abstraction
2. Exception handling - elaborate

3. Generic program units

4. Concurrency - through the tasking model

- Comments:
- Competitive design
- Included all that was then known about software engineering and

language design
- First compilers were very difficult; the first really usable compiler came nearly

five years after the language design was completed
- Ada 95 (began in 1988)

- Support for OOP through type derivation
- Better control mechanisms for shared data (new concurrency

features) More flexible libraries

Object-Oriented Programming: Smalltalk

- Developed at Xerox PARC, initially by Alan Kay, later by Adele Goldberg
- First full implementation of an object-oriented language (data abstraction,

inheritance, and dynamic type binding)
- Pioneered the graphical user interface everyone now uses

Combining Imperative and Object-Oriented Features: C++

PPL Page 8

Unit-1

- Developed at Bell Labs by Bjarne Stroustrup in the year 1979.
- Evolved from C and SIMULA 67
- Facilities for object-oriented programming, taken partially from SIMULA 67, were added

to C
- Also has exception handling
- A large and complex language, in part because it supports both procedural and OO

programming
- Rapidly grew in popularity, along with OOP
- ANSI standard approved in November, 1997

- Eiffel - a related language that supports OOP
- (Designed by Bertrand Meyer - 1992)
- Not directly derived from any other language

Smaller and simpler than C++, but still has most of the power

An Imperative-Based Object-Oriented Language: Java

- Developed at Sun in the early 1990s

- Based on C++
- Significantly simplified
- Supports only OOP
- Has references, but not pointers
- Includes support for applets and a form of concurrency

Scripting Languages: Java Script, PHP, Python and Ruby

- These are used in web applications
- Java Script is a HTML Resident client side scripting language
- PHP is an HTML Resident server side scripting language
- Python and Ruby are used for Common Gateway Interface programming

The Flagship .NET Language: C#

- C#, along with new development platform .NET was , developed by Microsoft in the
year 2000

- It is based on C++ and Java
- The purpose of C# is to provide a language for component based software development
- Components from different languages such as Visual Basics .NET, Managed C++, J#

.NET, and Jscript can be easily combined to form systems.

Markup/Programming Hybrid Languages

-XSLT –eXtensible Style Sheet language used for for transforming the markup languages
- JSP –Java Server pages are used for Server Side Programming

PPL Page 9

Unit-1

Fig: Genealogy of High Level Programming Languages

PPL Page 10

Unit-1

The General Problem of Describing Syntax

A language, whether natural (such as English) or artificial (such as Java), is a set of strings of

characters from some alphabet. The strings of a language are called sentences or statements.

The syntax rules of a language specify which strings of characters from the language’s

alphabet are in the language. A lexeme is the lowest level syntactic unit of a language (e.g., *,

sum, begin). A token is a category of lexemes (e.g., identifier). The lexemes of a programming

language include its numeric literals, operators, and special words, among others. Program is

strings of lexemes rather than of characters. Lexemes are partitioned into groups—for

example, the names of variables, methods, classes, and so forth in a programming language

form a group called identifiers. Each lexeme group is represented by a name, or token. For

example, an identifier is a token that can have lexemes, or instances, such as sum and total. In

some cases, a token has only a single possible lexeme. For example, the token for the

arithmetic operator symbol + has just one possible lexeme. Consider the following Java

statement:

index = 2 * count + 17;

The lexemes and tokens of this statement are

Lexemes Tokens

index identifier

= equal_sign
2 int_literal
* mult_op
count identifier

+plus_op
17 int_literal
;semicolon

Language Recognizers

In general, languages can be formally defined in two distinct ways: by recognition and by

generation. Suppose we have a language L that uses an alphabet of characters. To define L

formally using the recognition method, we would need to construct a mechanism R, called a

recognition device, capable of reading strings of characters from the alphabet. The syntax

analysis part of a compiler is a recognizer for the language the compiler translates. In this role,

it determine whether given programs are in the language. In effect then, the syntax analyzer

determines whether the given programs are syntactically correct. The structure of syntax

analyzers, also known as parsers,

Language Generators
A language generator is a device that can be used to generate the sentences of a language. It is
often possible to determine whether the syntax of a particular statement is correct by

comparing it with the structure of the generator. There is a close connection between formal
generation and recognition devices

PPL Page 11

Unit-1

Formal Methods of Describing Syntax

1. Backus-Naur Form

2. Context-Free Grammars

Backus-Naur Form

In the mid 1950s, two men, Noam Chomsky and John Backus, in unrelated research efforts,

developed the same syntax description formalism, which became the most widely used method

for describing programming language syntax. The new notation of Backus was later modified

slightly by Peter Naur for the description of ALGOL 60 (Naur, 1960). This revised method of

syntax description became known as Backus-Naur Form, or simply BNF. BNF is a natural

notation for describing syntax. BNF is nearly identical to Chomsky’s generative devices for

context-free languages, called context-free grammars. we refer context-free grammars

simply as grammars. Furthermore, the terms BNF and grammar are used interchangeably.

