
UNIT - IV 

Push Down Automata (PDA) 

 
 Regular language can be characterized as the language accepted by finite 

automata. Similarly, we can characterize the context-free language as the 

language accepted by a class of machines called "Pushdown Automata" 

(PDA). Pushdown automation is an extension of the NFA.  

 It is observed that FA has limited capability. (In the sense that the class of 

languages accepted or characterized by them is small). This is due to the 

"finite memory" (number of states) and "no external memory" involved with 

them.  

 A PDA is simply an NFA augmented with an "external stack memory". The 

addition of a stack provides the PDA with a last-in, first-out memory 

management capability. This "Stack" or "pushdown store" can be used to 

record potentially unbounded information. It is due to this memory 

management capability with the help of the stack that a PDA can overcome 

the memory limitations that prevents a FA to accept many interesting 

languages like .  

 Although, a PDA can store an unbounded amount of information on the 

stack, its access to the information on the stack is limited. It can push an 

element onto the top of the stack and pop off an element from the top of the 

stack. To read down into the stack the top elements must be popped off and 

are lost. Due to this limited access to the information on the stack, a PDA 

still has some limitations and cannot accept some other interesting 

languages.  

 The deterministic version of PDA accepts only a subset of all CFL’s where as 

non-deterministic version allows all CFL’s. The PDA will have an input tape, 

a finite control, and a stack. 



Computer Science & Engineering   Formal Languages and Automata Theory   
 

2 
 

 

 The input head is read-only and may only move from left to right, one 

symbol (or cell) at a time. In each step, the PDA pops the top symbol off the 

stack; based on this symbol, the input symbol it is currently reading, and 

its present state, it can push a sequence of symbols onto the stack, move 

its read-only head one cell (or symbol) to the right, and enter a new state, 

as defined by the transition rules of the PDA.  

 PDA are nondeterministic, by default. That is, - transitions are also 

allowed in which the PDA can pop and push, and change state without 

reading the next input symbol or moving its read-only head. Besides this, 

there may be multiple options for possible next moves. 

Formal Definition: 

 A pushdown automaton is a ε-NFA with a pushdown stack (last-in, first-out 

stack). 

 Pushdown automata define exactly the context-free languages. There are 

seven components to a PDA P = (Q, Σ, Γ, δ, q0, Z0, F), 

Where  

1. Q is a finite set of states. 

2. Σ is a finite set of input symbols (the input alphabet). 

3. Γ is a finite set of stack symbols (the stack alphabet). 

4. δ is a transition function from (Q × (Σ ∪ {ε}) ∪ Γ) to subsets of (Q × Γ*): 
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 Suppose δ(q, a, X) contains (p, γ). Then whenever P is in 

state q, looking at the input symbol a with X on top of the 

stack, P may go into state q, move to the next input symbol, 

and replace X on top of the stack by the string γ. 

 The second component, a, may be ε in which case P makes 

the move without looking at the input symbol and does not 

move to the next input symbol. 

 Note that P is nondeterministic so there may be more than 

one pair in δ(q, a, X). 

5. q0 is the start state. 

6. Z0 is the start stack symbol. 

7. F is the set of final (accepting) states. 
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Explanation of the transition function, : 

If, for any , . This means institutively 

that whenever the PDA is in state q reading input symbol a and z on top of the 

stack, it can non deterministically for any i,  

 go to state  

 pop z off the stack 

 push onto the stack (where ) (The usual convention is that if 

, then will be at the top and at the bottom.) 

 move read head right one cell past the current symbol a. 

