
Logic Programming Languages

• Logic programming systems allow the programmer to state a collection of axioms from which

theorems can be proven.

• Express programs in a form of symbolic logic

• Use a logical inferencing process to produce results

• Logic programming languages are rule based languages

• Declarative rather that procedural:

– Only specification of results are stated (not detailed procedures for producing them)

Introduction to predicate calculus
• Particular form of symbolic logic used for logic programming is predicate calculus. Symbolic

logic provides basis for logic programming. predicate calculus contains Propositions

Propositions

• Proposition is logical statement that may or may not be true. It consists of objects and

relationships of objects to each other

Objects

• Objects in propositions are represented by simple terms: either constants or variables

• Constant: a symbol that represents an object

• Variable: a symbol that can represent different objects at different times

– Different from variables in imperative languages

• The simplest form of proposition is called atomic proposition consist of compound terms. A
compound term is one element of a mathematical relation, written in a form that has the
appearance of mathematical function

 Compound term composed of two parts

– Functor: function symbol that names the relationship

– Ordered list of parameters (tuple)

– Examples:

 student(jon) --- jon is student

 like(rony, OS)

 like(nick, windows) ----- nick like windows

– like(jim, linux

Propositions are connected by operators

Name Symbol Example Meaning

Negation a not a

Conjunction a b a and b

Disjunction a b a or b

Equivalence a b a is equivalent to b

Implication

a b

a b

a implies b

b implies a

.

Horn clauses
Propositions can be stated as Horn clauses.

• In almost all logic languages, propositions are written in a standard form known as Horn clause

and it is consists of head (H) and body (B1, …, Bn)

following is the general form of horn clause

H :- B1, …, Bn. read as B1, …, Bn imples H

When Bi are all true, we can deduce that H is true i.e Antecedent implies Consequent. (B1, …,

Bn imples H)

Here comma (,) is taken as AND() operator

• Antecedent: right side (B1, …, Bn)

• Consequent: left side (H)

Antecedent is called as if part and Consequent is called as then part

• Horn clauses Basis for logic programming

• Horn clause - can have only two forms

• Headed Horn clause: single atomic proposition on left side

 Ex: parent(X,Y):- mother(X,Y).

 If X is a mother of Y then X is a parent of Y

 grandparent(X,Z):- parent(X,Y), parent(Y,Z)

 If X is a parent of Y and Y is a parent of Z then X is a grandparent of Z

• Headless Horn clause: empty left side (used to state facts)

 Ex: mammal(human) ------- human is a mammal

 female(uma).

• Resolution an inference rule for horn clauses that allows inferred propositions to be

computed from given propositions

• Resolution is the primary activity of a Prolog interpreter

• In order to derive new statements, logic programming system combines existing statements,

cancelling like terms, through a process known as resolution

Ex: C :- A , B

 D :- C

 D :- A , B

 Unification is a process of finding values for variables in propositions that allows matching

 process to succeed. Unification make two terms identical

• Instantiation: assigning temporary values to variables to allow unification to succeed

• After instantiating a variable with a value, if matching fails, may need to backtrack and

instantiate with a different value

• Ex: Prolog unifies man(X) with man(fred) , thereby instantiating the variable X to fred .

• Unification make two terms (X and fred) identical

• After instantiating a variable with a value, if matching fails, may need to backtrack and

instantiate with a different value

Programming with prolog

 Prolog is a logic programming language and it is developed at University of Aix-

Marseille and University of Edinburgh

The basic elements of prolog

Terms

Fact statements

Rule Statements

Goal Statements

Simple Arithmetic

List structures

Terms

All Prolog statements, as well as Prolog data, are constructed from terms.