Context-Free Grammars

In the mid-1950s, Chomsky described four classes of generative devices or grammars that
define four classes of language. Two of these grammar classes, named context-free and

regular, useful for describing the syntax of programming languages. The forms of the tokens
of programming languages can be described by regular grammars. The syntax of whole

programming languages, can be described by context-free grammars.

Fundamentals

A metalanguage is a language that is used to describe another language. BNF is a meta

language for programming languages. BNF uses abstractions for syntactic structures. A simple

Java assignment statement, for example, might be represented by the abstraction <assign>

(pointed brackets are often used to delimit names of abstractions). The actual definition of

<assign> can be given by

<assign> -> <var> = <expression>
The text on the left side of the arrow, which is called the left-hand side (LHS), The text to the

right of the arrow is the definition of the LHS. It is called the right-hand side (RHS) and

consists of some mixture of tokens, lexemes. Altogether, the definition is called a rule, or

production.This particular rule specifies that the abstraction <assign> is defined as an

instance of the abstraction <var>, followed by the lexeme =, followed by an instance of the

abstraction <expression>. One example sentence whose syntactic structure is described by the

rule is
total = subtotal1 + subtotal2
The abstractions in a BNF description, or grammar, are often called nonterminal
symbols, or simply nonterminals, and the lexemes and tokens of the
rules are called terminal symbols, or simply terminals. A BNF description,

PPL Page 12

Unit-1

or grammar, is a collection of rules.
Nonterminal symbols can have two or more distinct definitions, representing two or more

possible syntactic forms in the language. Multiple definitions can be written as a single rule,

with the different definitions separated by the symbol |, meaning logical OR. For example, a

Java if statement can be described with the rules <if_stmt> →if (<logic_expr>) <stmt>

<if_stmt> →if (<logic_expr>) <stmt> else <stmt>
or with the rule
<if_stmt> →if (<logic_expr>) <stmt>
| if (<logic_expr>) <stmt> else <stmt>

In these rules, <stmt> represents either a single statement or a compound statement.

Describing Lists

Variable-length lists in mathematics are often written using an ellipsis (. . .); BNF does not

include the ellipsis, so an alternative method is required for describing lists of syntactic
elements in programming languages (for example, a list of identifiers appearing on a data

declaration statement). For BNF, the alternative is recursion. A rule is recursive if its
LHS appears in its RHS. The following rules illustrate how recursion is used to describe lists:
<ident_list> identifier

| identifier, <ident_list>

This defines <ident_list> as either a single token (identifier) or an identifier
followed by a comma and another instance of <ident_list>. Recursion is used
to describe lists in many of the example grammas.

Grammars and Derivations

A grammar is a generative device for defining languages. The sentences of the language are

generated through a sequence of applications of the rules, beginning with a special

nonterminal of the grammar called the start symbol. This sequence of rule applications is

called a derivation. In a grammar for a complete programming language, the start symbol

represents a complete program and is often named <program>. The simple grammar is

following.

EXAMPLE : A Grammar for a Small Language

<program> ->begin <stmt_list> end

<stmt_list> -><stmt>
| <stmt> ; <stmt_list>

<stmt> <var> = <expression>
<var> a | b | c
<expression> <var> + <var>
 | <var> – <var>

 | <var>

PPL Page 13

Unit-1

The language described by the grammar above has only one statement form: assignment. A program
consists of the special word begin, followed by a list of statements separated by semicolons, followed
by the special word end. An expression is either a single variable or two variables separated by either a
+ or - operator. The only variable names in this language are a, b, and c.
Derivation: Generating sentences of grammar
A derivation of a program in this language
follows: <program> => begin <stmt_list> end

=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list>

end => begin a = <expression> ; <stmt_list>

end => begin a = <var> + <var> ; <stmt_list>

end => begin a = b + <var> ; <stmt_list> end
=> begin a = b + c ; <stmt_list> end
=> begin a = b + c ; <stmt> end
=> begin a = b + c ; <var> = <expression> end

=> begin a = b + c ; b = <expression> end
=> begin a = b + c ; b = <var> end

=> begin a = b + c ; b = c end
This derivation, like all derivations, begins with the start symbol, in this case <program>. The

symbol => is read ―derives.‖ Each successive string in the sequence is derived from the
previous string by replacing one of the nonterminals with one of that nonterminal’s definitions.

