
VIGNAN’S UNIVERSITY :: VADLAMUDI

Faculty : Mr. S Deva Kumar

Subject : Formal Languages and Automata Theory

Code : CS224

Year & Branch : II CSE

Computer Science & Engineering Formal Languages and Automata Theory

2

UNIT – I

PRILIMINARIES

Symbol:

A symbol is an abstract entity. There is no formal definition for a symbol.

 Examples: letters, digits and special characters etc.

Alphabet:

A finite non-empty set of symbols is called „alphabet‟. It is denoted by ∑ .

Example: ∑ ={a,b,…z}, ∑ ={a,b}, ∑ ={0,1}

String:

A sentence over an alphabet is a finite sequence of the symbols from an alphabet.

Example:

1.. In ∑={a,b} is the alphabet

ab,abb are valid strings, where as abc is not a string because „c‟ doesn‟t belongs

to ∑

2. In ∑ = {0, 1} is the alphabet

 00,110,1011 are valid strings.

Note: The length of any string over the given alphabet is at least 1.

Assumption:

In theory of computation, there exists a string of length zero called as „epsilon‟ i.e. „‟ .

 S. =S

  .S=S

  .S.=S

Prefix: Any sequence of leading symbols over the given string is called „prefix‟.

 Example: For the string „cse‟, the possible prefixes are  ,c, cs, cse.

Suffix: Any sequence of trailing symbols over the given string is called „suffix‟.

Example: For the string „cse‟, the possible suffixes are  , e, se, cse

Substring: Any sequence of symbols over the given string is called „substring‟.

Example: For the string „computer‟ the possible substrings are  , com, put, te, mp,….

Computer Science & Engineering Formal Languages and Automata Theory

3

Power of an Alphabet:

Assume input alphabet ∑= {a,b}

∑0 = {} i.e. the set of all strings possible over the alphabet of length Zero

Similarly,

∑1= {a,b}

∑2= {aa,ab,bb,ba}

∑3= {set of all strings possible over the alphabet of lenth „n‟}

∑ *= ∑0∑1 ∑2 ∑3….∑n

∑*= set of all strings over ∑ including „‟

Here „*‟ is the kleene closure operator

 ∑+=∑ *-

 =∑1 ∑2 ….. ∑n

Here „+‟ is the positive closure operator

 ∑*=∑+


Language:

Language is a set of strings formed from some specific alphabet set. Language over ∑, L is any

subset of ∑*.

Example:∑ = {a, b}

∑* = { , a, b, aa, ab, ba, bb, aaa, aab, ... }

L = {a, aa, aab} is a finite language on ∑

Star-closure of language L  *

L* = L0
 L1

 L2 ... Remember that L0 = {

 set of all strings by concatenating strings from L ... strings are “building blocks” rather

than elements from 

Positive Closure

L+ = L1  L2  ... = L* - L0

Computer Science & Engineering Formal Languages and Automata Theory

4

FINITE AUTOMATA

 A Finite Automata is the mathematical model of a digital computer. Finite Automata are

used as string or language acceptors. They are mainly used in pattern matching tools like

LEX and Text editors.

 The Finite State System represents a mathematical model of a system with certain input.

The model finally gives a certain output. The output given to the machine is processed by

various states. These states are called intermediate states.

 A good example of finite state systems is the control mechanism of an elevator. This

mechanism only remembers the current floor number pressed, it does not remember all

the previously pressed numbers.

 The finite state systems are useful in design of text editors, lexical analyzers and natural

language processing. The word “automaton” is singular and “automata” is plural.

 An automaton in which the output depends only on the input is called an automaton

without memory.

 An automaton in which the output depends on the input and state is called as automation

with memory.

1. FINITE AUTOMATON MODEL

The Finite Automata can be represented as,

i) Input Tape: Input tape is a linear tape having some cells which can hold an input symbol

from ∑.

ii) Finite Control: It indicates the current state and decides the next state on receiving a

particular input from the input tape. The tape reader reads the cells one by one from left

Computer Science & Engineering Formal Languages and Automata Theory

5

to right and at any instance only one input symbol is read. The reading head examines

read symbol and the head moves to the right side with or without changing the state.

When the entire string is read and if finite control is in final state then the string is

accepted otherwise rejected. The finite automaton can be represented by a transition

diagram in which the vertices represent the states and the edges represent transitions.

 A Finite Automaton (FA) consists of a finite set of states and set of transitions among

states in response to inputs.

 Always associated with a FA is a transition diagram, which is nothing but a

„directed graph‟.

 The vertices of the graph correspond to the states of the FA.

 The FA accepts a string of symbols from ∑, x if the sequence of transitions

corresponding to symbols in x leads from the state to an accepting state.