If a = , then means institutively that 

whenever the PDA is in state q with z on the top of the stack regardless of the 

current input symbol, it can nondeterministically for any i, ,  

 go to state  

 pop z off the stack 

 push onto the stack, and  

 leave its read-only head where it is 

 

State transition diagram: A PDA can also be depicted by a state transition 

diagram. The labels on the arcs indicate both the input and the stack 

operation. The transition for and 

is depicted by  

 

Final states are indicated by double circles and the start state is indicated by 

an arrow to it from nowhere. 
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Instantaneous Descriptions: 

 A configuration or an instantaneous description (ID) of PDA at any moment 

during its computation is an element of describing the current 

state, the portion of the input remaining to be read (i.e. under and to the 

right of the read head), and the current stack contents. Only these three 

elements can affect the computation from that point on and, hence, are 

parts of the ID.  

 The start or inital configuartion (or ID) on input is . That is, the 

PDA always starts in its start state, with its read head pointing to the 

leftmost input symbol and the stack containing only the start/initial stack 

symbol, . 

The "next move relation" one figure describes how the PDA can move from one 

configuration to another in one step. 

Formally,  

 

iff   

'a' may be or an input symbol. 

  

Language accepted by a PDA M: 

There are two alternative definiton of acceptance as given below.  

1. Acceptance by final state:  

Consider the PDA . Informally, the PDA M is said to 

accept its input by final state if it enters any final state in zero or more 

moves after reading its entire input, starting in the start configuration on input 

. Formally, we define L(M), the language accepted by final state to be  

{ | for some and }  
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2. Acceptance by empty stack (or Null stack): The PDA M accepts its input 

by empty stack if starting in the start configuration on input , it ever 

empties the stack w/o pushing anything back on after reading the entire input. 

Formally, we define N(M), the language accepted by empty stack, to be  

{ | for some } 

Note that the set of final states, F is irrelevant in this case and we usually let 

the F to be the empty set i.e. F = Q  

 

 

2. DETERMINISTIC PUSH DOWN AUTOMATA (DPDA) 

 

 A PDA is deterministic (DPDA) if there is never a choice for a next move in 

any instantaneous description. 

 A PDA M=(Q, Σ, Γ, δ, q0, Z0, F) is deterministic if: 

1. For each q in Q and Z in Γ, whenever δ(q, ε, z) is nonempty, then  

δ(q, a, z) is empty for all a in Σ. 

2. For no q in Q, Z in Γ and a in ΣU{ε} does δ(q, a, z) contain more 

than one element. 

Note: For finite automata, the deterministic and non-deterministic models were 

equivalent with respect to the languages accepted. The same is not true for 

PDAs. DPDAs accept only a subset of languages accepted NPDAs. That is NPDA 

is more powerful than DPDA. 

 If L is a CFL, then there exists a PDA, M that accepts L. 

Examples: 

1. Give a PDA for the language L={wcwR | w(a+b)+} 
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The transitions are δ(q0, a, z0)=(q0,xz0) 

i.e In state q0 if input symbol is ‘a’ and symbol on top of stack is z0 then remain 

in state q0 and push ‘x’ on to the stack. 

 δ(q0, a, x)=(q0,xx) 

 δ(q0, a, y)=(q0,xy) 

δ(q0, b, z0)=(q0,yz0) 

δ(q0, b, x)=(q0,yx) 

δ(q0, b, y)=(q0,yy) 

δ(q0, c, x)=(q1,x) 

δ(q0, c, y)=(q1,y) 

δ(q1, a, x)=(q1, ε) 

δ(q1, b, y)=(q1, ε) 

δ(q1, B, z0)=(qf, ε)    (B – blank space). 

This is Deterministic Push down Automata. 

2. Design PDA for the following language L={0n12n|n≥1} 

Solution:  PDA P=(Q, Σ, Γ, δ, q0, Z0, F) 

 PDA P=({q0,q1,q2},{a,b},{a,z0}, δ,q0, Z0, ∅) 

The transitions are  

δ(q0, a, z0)={(q1,az0)} 

δ(q1, a, a)={(q1,aa)} 
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δ(q1, b, a)={(q2,a)} 

δ(q2, b, a)={(q1, ε)} 

δ(q1, ε, z0)={(q1, ε)} 

3. NON-DETERMINISTIC PUSH DOWN AUTOMATA (NDPDA) 

A PDA is called as non-deterministic, if derivation generates more than one 
move in the designing of particular task. 

