
UNIT - IV

Push Down Automata (PDA)

 Regular language can be characterized as the language accepted by finite

automata. Similarly, we can characterize the context-free language as the

language accepted by a class of machines called "Pushdown Automata"

(PDA). Pushdown automation is an extension of the NFA.

 It is observed that FA has limited capability. (In the sense that the class of

languages accepted or characterized by them is small). This is due to the

"finite memory" (number of states) and "no external memory" involved with

them.

 A PDA is simply an NFA augmented with an "external stack memory". The

addition of a stack provides the PDA with a last-in, first-out memory

management capability. This "Stack" or "pushdown store" can be used to

record potentially unbounded information. It is due to this memory

management capability with the help of the stack that a PDA can overcome

the memory limitations that prevents a FA to accept many interesting

languages like .

 Although, a PDA can store an unbounded amount of information on the

stack, its access to the information on the stack is limited. It can push an

element onto the top of the stack and pop off an element from the top of the

stack. To read down into the stack the top elements must be popped off and

are lost. Due to this limited access to the information on the stack, a PDA

still has some limitations and cannot accept some other interesting

languages.

 The deterministic version of PDA accepts only a subset of all CFL’s where as

non-deterministic version allows all CFL’s. The PDA will have an input tape,

a finite control, and a stack.

Computer Science & Engineering Formal Languages and Automata Theory

2

 The input head is read-only and may only move from left to right, one

symbol (or cell) at a time. In each step, the PDA pops the top symbol off the

stack; based on this symbol, the input symbol it is currently reading, and

its present state, it can push a sequence of symbols onto the stack, move

its read-only head one cell (or symbol) to the right, and enter a new state,

as defined by the transition rules of the PDA.

 PDA are nondeterministic, by default. That is, - transitions are also

allowed in which the PDA can pop and push, and change state without

reading the next input symbol or moving its read-only head. Besides this,

there may be multiple options for possible next moves.

Formal Definition:

 A pushdown automaton is a ε-NFA with a pushdown stack (last-in, first-out

stack).

 Pushdown automata define exactly the context-free languages. There are

seven components to a PDA P = (Q, Σ, Γ, δ, q0, Z0, F),

Where

1. Q is a finite set of states.

2. Σ is a finite set of input symbols (the input alphabet).

3. Γ is a finite set of stack symbols (the stack alphabet).

4. δ is a transition function from (Q × (Σ ∪ {ε}) ∪ Γ) to subsets of (Q × Γ*):

Computer Science & Engineering Formal Languages and Automata Theory

3

 Suppose δ(q, a, X) contains (p, γ). Then whenever P is in

state q, looking at the input symbol a with X on top of the

stack, P may go into state q, move to the next input symbol,

and replace X on top of the stack by the string γ.

 The second component, a, may be ε in which case P makes

the move without looking at the input symbol and does not

move to the next input symbol.

 Note that P is nondeterministic so there may be more than

one pair in δ(q, a, X).

5. q0 is the start state.

6. Z0 is the start stack symbol.

7. F is the set of final (accepting) states.

Computer Science & Engineering Formal Languages and Automata Theory

4

Explanation of the transition function, :

If, for any , . This means institutively

that whenever the PDA is in state q reading input symbol a and z on top of the

stack, it can non deterministically for any i,

 go to state

 pop z off the stack

 push onto the stack (where) (The usual convention is that if

, then will be at the top and at the bottom.)

 move read head right one cell past the current symbol a.

If a = , then means institutively that

whenever the PDA is in state q with z on the top of the stack regardless of the

current input symbol, it can nondeterministically for any i, ,

 go to state

 pop z off the stack

 push onto the stack, and

 leave its read-only head where it is

State transition diagram: A PDA can also be depicted by a state transition

diagram. The labels on the arcs indicate both the input and the stack

operation. The transition for and

is depicted by

Final states are indicated by double circles and the start state is indicated by

an arrow to it from nowhere.

Computer Science & Engineering Formal Languages and Automata Theory

5

Instantaneous Descriptions:

 A configuration or an instantaneous description (ID) of PDA at any moment

during its computation is an element of describing the current

state, the portion of the input remaining to be read (i.e. under and to the

right of the read head), and the current stack contents. Only these three

elements can affect the computation from that point on and, hence, are

parts of the ID.

 The start or inital configuartion (or ID) on input is . That is, the

PDA always starts in its start state, with its read head pointing to the

leftmost input symbol and the stack containing only the start/initial stack

symbol, .

The "next move relation" one figure describes how the PDA can move from one

configuration to another in one step.

Formally,

iff

'a' may be or an input symbol.

Language accepted by a PDA M:

There are two alternative definiton of acceptance as given below.