Each of the strings in the derivation, including <program>, is called a sentential form.
In this derivation, the leftmost nonterminal is replaced at each step are called leftmost

derivations. If the rightmost nonterminal is replaced at each step, it is called right most

derivation

EXAMPLE 3.2: A Grammar for Simple Assignment Statements

<assign> <id> = <expr>
<id> a | b | c

<expr> <id> + <expr>
|<id> * <expr>
| (<expr>)
| <id>

The above grammar describes assignment statements whose right sides are arithmetic expressions
with multiplication and addition operators and parentheses. For example, the statement
a = b * (a+ c)
is generated by the leftmost derivation:
<assign> => <id> = <expr>

=> a = <expr>
=> a = <id> * <expr>
=> a = b * <expr>
=> a = b * (<expr>)
=> a = b * (<id> + <expr>)
=> a = b * (a + <expr>)
=> a = b * (a + <id>)
=> a = b * (a + c)

Parse Trees

One of the most attractive features of grammars is that they naturally describe the hierarchical syntactic
structure of the sentences of the languages they define. These hierarchical structures are called parse

PPL Page 14

Unit-1

trees. For example, the parse tree in Figure 3.1 shows the structure of the assignment
statement derived previously.

figure 3.1 : parse tree for a = b * (a + c)

Every internal node of a parse tree is labeled with a nonterminal symbol; every leaf is
labeled with a terminal symbol. Every subtree of a parse tree describes one instance of an
abstraction in the sentence.

Ambiguity

A grammar that generates a sentential form for which there are two or more distinct parse trees
is said to be ambiguous. Consider the grammar shown in Example 3.3, which is a minor
variation of the grammar shown in Example 3.2.
EXAMPLE 3.3 An Ambiguous Grammar for Simple Assignment Statements

<assign> →<id> = <expr>

<id> →a | b| c

<expr> →<expr> + <expr>

| <expr> * <expr>

| (<expr>)

| <id>
The grammar of Example 3.3 is ambiguous because the
sentence a = b + c * a

PPL Page 15

Unit-1

has two distinct parse trees, as shown in Figure 3.2.

If a language structure has more than one parse tree, then the meaning in two specific
examples in the following subsections.

There are several other characteristics of a grammar that useful in determining whether
a grammar is ambiguous.They include the following:
(1) if the grammar generates a sentence with more than one leftmost derivation and (2) if the

grammar generates a sentence with more than one rightmost derivation. . In many cases, an

ambiguous grammar can be rewritten to be unambiguous to generate the desired language.

Operator Precedence

When an expression includes two different operators, for example, x + y * z, For example, if *
has been assigned higher precedence than + (by the language designer), multiplication will be
done first later addition. If we use precedence levels of operators , we cannot have ambiguity.

EXAMPLE 3.4 An Unambiguous Grammar for Expressions
<assign> <id> = <expr>
<id> a | b | c
<expr> <expr> + <term>

| <term>
<term> <term> * <factor>

| <factor>
<factor> (<expr>)

| <id>

The following derivation of the sentence

a = b + c * a

uses the above grammar

<assign> =>

<id> =

<expr>

PPL

Page 16

Unit-1

=> <id> = <expr> + <term>
=> <id> = <expr> + <term> * <factor>
=> <id> = <expr> + <term> * <id>
=> <id> = <expr> + <term> * a
=> <id> = <expr> + <factor> * a
=> <id> = <expr> + <id> * a
=> <id> = <expr> + c * a
=> <id> = <term> + c * a
=> <id> = <factor> + c * a
=> <id> = <id> + c * a
=> <id> = b + c * a
=> a = b + c * a

Associativity of Operators

Operator associativity can also be indicated by a grammar

PPL Page 17

Unit-1

An Unambiguous Grammar for if-then-else

PPL Page 18

Unit-1

PPL Page 19

Unit-1

Extended BNF (EBNF)

For example, a C if-else statement can be described in EBNF as

<if_stmt> if (<expression>) <statement> {else <statement>}
Without the use of the brackets, the syntactic description of this statement would require the
following two rules:

<if_stmt> if (<expression>) <statement>
| if (<expression>) <statement> else

<statement> <ident_list> <identifier> {, <identifier>}

PPL Page 20

Unit-1

Attribute grammar

An attribute grammar is a device used to describe more of the structure of a programming
language than can be described with a context-free grammar. An attribute grammar is an

extension to a context-free grammar. Attribute Grammars allows certain language rules to
be conveniently described, such as type compatibility. Before we formally define the form

of attribute grammars, we must clarify the concept of static semantics.

Static Semantics

There are some characteristics of the structure of programming languages that are difficult to

describe with BNF, As an example of a syntax rule that is difficult to specify with BNF,

consider type compatibility rules. As an example of a syntax rule that cannot be specified in

BNF, consider the common rule that all variables must be declared before they are referenced.

It has been proven that this rule cannot be specified in BNF. These problems exemplify the

categories of language rules called static semantics rules. The static semantics of a language

is only indirectly related to the meaning of programs during execution; Many static semantic

rules of a language state its type constraints. Static semantics is so named because the

analysis required to check these specifications can be done at compile time. Because of the

problems of describing static semantics with BNF, a variety of more powerful mechanisms has

been devised for that task. One such mechanism, attribute grammars, was designed by Knuth

(1968) to describe both the syntax and the static semantics of programs. Attribute grammars

are a formal approach both to describing and checking the correctness of the static semantics

rules of a program.
Dynamic semantics, which is the meaning of expressions, statements, and program units

Basic Concepts

Attribute grammars are context-free grammars to which have been added attributes, attribute

computation functions, and predicate functions. Attributes, which are associated with

grammar symbols (the terminal and nonterminal symbols), are similar to variables in the sense

that they can have values assigned to them. Attribute computation functions, sometimes

called semantic functions, are associated with grammar rules. They are used to specify how

attribute values are computed. Predicate functions, which state the static semantic rules of the

language, are ssociated with grammar rules.