 FA without output or Language Recognizers (e.g. DFA and NFA)

Finite Automata (FA)

 FA with output or Transducers (e.g. Moore and Mealy machines)

1.1 Deterministic Finite Automata (DFA):

i. In Deterministic Finite Automata no input symbol causes to move more than one state

or a state does not contain more than one transition from same input symbol.

ii. Each and every state has to consume all the input symbols present in ∑.

iii. A Deterministic Finite Automaton is represented by a 5-Tuple machine:

i.e M = (Q, , , q0, F)

where

 Q is finite set of states

  is finite input alphabet

  is transition mapping function i.e Q x   Q

 q0  Q Initial state

 F  Q Set of final states

Computer Science & Engineering Formal Languages and Automata Theory

6

Acceptance by an Automaton:

 A string “w” is said to be accepted by a finite automation M=(Q, , , q0, F)

If  q0, w)=p for some p in F. The language accepted by M, designated L(M), is the set

{w| q0, w) is in F}.

 A language is a regular set, if it is the set accepted by some automaton.

 There are two preferred notations for describing automata

1. Transition Diagram

2. Transition Table

Examples:

1. Construct DFA for accepting the set of all strings containing even number of 0s over an

alphabet {0,1}.

 Transition Diagram:

 DFA tuples are M = (Q, Σ, δ, q0, F)

where

Q = {S1, S2}, Σ = {0, 1}, q0 = S1, F = {S1}, and

δ is defined by the following state transition table

 Transition Table: Q x   Q

 0 1

S1 S2 S1

S2 S1 S2

2. Construct DFA for all accepting strings over {a,b} that contains exactly 2 a‟s.

 Transition Diagram:

http://en.wikipedia.org/wiki/State_transition_table

Computer Science & Engineering Formal Languages and Automata Theory

7

 DFA tuples are M = (Q, Σ, δ, q0, F)

where

Q = {0,1,2,3},Σ = {a,b},q0 = 0,F = {2}, and

δ is defined by the following state transition table

 Transition Table : Q x   Q

 a b

0 1 0

1 2 1

2 3 2

3 3 3

1.2 Non-Deterministic Finite Automata (NFA):

i. In NFA, one input symbol causes to move more than one state or a state may contain

more the one transition from same input symbol.

ii. It is not compulsory that all the states have to consume all input symbols in ∑.

iii. An Non-Deterministic Finite Automata is represented by a 5 – tuple.

M = (Q, , , q0, F)

where

 Q is finite set of states

  is finite input alphabet

  is transition mapping function i.e Q x  2Q

 q0  Q Initial state

 F  Q Set of final states

1.2.1 Acceptance by NFA:

 An NFA accepts a string “w” if it is possible to make any sequence of choices of next

 state, while reading the characters of w, and go from start state to any accepting state.

Example:

1. Construct an NFA for the set of all strings over the alphabet {0,1}containing the string

ends with a 1.

http://en.wikipedia.org/wiki/State_transition_table

Computer Science & Engineering Formal Languages and Automata Theory

8

Transition Diagram:

NFA tuples are M = (Q, , , q0, F)

where

Q = {p, q}, Σ = {0, 1}, q0 = p, F = {q}, and

δ is defined by the following state transition table

 Transition Table: Q x   2Q

 0 1

p {p} {p,q}

q ∅ ∅

1.3 Differences between DFA and NFA

 In the case of DFA, the transition function gives exactly one state, when applied an input

symbol.

 In the case of NFA, there can be several possible next states, and the automation

„guesses‟ (always correctly) which next state (of the set of possible next states) will lead

to acceptance of the input string.

 DFA is a particular case of NFA so, transition function in NFA is Q x  2Q

Note:
1) All DFAs are NFAs.

2) All NFAs are not be DFAs.

2. Equivalence between NFAs and DFAs

Conversion of NFA to DFA

Let N = (QN, ∑,  N, q0, FN) be a NFA.

We have to construct the DFA, D= (QD, ∑,  D, {q0}, FD) Such that L (D) =L (N).

 Language accepted by DFA should be same as language accepted by NFA.

http://en.wikipedia.org/wiki/State_transition_table

Computer Science & Engineering Formal Languages and Automata Theory

9

Step 1: Convert the given transition system into state transition table where each state

corresponds to a row and each input symbol corresponds to a column.

Step 2: Construct the succession table which lists subsets of states reachable from the set of

initial states.

Step 3: the transition graph given by the successor table is the required deterministic system.

 The final states contain some final state of NFA. If possible we can reduce the number of

states.