Term is a constant, variable, or structure

• Constant is either an atom or an integer ex: fred, jake, 23 etc

• Atom is a symbolic value of Prolog

• Atom consists of either:

• a string of letters, digits, and underscores beginning with a lowercase letter

• a string of printable ASCII characters delimited by apostrophes

• Variable: any string of letters, digits, and underscores beginning with an uppercase letter

Ex: X , Y , Z etc

• Structures represent the atomic propositions of predicate calculus, and their general form is
 functor(parameter list) ex: parent(X,Y) where X and Y are term1 and term2

• The functor is any atom and is used to identify the structure. The parameter list can be any list of

atoms, variables,

Fact statements

Fact statements are used for the hypotheses

Headless Horn clauses are called Fact statements

The simplest form of headless Horn clause in Prolog is a single structure, which is interpreted as an
unconditional assertion, or fact.

Examples of fact statements

mammal(human)

female(shelley).

male(bill).

father(bill, jake).
mother(suma, shelley).

Rule Statements

• Used for the hypotheses

• Headed Horn clause are called as Rule Statements
• The general form of the Prolog headed Horn clause statement is

consequence :- antecedent_expression.

It is read as follows: “consequence can be concluded if the antecedent expression is true

• Right side: antecedent (if part)

– May be single term or conjunction

• Left side: consequent (then part)

– Must be single term

Conjunction: multiple terms separated by logical AND operations

Examples of Rule Statements

ancestor(mary,shelley):- mother(mary,shelley).

parent(X,Y):- mother(X,Y).

 parent(X,Y):- father(X,Y).

 grandparent(X,Z):- parent(X,Y), parent(Y,Z).

 if X is a prent of Y AND Y is a parent of Z then X is a grandparent of Z

 sibling(X,Y):- mother(M,X), mother(M,Y),

 father(F,X), father(F,Y).

Goal Statements

• For theorem proving, theorem is in form of proposition that we want system to prove or

disprove. These propositions are called goal statement s or queries

• Goal Statements are Same format as headless Horn clauses

For example, we could have

man(fred)

to which the system will respond either yes or no. The answer yes means that the system has proved
the goal was true under the given database of facts and relationships.

• Conjunctive propositions and propositions with variables also legal goals

 father(X,mike)

The approach of logic programming is to use as a database a collection of facts and rules that state
relationships between facts and to use an automatic inferencing process to check the validity of new
propositions, assuming the facts and rules of the database are true. This approach is the one developed
for automatic theorem proving.

Simple Arithmetic
• Prolog supports integer variables and integer arithmetic

• is operator: takes an arithmetic expression as right operand and variable as left operand

 A is B / 17 + C

Trace
• Built-in structure that displays instantiations at each step

• Tracing model of execution - four events:

– Call (beginning of attempt to satisfy goal)

– Exit (when a goal has been satisfied)

– Redo (when backtrack occurs)

– Fail (when goal fails)

Inferencing Process of Prolog

• Queries are called goals

• To prove a goal is true, must find a chain of inference rules and/or facts. For goal Q:

B :- A

C :- B

…

Q :- P

• The following example illustrates the difference between forward and backward chaining.

Consider the query:
man(bob).

Assume the database contains

father(bob).
man(X) :- father(X).

• Forward chaining would search for and find the first proposition. The goal is then inferred by

matching the first proposition with the right side of the second rule (father(X)) through
instantiation of X to bob and then matching the left side of the second proposition to the goal.

• Backward chaining would first match the goal with the left side of the second proposition
(man(X)) through the instantiation of X to bob. As its last step, it would match the right side of the
second proposition (now father(bob)) with the first proposition

List Structures (lists)

• Other basic data structure (besides atomic propositions we have already seen): list

• List is a sequence of any number of elements

• Elements can be atoms, atomic propositions, or other terms (including other lists)

 [apple, prune, grape, kumquat]

 [] (empty list)

 [H | T] (head H and tail T)

if [H | T] = [1, 2,3], then H = 1 and T = [2,3]

Execution in Prolog

database contains facts and rules

Following is database

likes(mary,food).

likes(mary,wine).

likes(john,wine).

• The following queries yield the specified answers.

 | ?- likes(mary,food).

the system will respond as

O/P : yes.

| ?- likes(john,wine).

 yes.

| ?- likes(john,food).

no.