Attribute Grammars Defined

An attribute grammar is a grammar with the following additional features: • Associated with
each grammar symbol X is a set of attributes A(X). The set A(X) consists of two disjoint

sets S(X) and I(X), called synthesized and inherited attributes, respectively. Synthesized

attributes are used to pass semantic information up a parse tree, while inherited attributes

pass semantic information down and across a tree.

PPL Page 21

Unit-1

Let X0 -> X1 ... Xn be a rule.

Functions of the form S(X0) = f(A(X1), ... A(Xn)) define synthesized attributes

Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), for i <= j <= n, define

inherited attributes
. If all the attribute values in a parse tree have been computed, the tree is said to be fully
attributed.
Intrinsic attributes are synthesized attributes of leaf nodes whose values are determined

outside the parse tree. For example, the type of an instance of a variable in a program could

come from the symbol table, which is used to store variable names . The attribute grammar
specifies these static semantic rules.
The syntax portion of our example(3.6) attribute grammar is

<assign> → <var> = <expr>

<expr> → <var> + <var>

| <var>

<var> → a | b | c

The attributes for the nonterminals in the example attribute grammar
are described in the following paragraphs:
• actual_type—A synthesized attribute associated with the nonterminals <var> and <expr>. It

is used to store the actual type, int or real, of a variable or expression. In the case of a variable,
the actual type is intrinsic. In the case of an expression, it is determined from the actual types

of the child node or children nodes of the <expr> nonterminal.
• expected_type—An inherited attribute associated with the nonterminal <expr>. It is used to
store the type, either int or real, that is expected for the expression, as determined by the

type of the variable on the left side of the assignment statement.
The complete attribute grammar follows in Example 3.6.

EXAMPLE 3.6 An Attribute Grammar for Simple Assignment Statements

1. Syntax rule: <assign> → <var> = <expr>

Semantic rule: <expr>.expected_type ← <var>.actual_type

2. Syntax rule: <expr> → <var>[2] + <var>[3]

Semantic rule: <expr>.actual_type ←

if (<var>[2].actual_type = int) and
(<var>[3].actual_type = int)

then int

else real

end if

Predicate: <expr>.actual_type == <expr>.expected_type

3. Syntax rule: <expr> → <var>

Semantic rule: <expr>.actual_type ← <var>.actual_type

Predicate: <expr>.actual_type == <expr>.expected_type
4. Syntax rule: <var> → a | b | c

Semantic rule: <var>.actual_type ← look-up(<var>.string)

The look-up function looks up a given variable name in the symbol table and

PPL Page 22

Unit-1

returns the variable’s type.
A parse tree of the sentence a = a + b generated by the grammar in Example 3.6 is shown
in Figure 3.6.

As in the grammar, bracketed numbers are added after the repeated node labels in the tree so

they can be referenced unambiguously.Consider the process of computing the attribute values
of a parse tree, which is sometimes called decorating the parse tree. If all attributes were

inherited, this could proceed in a completely top-down order, from the
root to the leaves. Alternatively, it could proceed in a completely bottomup order, from the

leaves to the root, if all the attributes were synthesized. Because our grammar has both
synthesized and inherited attributes, the evaluation process cannot be in any single direction.

The following is an evaluation of the attributes, in an order in which it is possible to compute
them:
1. <var>.actual_type ← look-up(A) (Rule 4)

2. <expr>.expected_type ← <var>.actual_type (Rule 1)
3. <var>[2].actual_type ← look-up(A) (Rule 4)
<var>[3].actual_type ← look-up(B) (Rule 4)
4. <expr>.actual_type ← either int or real (Rule 2)

5. <expr>.expected_type == <expr>.actual_type is either TRUE or FALSE (Rule 2)
The tree in Figure 3.7 shows the flow of attribute values in the example of Figure 3.6. Solid
lines are used for the parse tree; dashed lines show attribute flow in the tree.
The tree in Figure 3.8 shows the final attribute values on the nodes. In this example, a is
defined as a real and b is defined as an int.

PPL Page 23

Dynamic Semantics

describing meaning of the expressions, statements, and program units of a programming
language.
Dynamic semantics are of 3 types

1.Operational Semantics

2. Axiomatic semantics

3. Denotational Semantics

Operational semantics describing the meaning of program by translating it into more easily
understandable form
-The idea behind operational semantics is to describe the meaning of a statement or program
by specifying the effects of running it on a machine.The effects on the machine are viewed as

the sequence of changes in its state, where the machine’s state is the collection of the values in
its storage.