Example:

1. Construct DFA equivalent to the following NFA.

Sol:

 Equivalent DFA construction: D=(QD,∑,  D,{ q0},FD)

QD={{A},{A,B},{A,C},{A,B,C}}

 ∑={0,1}

FD={{A,C},{A,B,C}}

(These are final states as C is the final state of NFA and all these states contain C)

The transition function  D is

Transition Table:

State/∑ 0 1

[A] [A,B] [A]

[A,B] [A,B,C] [A]

*[A,B,C] [A,B,C] [A,C]

*[A,C] [A,B,C] [A,C]

Computer Science & Engineering Formal Languages and Automata Theory

10

Transition Diagram:

Note:

While converting NFA to DFA

(1) No change in the initial state.

(2) Number of final states may be changed

(3) Number of states may be changed.

(4) Transition function is not changed.

(5) If NFA contains „n‟ states, then the equivalent DFA contains maximum 2
n

states.

These state names are also subset of given „n‟ states.

3. Finite Automation with - Moves (Epsilon Transitions)

 An NFA is allowed to make a transition spontaneously, without receiving an input

symbol. These - NFA‟s can be converted to DFA‟s accepting the same language.

 Finally NFA with - moves can be defined to be a 5-Tuple.

M= (Q, ∑, , q0,F) with  mapping from Q x (∑ { })  2Q
.

 - closure(q):  - closure(q) is the set of all vertices p such that there is a path from q to p on

 - alone.

In the figure,

- closure(q0)={q0,q1,q2}

- closure(q1)={ q1,q2}

- closure(q2)={ q2}

Computer Science & Engineering Formal Languages and Automata Theory

11

3.1 Conversion of an - NFA to NFA without - moves:

Convert a transition system with  - moves into an equivalent transition system without  -
moves.
Suppose we want to replace an  - moves from vertex V1 to vertex V2

(1) Find all edges starting from V2

(2) Duplicate all these edges starting from V1, without changing the edge labels.

(3) If V1 is an initial state, make V2 also an initial state.

(4) If V2 is a final state make V1 also a final state.

Example:

Solution:

We first eliminate the - moves from q0 to q1

Then we eliminate the  - moves from q0 to q2

Next eliminate the - moves from q1,q2.

Computer Science & Engineering Formal Languages and Automata Theory

12

4. Moore Machine
 A Moore machine is a FA in which the output is associated with the state.

 A Moore machine is a 6- Tuple (Q, ∑, , , ,
q0)

Where
Q: finite set of states.

∑: finite set of input symbols

 : finite set of output alphabet

 : Transition function i.e. QX∑→Q

 (output function): Q ( is a function from Q to )

q0: initial state

Example:

Note:

 Without taking an input, a Moore machine produces the output.

 If the length of the input string is „n‟ the Moore machine produces the output string of

length „n+1‟.

Computer Science & Engineering Formal Languages and Automata Theory

13

5. Mealy machine
 In Mealy machine output is associated with each transition, output will be dependent on

present state and present input symbol.

 A mealy machine is a 6-Tuple (Q, ∑, , , ,
q0)

Where

Q: finite set of states.

∑: finite set of input symbols

 : finite set of output alphabet

 : Transition function i.e. QX∑→Q

 (output function): QX∑ (i.e.  (q,a) gives the output associated with the transition

from state q on input a)

 q0: initial state

Example:

Note:

 Without giving any input the Mealy machine doesn‟t generate output.

 If the length of the input string is „n‟ the Mealy machine produces the output string of

length „n‟.

Computer Science & Engineering Formal Languages and Automata Theory

14

6. Equivalence of Moore and Mealy machines

6.1 Mealy machine equivalent to Moore machine:

Theorem: If M1 = (Q, ∑, , , , q0) is a Moore machine, then there is a Mealy M2

 equivalent to M1.

Proof :

Let M2 = (Q, ∑, , , 
1

 ,q0,) and define 
1(q,a) to be  ( (q,a)) for all states q and

input symbol ‘a’.

Then M1and M2enter the same sequence of states on the same input, and with each

transition M2 emits the o/p that M1 associates with the state entered.

Example: Construct an equivalent an Mealy machine for the following Moore machine.

Solution:

Computer Science & Engineering Formal Languages and Automata Theory

15

6.2 Moore machine equivalent to Mealy machine:

Theorem: If M1 = (Q , ∑, , , ,q0) be a Mealy machine, then there is a Moore machine

 M2 equivalent to M1 .

Proof :

Let M1 =(Q X ,∑, 
1, 

1
 , [q0 ,b0]) where b is arbitrary selected member of  . That is

,the states of M2 are pairs [q,b] consisting of a state of M1 and o/p symbol.

Define  1 ([q,b],a) =[ (q,a),  (q,a) and 
1 ([q,b]) =b.

The second component of state [q,b] of M2 is the output made by M1 on some

transition into state q.

Only the first components of M2 ‘s states determine the moves made by M2 .

Every induction on ‘n’ shows that if M1 enters states q0 ,q1 ---- qn .on input a1 , a2,---aN and

emits output b1 ,b2 ------bn then M2 enters states [q0,b0], [q1,b1]---, [qn,bn] and emits

outputs b0,b1..bn.