Example: 

1. Give PDA for L={wwR | w(a+b)+} 

Solution: 

 

The transitions are  

δ(q0, a, z0)={(q0,xz0)} 

δ(q0, a, x)={(q0,xx),(q1, ε)} 

i.e In state q0 on input symbol ‘a’ if top of stack is ‘x’ try two possibilities, 

1. Push ‘x’ on to the top on the assumption that still we have to reach the 

middle of the string 2. Pop ‘x’ on the assumption that we are reading the first 

symbol of the second half of the input string and go to the state q1.   

 δ(q0, a, y)={(q0,xy)} 

δ(q0, b, z0)={(q0,yz0)} 

δ(q0, b, x)={(q0,yx)} 

δ(q0, b, y)={(q0,yy), (q1, ε)} 
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Explanation for this transition also is same as above explanation. 

δ(q1, a, x)={(q1, ε)} 

δ(q1, b, y)={(q1, ε)} 

δ(q1, B, z0)={(qf, ε)}    (B – blank space). 

This is Non-Deterministic Push Down Automata. 

 

2. Design NDPDA for the following L={anbn|n≥0} 

Solution: PDA P=({q0,q1,q2,q3},{a,b},{R,B,G}, δ,q0,R, ∅) 

The transitions are  

δ(q0, a, R)={(q1,BR) ,(q3, ε)} 

δ(q0, ε, R)={(q3, ε)} 

δ(q1, a, B)={(q1,BB)} 

δ(q1, b, B)={(q2, ε)} 

δ(q2, b, B)={(q2, ε)} 

δ(q2, ε, R)={(q3, ε)} 

4.  From a CFG to an equivalent PDA 

 Given a CFG G, we can construct a PDA P such that N(P) = L(G). 

 The PDA will simulate leftmost derivations of G. 

 Algorithm to construct a PDA for a CFG 

o Input: a CFG G = (V, T, P, S). 

o Output: a PDA P such that N(P) = L(G). 

o Method: Let P = ({q}, T, V ∪ T, δ, q, S) where 

1. δ(q, ε, A) = {(q, β) | A → β is in Q } for each non-terminal A in 

V. 

2. δ(q, a, a) = {(q, ε)} for each terminal a in T. 
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 For a given input string w, the PDA simulates a leftmost derivation for w in 

G. 

 We can prove that N(P) = L(G) by showing that w is in N(P) iff w is in L(G): 

o If part: If w is in L(G), then there is a leftmost derivation  

o S = γ1 ⇒ γ2 ⇒ ... ⇒ γn = w 

We show by induction on i that P simulates this leftmost derivation 

by the sequence of moves 

(q, w, S) |–* (q, yi, αi) 

such that if γi = xiαi, then xiyi = w. 

o Only-if part: If (q, x, A) |–* (q, ε, ε), then A ⇒* x. 

We can prove this statement by induction on the number of moves 

made by P. 

Example: 

1. Construct PDA that accepts the language generated by grammar 

  SaSbb|a 

Solution: We first transform the grammar into GNF, changing the productions 

to  

  SaSA|a 

  AbB 

  Bb 

The corresponding automata will have three states {q0,q1,q2}, with initial state 

q0 and final state q2. First, the start symbol S is put on the stack by 

  δ(q0, ε, z0)={(q1, sz0)} 

The production SaSA will be simulated in the PDA by removing S from the 

stack and replacing it with SA, while reading ‘a’ from the input. Similarly, the 

rule Sa, should cause the PDA to read an ‘a’ while simply removing S. Thus, 

the two productions are represented in the PDA by 

 

δ(q1, a, S)={(q1,SA),(q1, ε)} 
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In an analogous manner, the other productions give 

δ(q1, b, A)={(q1,B)} 

δ(q1, b, B)={(q1, ε)} 

δ(q1, ε, z)={(q2, ε)} 

5.  From a PDA to an equivalent CFG 
 

 Given a PDA P, we can construct a CFG G such that L(G) = N(P). 