For example, the semantics of the C for construct can be described in terms of
simpler statements, as in

- Evaluation of operational semantics:
- Good if used informally
- Extremely complex if used formally (e.g., VDL)

PPL Page 25

Unit-1

Axiomatic semantics was defined in conjunction with the development of an approach to roving

the correctness of programs. In a proof, each statement of a program is both preceded and

followed by a logical expression that specifies constraints on program variables. These, rather

than the entire state of an abstract machine (as with operational semantics), are used to specify

the meaning of the statement. Axiomatic semantics are based on mathematical logic.

Assertions

The logical expressions used in axiomatic semantics are called predicates, or assertions. An

assertion immediately preceding a program statement describes the constraints on the program

variables at that point in the program. An assertion immediately following a statement

describes the new constraints on those variables (and possibly others) after execution of the

statement. These assertions are called the precondition and postcondition, respectively, of the

statement. For two adjacent statements, the postcondition of the first serves as the precondition

of the second. Developing an axiomatic description or proof of a given program requires that

every statement in the program has both a precondition and a postcondition. We assume all

variables are integer type.
As a simple example, consider the following assignment statement and postcondition:

sum = 2 * x + 1 {sum > 1}

One possible precondition for this statement is {x > 10}.
In axiomatic semantics, the meaning of a specific statement is defined by its precondition and
its post condition.

Weakest Preconditions

The weakest precondition is the least restrictive precondition that will guarantee the validity

of the associated postcondition. For example, in the statement and postcondition given in

Section 3.5.3.1, {x > 10}, {x > 50}, and {x > 1000} are all valid preconditions. The weakest
of all preconditions in this case is {x > 0}.

An inference rule is a method of inferring the truth of one assertion on the basis of the
values of other assertions. The general form of an inference rule is as follows:
S1, S2, ………. Sn

S

This rule states that if S1, S2, . . . , and Sn are true, then the truth of S can be inferred. The
top part of an inference rule is called its antecedent; the bottom part is called its consequent.
An axiom is a logical statement that is assumed to be true. Therefore, an axiom is an
inference rule without an antecedent.

PPL Page 26

Unit-1

Assignment Statements

The precondition and postcondition of an assignment statement together define precisely its
meaning. To define the meaning of an assignment statement, given a postcondition, there must
be a way to compute its precondition from that postcondition.
Let x = E be a general assignment statement and Q be its postcondition.

Then, its precondition, P, is defined by the axiom
P = Qx->E
which means that P is computed as Q with all instances of x replaced by E. For example, if we

have the assignment statement and postcondition a = b / 2 - 1 {a < 10}

the weakest precondition is computed by substituting b / 2 - 1 for a in the postcondition

{a < 10}, as follows:

b / 2 - 1 < 10

b < 22
Thus, the weakest precondition for the given assignment statement and postcondition
is {b < 22}.
The usual notation for specifying the axiomatic semantics of a given statement

form is

{P}S{Q}

As another example of computing a precondition for an assignment statement,

consider the following:

x = 2 * y - 3 {x > 25}

The precondition is computed as follows:

2 * y - 3 > 25

y > 14
So {y > 14} is the weakest precondition for this assignment statement
and postcondition.

Sequences

The weakest precondition for a sequence of statements cannot be described by an axiom,

because the precondition depends on the particular kinds of statements in the sequence. In this

case, the precondition can only be described with an inference rule. Let S1 and S2 be adjacent

program statements. If S1 and S2 have the following pre- and postconditions {P1} S1 {P2}

{P2} S2 {P3}

the inference rule for such a two-statement sequence is

{P1} S1 {P2}, {P2} S2 {P3}

{P1} S1, S2 {P3}

So, for our example, {P1} S1; S2 {P3} describes the axiomatic semantics of the sequence S1;
S2. The inference rule states that to get the sequence precondition, the precondition of the

PPL Page 27

Unit-1

second statement is computed. This new assertion is then used as the postcondition of the first
statement, which can then be used to compute the precondition of the first statement, which is
also the precondition of the whole sequence.

Selection

We consider the inference rule for selection statements, the general form of which is
if B then S1 else S2
We consider only selections that include else clauses. The inference rule is

{B and P} S1 {Q}, {(not B) and P} S2{Q}

{P} if B then S1 else S2 {Q}

This rule indicates that selection statements must be proven both when the Boolean control

expression is true and when it is false. The first logical statement above the line represents the

then clause; the second represents the else clause. According to the inference rule, we need a

precondition P that can be used in the precondition of both the then and else clauses.

Consider the following example of the computation of the precondition using the selection
inference rule. The example selection statement is
if x > 0 then

y = y - 1
else

y = y + 1
Suppose the postcondition, Q, for this selection statement is {y > 0}. We can use the axiom for

assignment on the then clause

y = y - 1 {y > 0}
This produces {y - 1 > 0} or {y > 1}. It can be used as the P part of the precondition for the

then clause. Now we apply the same axiom to the else clause y = y + 1 {y > 0}

which produces the precondition {y + 1 > 0} or {y > -1}. Because
{y > 1} => {y > -1}, the rule of consequence allows us to use {y
> 1} for the precondition of the whole selection statement.