Applications of Logic Programming
• Relational database management systems Relational database management systems (RDBMSs)

store data in the form of tables. Queries on such databases are often stated in Structured Q0uery
Language (SQL). SQL is nonprocedural in the same sense that logic programming is
nonprocedural. The user does not describe how to retrieve the answer; rather, he or she
describes only the characteristics of the answer. The connection between logic programming and
RDBMSs should be obvious. Simple tables of information can be described by Prolog structures,
and relationships between tables can be conveniently and easily described by Prolog rules. The
retrieval process is inherent in the resolution operation. The goal statements of Prolog provide
the queries for the RDBMS. Logic programming is thus a natural match to the needs of
implementing an RDBMS.
One of the advantages of using logic programming to implement an RDBMS is that only a
single language is required. In a typical RDBMS, a database language includes statements for
data definitions, data manipulation, and queries. The general-purpose language is used for
processing
the data and input and output functions. All of these functions can be done ina logic programming
language.
Another advantage of using logic programming to implement an RDBMS is that deductive
capability is built in. Conventional RDBMSs cannot deduce anything from a database other than

what is explicitly stored in them. They contain only facts, rather than facts and inference rules.
The primary disadvantage of using logic programming for an RDBMS, compared with a
conventional RDBMS, is that the logic programming implementation is slower. Logical inferences
simply take longer than ordinary table look-up methods using imperative programming
techniques.

• 16.8.2 Expert Systems

Expert systems are computer systems designed to imitate human expertise in some particular
domain. They consist of a database of facts, an inferencing process, some heuristics about the
domain, and some friendly human interface that makes the system appear much like an expert
human consultant. In addition to their initial knowledge base, which is provided by a human
expert, expert systems learn from the process of being used, so their databases must be capable
of growing dynamically. Also, an expert system should include the capability of interrogating the
user to get additional information when it determines that such information is needed.
One of the central problems for the designer of an expert system is dealing with the inevitable
inconsistencies and incompleteness of the database. Logic programming appears to be well
suited to deal with these problems. For example, default inference rules can help deal with the
problem of incompleteness.
Prolog can and has been used to construct expert systems. It can easily fulfill the basic needs of
expert systems, using resolution as the basis for query processing, using its ability to add facts
and rules to provide the learning capability, and using its trace facility to inform the user of the
“reasoning” behind a given result. Missing from Prolog is the automatic ability of the system to
query the user for additional information when it is needed.
One of the most widely known uses of logic programming in expert systems is the expert system
construction system known as APES. The APES system includes a very flexible facility for
gathering information from the user during expert system construction. It also includes a second
interpreter for producing explanations to its answers to queries.
APES has been successfully used to produce several expert systems, including one for the rules
of a government social benefits program and one for the British Nationality Act, which is the
definitive source for rules of British citizenship.

16.8.3 Natural-Language Processing

Certain kinds of natural-language processing can be done with logic programming. In particular,
natural-language interfaces to computer software systems, such as intelligent databases and
other intelligent knowledge-based systems, can be conveniently done with logic programming.
For describing language syntax, forms of logic programming have been found to be equivalent to
context-free grammars. Proof procedures in logic programming systems have been found to be
equivalent to certain parsing strategies. In fact, backward-chaining resolution can be used directly
to parse sentences whose structures are described by context-free grammars. It has also been
discovered that some kinds of semantics of natural languages can be made clear by modeling the
languages with logic programming

Multiparadigm Languages

A new class of programming languages and environments is being developed to help solve this

problem. They do not restrict the programmer to only one paradigm (see box on p. 8);

incorporating two or more of the conventional program paradigms. For example, the Loops

system, described in the first article in this issue, combines features of the Lisp, functional, rule

oriented, and object-oriented paradigms. These multiparadigm systems are being created to give

the programmer the right tool at the right time.

The most common multiparadigm system is the conventional operating system, which embodies

several different programming languages.

Some programming paradigms

 Access oriented: The specification of side-effects or demons
 attached to the manipulation of variables [an extension of

 Loops].
 Data-structure-oriented: Approaching a solution by way of a
 single powerful data structure, such as lists (Lisp), arrays
(APL), sets (SETL), relational databases (SQL).