 The basic idea of the proof is to generate the strings that cause P to go from 

state q to state p, popping a symbol X off the stack, by a non-terminal of 

the form [qXp]. 

 Algorithm to construct a CFG for a PDA 

o Input: a PDA P = (Q, Σ, Γ, δ, q0, Z0, F). 

o Output: a CFG G = (V, Σ, R, S) such that L(G) = N(P). 

o Method: 

1. Let the non-terminal S be the start symbol of G. The other 

non-terminals in V will be symbols of the form [pXq] where p 

and q are states in Q, and X is a stack symbol in Γ. 

2. The set of productions R is constructed as follows: 

 For all states p, R has the production S → [q0Z0p]. 

 If δ(q, a, X) contains (r, Y1Y2 … Yk), then R has the 

productions  

[qXrk] → a[rY1r1] [r1Y2r2] … [rk-1Ykrk] 

for all lists of states r1, r2, … , rk. 

o We can prove that [qXp] ⇒* w iff (q, w, X) |–* (p, ε, ε). 

o From this, we have [q0Z0p] ⇒* w iff (q0, w, Z0) |–* (p, ε, ε), so we 

can conclude L(G) = N(P). 

Example: 1. Let M =({q0,q1},{0,1},{X,z0}  ,q0,z0, ) Where    is given by  

                 (q0,0,z0)={(q0,Xz0) 
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                 (q1,1,X)={(q1,) 

                (q0,0,X)={(q0,XX0)},  (q1, ,X)={(q0,)} 

                (q0,1,X)={(q1,)},      (q1, ,Z0)={(q0,)} 

   To construct a CFG G= (V,T, P, S) generating N (M) 

Let  V={S,[q0,X,q0],[q0,X,q1],[q1,X,q0],[q1,X,q1],[q0,z0,q0],[q0,z0,q1],[q1,z0,q0], 

[q1,z0,q1]} and T={0,1}. 

To construct the set of productions easily, we must realize that some variable 

may not appear in any derivation starting from the symbol S. thus we can save 

some effort if we start with the productions for S, and then add productions 

only for those variable that appear or the right of some production already in 

the set . The productions for S are 

   S[q0,z0,q0]/ [q0,z0,q1] 

Next we add production for the variables [q0,z0,q0] 

  These are              [q0,z0,q0]0[q0,X,q0][q0,z0,q0] 

                               [q0,z0,q0]0[q0,X,q1][q1,z0,q0] 

   There productions are required by 

                            ( q0,0,z0)={ (q0,Xz0)} 

 Next the productions for [q0,z0,q1] are 

                   [q0,z0,q1]0[q0,X,q0][q0,z0,q1] 

                   [q0,z0,q1]0[q0,X,q1][q1,z0,q1] 

There are also required by  ( q0,0,z0)={ (q0,Xz0)} 

1) [q0,X,q0]0[q0,X,q0] [q0,X,q0] 

    [q0,X,q0]0[q0,X,q1] [q1,X,q0] 

    [q0,X,q1]0[q0,X,q0] [q0,X,q1] 

    [q0,X,q1]0[q0,X,q1] [q1,X,q1] since (q0,0,X)={( q0,XX)} 
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2) [q0,X,q1]1 since  (q0,1,X)={( q1,)} 

3) [q1,z0,q1] since  (q1,,z0)={( q1,)} 

4) [q1,X,q1]  since  (q1,,X)={(q1,)} 

5) [q1,X,q1] 1  since  (q1,1 ,X)={(q1,)} 

Resulting productions are  

                             S[q0,z0,q1], [q1,z0,q1], [q1,X,q1] 

                 [q0,z0,q1]0[q0,X,q1] [q1,z0,q1], [q1,X,q1]1 

                 [q1,X,q1]0[q0,X,q1] [q1,X,q1], [q0,X,q1]1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