Logical Pretest Loops

Another essential construct of imperative programming languages is the logical pretest, or

while loop. Computing the weakest precondition for a while loop is inherently more difficult

than for a sequence, because the number of iterations cannot always be predetermined. In a

case where the number of iterations is known, the loop can be unrolled and treated as a

sequence. The corresponding step in the axiomatic semantics of a while loop is finding an

assertion called a loop invariant, which is crucial to finding the weakest precondition.

The inference rule for computing the precondition for a while loop is

PPL Page 28

Unit-1

{I and B} S {I}

{I} while B do S end {I and (not B)}

where I is the loop invariant. This seems simple, but it is not. The complexity lies in finding an
appropriate loop invariant.

The axiomatic description of a while loop is written as

{P} while B do S end {Q}

The loop invariant must satisfy a number of requirements to be useful. First, the weakest

precondition for the while loop must guarantee the truth of the loop invariant. In turn, the loop

invariant must guarantee the truth of the post condition upon loop termination. These

constraints move us from the inference rule to the axiomatic description. During execution of

the loop, the truth of the loop invariant must be unaffected by the evaluation of the loop

controlling. Boolean expression and the loop body statements. Hence, the name invariant.
Another complicating factor for while loops is the question of loop termination. A loop that

does not terminate cannot be correct, and in fact computes nothing. If Q is the post condition
that holds immediately after loop exit, then a precondition P for the loop is one that guarantees

Q at loop exit and also guarantees that the loop terminates. The complete axiomatic description
of a while construct requires all of the following to be true, in which I is the loop invariant:

P => I

{I and B} S {I}

(I and (not B)) => Q
the loop terminates

As example of finding a loop invariant using the approach used in mathematical induction,

consider the following loop statement:

while s > 1 do s = s / 2 end {s = 1}
As before, we use the assignment axiom to try to find a loop invariant and a precondition for
the loop. For zero iterations, the weakest precondition is {s = 1}. For one iteration, it is wp(s =

s / 2, {s = 1}) = {s / 2 = 1}, or {s = 2}
For two iterations, it is

wp(s = s / 2, {s = 2}) = {s / 2 = 2}, or {s = 4}

For three iterations, it is

wp(s = s / 2, {s = 4}) = {s / 2 = 4}, or {s = 8}

From these cases, we can see clearly that the invariant is {s is a nonnegative power of 2}

Denotational semantics

PPL Page 29

Unit-1

Denotational semantics most widely known formal method for describing the meaning of
programs. In D.S, the syntactic entities are mapped into mathematical objects with concrete
meaning
The process of constructing a denotational semantics specification for a programming
language requires one to define for each language entity both a mathematical object and a
function that maps instances of that language entity onto instances of the mathematical object.
The method is named denotational because the mathematical objects denote the meaning of
their corresponding syntactic entities.

Two Simple Examples

We use a very simple language construct, character string representations of binary numbers,
to introduce the denotational method. The syntax of such binary numbers can be described by
the following grammar rules:

<bin_num> -> '0'

| '1'

| <bin_num> '0'

| <bin_num> '1'

A parse tree for the example binary number, 110, is shown in Figure 3.9. Notice that we put
apostrophes around the syntactic digits to show they are not mathematical digits. This is

similar to the relationship between ASCII coded digits and mathematical digits. When a

program reads a number as a string, it must be converted to a mathematical number before it
can be used as a value in the program.

PPL Page 30

Unit-1

The semantic function, named Mbin, maps the syntactic objects, as described in the previous

grammar rules, to the objects in N, the set of nonnegative decimal numbers. The function

Mbin is defined as follows:

Mbin('0') = 0

Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)

Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1
The meanings, or denoted objects (which in this case are decimal numbers), can be attached to
the nodes of the parse tree shown on the previous page, yielding the tree in Figure 3.10. This is

syntax-directed semantics. Syntactic entities are mapped to mathematical objects with
concrete meaning.

Grammar for describing Decimal numbers as follows

<dec_num> -> '0' | '1' | '2' |'3' | '4' | '5' | '6' | '7' | '8' |'9'

|<dec_num> ('0' | '1' | '2' | '3' |'4' | '5' | '6' | '7' | '8' | '9')
The denotational mappings for these syntax rules are

Mdec('0') = 0, Mdec('1') = 1, Mdec('2') = 2, . . ., Mdec('9') =

9 Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)

Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1 . . .

Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9

The State of a Program
Let the state s of a program be represented as a set of ordered pairs,
as follows:
s = {<i1, v1>, <i2, v2>, . . . , <in, vn>}

Each i is the name of a variable, and the associated v’s are the current values of those variables

PPL Page 31

Unit-1

Lexical analysis

A lexical analyzer is essentially a pattern matcher. A pattern matcher attempts to find a

substring of a given string of characters that matches a given character pattern. Pattern

matching is a traditional part of computing. Lexical analyzers extract lexemes from a given

input string and produce the corresponding tokens. In the early days of compilers, lexical

analyzers often processed an entire ource program file and produced a file of tokens and

lexemes. Now, however, most lexical analyzers are subprograms that locate the next lexeme in

the input, determine its associated token code, and return them to the caller, which is the

syntax analyzer. So, each call to the lexical analyzer returns a single lexeme and its token. The

only view of the input program seen by the syntax analyzer is the output of the lexical

analyzer, one token at a time. The lexical-analysis process includes skipping comments and

white space outside lexemes, as they are not relevant to the meaning of the program. Also,the

lexical analyzer inserts lexemes for user-defined names into the symbol table, which is used by

later phases of the compiler. Finally, lexical analyzers detect syntactic errors in tokens, such as

ill-formed floating-point literals, and report such errors to the user.
Consider the following example of an assignment statement:
result = oldsum – value / 100;
Following are the tokens and lexemes of this statement:

Token Lexeme
IDENT result
ASSIGN_OP =

IDENT oldsum
SUB_OP -
IDENT value

DIV_OP /
INT_LIT 100
SEMICOLON ;

There are three approaches to building a lexical analyzer:

1. Write a formal description of the token patterns of the language using a descriptive language
related to regular expressions.1 These descriptions are used as input to a software tool that

automatically generates a lexical analyzer. There are many such tools available for this. The
oldest of these, named lex, is commonly included as part of UNIX systems.
2. Design a state transition diagram that describes the token patterns of the language and write
a program that implements the diagram.
3. Design a state transition diagram that describes the token patterns of the language and hand-
construct a table-driven implementation of the state diagram.

The following is a C implementation of a lexical analyzer specified in
the state diagram of Figure 4.1, including a main driver function for
testing purposes:
/* front.c - a lexical analyzer system for

simple arithmetic expressions */ #include

<stdio.h>

PPL Page 32

Unit-1

#include <ctype.h>
/* Global declarations */
/* Variables */
int charClass;

char lexeme [100];

char nextChar;

int lexLen;

int token;

int nextToken;
FILE *in_fp, *fopen();
4.2 Lexical Analysis 173
/* Function declarations */
void addChar();

void getChar();

void getNonBlank();

int lex();
/* Character classes */
#define LETTER 0
#define DIGIT 1
#define UNKNOWN 99
/* Token codes */
#define INT_LIT 10
#define IDENT 11
#define ASSIGN_OP 20
#define ADD_OP 21
#define SUB_OP 22
#define MULT_OP 23
#define DIV_OP 24
#define LEFT_PAREN 25
#define RIGHT_PAREN 26
/**/
/* main driver */
main() {
/* Open the input data file and process its contents

*/ if ((in_fp = fopen("front.in", "r")) == NULL)
printf("ERROR - cannot open front.in \n");
else {
getChar();
do {
lex();
} while (nextToken != EOF);
}
}
/***/
/* lookup - a function to lookup operators and parentheses

and return the token */
int lookup(char ch)

{ switch (ch) {
case '(':
addChar();
nextToken =

LEFT_PAREN; break;
case ')':
addChar();
nextToken = RIGHT_PAREN;

break;

PPL Page 33

Unit-1

case '+':
addChar();
nextToken = ADD_OP;
break;

case '-':
addChar();
nextToken = SUB_OP;
break;

case '*':
addChar();
nextToken = MULT_OP;
break;
4.2 Lexical Analysis 175
case '/':
addChar();
nextToken = DIV_OP;
break;

default:
addChar();
nextToken = EOF;
break;
}
return nextToken;
}
/***/
/* addChar - a function to add nextChar to lexeme */
void addChar() {

if (lexLen <= 98) {
lexeme[lexLen++] = nextChar;
lexeme[lexLen] = 0;
}
else
printf("Error - lexeme is too long \n");
}
/***/
/* getChar - a function to get the next character of
input and determine its character class */
void getChar() {

if ((nextChar = getc(in_fp)) != EOF) {

if (isalpha(nextChar))
charClass = LETTER;
else if (isdigit(nextChar))
charClass = DIGIT;
else charClass = UNKNOWN;
}
else
charClass = EOF;
}
/***/
/* getNonBlank - a function to call getChar until it
returns a non-whitespace character */
void getNonBlank() {

while (isspace(nextChar))
getChar();
}
176 Chapter 4 Lexical and Syntax Analysis

PPL Page 34

Unit-1

/
***/
/* lex - a simple lexical analyzer for

arithmetic expressions */
int lex() {
lexLen = 0;
getNonBlank();
switch (charClass) {
/* Parse identifiers */
case LETTER:
addChar();
getChar();
while (charClass == LETTER || charClass == DIGIT) {
addChar();
getChar();
}
nextToken = IDENT;
break;
/* Parse integer literals */
case DIGIT:
addChar();
getChar();
while (charClass == DIGIT) {
addChar();
getChar();
}
nextToken = INT_LIT;
break;
/* Parentheses and operators */
case UNKNOWN:
lookup(nextChar);
getChar();
break;
/* EOF */
case EOF:
nextToken = EOF;
lexeme[0] = 'E';
lexeme[1] = 'O';
lexeme[2] = 'F';
lexeme[3] = 0;
break;
} /* End of switch */
4.3 The Parsing Problem 177
printf("Next token is: %d, Next lexeme is %s\n",

nextToken, lexeme);
return nextToken;
} /* End of function lex */
This code illustrates the relative simplicity of lexical analyzers.