Example: Transform the following Mealy machine into its equivalent Moore machine.

Solution:

Computer Science & Engineering Formal Languages and Automata Theory

16

7. MINIMIZATION OF FINITE AUTOMATA
We say that a state p is distinguishable from state q if there exist a string x such that 𝜹(p,x) is in

F and 𝜹 (q .x) is not. or vice versa. Otherwise they are said to be equivalent.

Example:

Minimization can be explained easily with an example. Consider the following DFA and

minimize it.

Solution:

Construct a table as shown below and place an ·x· in the table each time we discover a pair of
states that cannot be equivalent, that is they arc distinguishable. Initially an ·x' is placed in each
entry corresponding to one final state and one non final state.

Next for each pair of states p and q that are not already known l0 be distinguishable we

construct the pairs of states r = 𝜹 (p. a) and s = 𝜹 (q, a) for each input symbol a. If states r and s

have been shown to be distinguishable by some string x. then p and q arc distinguishable by

string x. Thus if the entry (r, s) in the table has an ·x', and 'x' is also placed at the entry (p, q). If

the entry (r, s) does not yet have an 'x', then the pair (p, q) is placed on a list associated with the

(r, s) entry. Al some future time if the (r. s) entry receives an 'x', then each pair on the list

associated with the (r, s)-entry also receives an 'x'.

Computer Science & Engineering Formal Languages and Automata Theory

17

Continuing with the example, we place an 'x' in the entry (a. b) since the entry

(𝛿 (b. 1), 𝛿 (a, 1)) = (c. f) already has an 'x'. Similarly. the (a, d)- entry receives an 'x’ since the

entry (8(a, 0), 8(d, 0) = (b, c) has an':<.".

Now the table is

(𝛿 (a, 1), 𝛿 (e, 1))= (f, f), on input ‘1’ both are going to same state. So no string starting with '1'

can distinguish states a and c. Now try on input ‘0’.

(𝛿 (a, 0), 𝛿 (e, 0)) = (b, h), as (b, h) is not filled, so associate (a, e) with (b, h)-list.

-> (𝛿 (a, 0), (f. 0)) = (b, c), as (b,c) already has an ’x’ place 'x' in the entry (a, f).

-> (𝛿 (a, 0), (g. 0)) = (b, g), as (b, g) is not filled associate (a. g) with (b, g)-list

-> ((a, 1), 𝛿(h, 1)) = (f, c), as (f, c) already has an 'x' place an 'x' in the entry (a, h) also.

-> (𝛿 (b, 0), (d, 0)) =(g, c). Place ·x' in the entry (b, d).

-> (𝛿 (b, 1), (c. 1)) = (c. 1), place 'x' in the entry (b, e)

-> (𝛿 (b, 1), (f. 1)) = (c, g), place 'x' in the entry (b. f).

-> (𝛿 (b, 1), 𝛿 (g, 1)) = (c, e), place ‘x’ in the entry (b, g). As (a, g) is associated with (b. g) place

and 'x' in {a, g) also.

-> ((b. 1), 𝛿(h,1)) = (c, c) and (𝛿(b. 0), 𝛿(h, 0))=(g, g). On each input symbol slates b and h are

going to the same state. Hence they are not distinguishable.

Now the table is

Computer Science & Engineering Formal Languages and Automata Theory

18

 ((d, 0), 𝛿(e, 0))= (c, h), place 'x' in the entry (d. c).

 (𝛿 (d, 0), (f, 0)) = (c, c) and ((d,1) , 𝛿(f, 1)) = (g, g). hence d, fare not distinguishable.

-> (𝛿 (d, 0), (g, 0)) = (c, g), place an 'x' in(d, g). .
-> (𝛿 (d, 0). (h, 0)) = (c, g), place an 'x' in (d, h).
-> (𝛿 (c, 0), (f, 0)) = (h, c), place an 'x' in (e, f).
-> (𝛿 (c, 1), (g, 1))= (f. e), as (f, e) is filled in the above step place ‘x ‘ in (c, g).
-> ((e, 1),𝛿(h,1)) = (f, c), place 'x' in (e, h).

Now the table is

-> (𝛿 (f, 0), 𝛿 (g, 0)) = (c, g), place an ‘x’ in (f. g).

-> (𝛿 (f, 0), 𝛿 (h, 0)) = (c, g), place an ‘x’ in (f, h).

-> (𝛿 (g, 1), 𝛿 (h, 1)) = (e, c), place an ‘x’ in (g , h).

Computer Science & Engineering Formal Languages and Automata Theory

19

from the above table, the equivalent states(that arc not filled with 'x') are (a, e), (b, h) and

(d, f).

The minimum-state finite automaton is