Consider the following expression:
(sum + 47) / total
Following is the output of the lexical analyzer of front.c when used on this
expression:
Next token is: 25 Next lexeme is (
Next token is: 11 Next lexeme is sum
Next token is: 21 Next lexeme is +

PPL Page 35

Unit-1

Next token is: 10 Next lexeme is 47
Next token is: 26 Next lexeme is)
Next token is: 24 Next lexeme is /
Next token is: 11 Next lexeme is total
Next token is: -1 Next lexeme is EOF

Recursive Descent Parsing

Consider the following EBNF description of simple arithmetic expressions:

<expr> <term> {(+ | -) <term>}
<term> <factor> {(* | /) <factor>}
<factor> id | int_constant | (<expr>)
The recursive-descent subprogram for the first rule in the previous example
grammar, written in C, is
/* expr
Parses strings in the language generated by the rule:
<expr> -> <term> {(+ | -) <term>}
*/
void expr() {
printf("Enter <expr>\n");
/* Parse the first term */
term();
/* As long as the next token is + or -, get

the next token and parse the next term */
while (nextToken == ADD_OP || nextToken == SUB_OP) {

PPL Page 36

Unit-1

lex();
term();
}
printf("Exit <expr>\n");
} /* End of function expr */

/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>)
*/
void term() {
printf("Enter <term>\n");
/* Parse the first factor */
factor();
/* As long as the next token is * or /, get the

next token and parse the next factor */
while (nextToken == MULT_OP || nextToken == DIV_OP) {
lex();
factor();
}
printf("Exit <term>\n");
} /* End of function term */

/* factor
Parses strings in the language generated by the

rule: <factor> -> id | int_constant | (<expr)
*/
void factor() {
printf("Enter <factor>\n");

/* Determine which RHS */
if (nextToken == IDENT || nextToken ==
INT_LIT) /* Get the next token */
lex();
/* If the RHS is (<expr>), call lex to pass over

the left parenthesis, call expr, and check for the

right parenthesis */
else {
if (nextToken == LEFT_PAREN)
{ lex();
expr();
if (nextToken == RIGHT_PAREN)
lex();
else
error();
} /* End of if (nextToken == ... */
/* It was not an id, an integer literal, or a

left parenthesis */
else
error();
} /* End of else */

printf("Exit <factor>\n");;
} /* End of function factor */
Following is the trace of the parse of the example expression (sum + 47) /
total, using the parsing functions expr, term, and factor, and the function

lex from Section 4.2. Note that the parse begins by calling lex and the start

symbol routine, in this case, expr.
Next token is: 25 Next lexeme is (
Enter <expr>

PPL Page 37

Unit-1

Enter <term>
Enter <factor>
Next token is: 11 Next lexeme is sum
Enter <expr>
Enter <term>
Enter <factor>
Next token is: 21 Next lexeme is +
Exit <factor>
Exit <term>
Next token is: 10 Next lexeme is 47
Enter <term>
Enter <factor>
Next token is: 26 Next lexeme is)
Exit <factor>
Exit <term>
Exit <expr>
Next token is: 24 Next lexeme is /
Exit <factor>
Next token is: 11 Next lexeme is total
Enter <factor>
Next token is: -1 Next lexeme is EOF
Exit <factor>
Exit <term>
Exit <expr>
The parse tree traced by the parser for the preceding expression is shown in
Figure 4.2.

PPL Page 38

Unit-1

Following is a grammatical description of the Java if statement:
<ifstmt> ->if (<boolexpr>) <statement> [else <statement>]

The recursive-descent subprogram for this rule follows: /*
Function ifstmt
Parses strings in the language generated by the rule:

<ifstmt> -> if (<boolexpr>) <statement>

[else <statement>]
*/

void ifstmt() {
/* Be sure the first token is 'if' */

if (nextToken != IF_CODE)

error();

else {

/* Call lex to get to the next token */

lex();

/* Check for the left parenthesis */

if (nextToken != LEFT_PAREN)

error();

else {
/* Call boolexpr to parse the Boolean expression */
boolexpr();
/* Check for the right parenthesis */

if (nextToken != RIGHT_PAREN)

error();

else {

/* Call statement to parse the then clause */

statement();

/* If an else is next, parse the else clause */

if (nextToken == ELSE_CODE) {

/* Call lex to get over the else */

lex();

statement();
} /* end of if (nextToken == ELSE_CODE ... */ }

/* end of else of if (nextToken != RIGHT ... */ }

/* end of else of if (nextToken != LEFT ... */
} /* end of else of if (nextToken != IF_CODE ...
/ } / end of ifstmt */

PPL Page 39