1. Acceptance by final state:

Consider the PDA . Informally, the PDA M is said to

accept its input by final state if it enters any final state in zero or more

moves after reading its entire input, starting in the start configuration on input

. Formally, we define L(M), the language accepted by final state to be

{ | for some and }

Computer Science & Engineering Formal Languages and Automata Theory

6

2. Acceptance by empty stack (or Null stack): The PDA M accepts its input

by empty stack if starting in the start configuration on input , it ever

empties the stack w/o pushing anything back on after reading the entire input.

Formally, we define N(M), the language accepted by empty stack, to be

{ | for some }

Note that the set of final states, F is irrelevant in this case and we usually let

the F to be the empty set i.e. F = Q

2. DETERMINISTIC PUSH DOWN AUTOMATA (DPDA)

 A PDA is deterministic (DPDA) if there is never a choice for a next move in

any instantaneous description.

 A PDA M=(Q, Σ, Γ, δ, q0, Z0, F) is deterministic if:

1. For each q in Q and Z in Γ, whenever δ(q, ε, z) is nonempty, then

δ(q, a, z) is empty for all a in Σ.

2. For no q in Q, Z in Γ and a in ΣU{ε} does δ(q, a, z) contain more

than one element.

Note: For finite automata, the deterministic and non-deterministic models were

equivalent with respect to the languages accepted. The same is not true for

PDAs. DPDAs accept only a subset of languages accepted NPDAs. That is NPDA

is more powerful than DPDA.

 If L is a CFL, then there exists a PDA, M that accepts L.

Examples:

1. Give a PDA for the language L={wcwR | w(a+b)+}

Computer Science & Engineering Formal Languages and Automata Theory

7

The transitions are δ(q0, a, z0)=(q0,xz0)

i.e In state q0 if input symbol is ‘a’ and symbol on top of stack is z0 then remain

in state q0 and push ‘x’ on to the stack.

 δ(q0, a, x)=(q0,xx)

 δ(q0, a, y)=(q0,xy)

δ(q0, b, z0)=(q0,yz0)

δ(q0, b, x)=(q0,yx)

δ(q0, b, y)=(q0,yy)

δ(q0, c, x)=(q1,x)

δ(q0, c, y)=(q1,y)

δ(q1, a, x)=(q1, ε)

δ(q1, b, y)=(q1, ε)

δ(q1, B, z0)=(qf, ε) (B – blank space).

This is Deterministic Push down Automata.

2. Design PDA for the following language L={0n12n|n≥1}

Solution: PDA P=(Q, Σ, Γ, δ, q0, Z0, F)

 PDA P=({q0,q1,q2},{a,b},{a,z0}, δ,q0, Z0, ∅)

The transitions are

δ(q0, a, z0)={(q1,az0)}

δ(q1, a, a)={(q1,aa)}

Computer Science & Engineering Formal Languages and Automata Theory

8

δ(q1, b, a)={(q2,a)}

δ(q2, b, a)={(q1, ε)}

δ(q1, ε, z0)={(q1, ε)}

3. NON-DETERMINISTIC PUSH DOWN AUTOMATA (NDPDA)

A PDA is called as non-deterministic, if derivation generates more than one
move in the designing of particular task.

Example:

1. Give PDA for L={wwR | w(a+b)+}

Solution:

The transitions are

δ(q0, a, z0)={(q0,xz0)}

δ(q0, a, x)={(q0,xx),(q1, ε)}

i.e In state q0 on input symbol ‘a’ if top of stack is ‘x’ try two possibilities,

1. Push ‘x’ on to the top on the assumption that still we have to reach the

middle of the string 2. Pop ‘x’ on the assumption that we are reading the first

symbol of the second half of the input string and go to the state q1.

 δ(q0, a, y)={(q0,xy)}

δ(q0, b, z0)={(q0,yz0)}

δ(q0, b, x)={(q0,yx)}

δ(q0, b, y)={(q0,yy), (q1, ε)}

Computer Science & Engineering Formal Languages and Automata Theory

9

Explanation for this transition also is same as above explanation.

δ(q1, a, x)={(q1, ε)}

δ(q1, b, y)={(q1, ε)}

δ(q1, B, z0)={(qf, ε)} (B – blank space).

This is Non-Deterministic Push Down Automata.

2. Design NDPDA for the following L={anbn|n≥0}

Solution: PDA P=({q0,q1,q2,q3},{a,b},{R,B,G}, δ,q0,R, ∅)

The transitions are

δ(q0, a, R)={(q1,BR) ,(q3, ε)}

δ(q0, ε, R)={(q3, ε)}

δ(q1, a, B)={(q1,BB)}

δ(q1, b, B)={(q2, ε)}

δ(q2, b, B)={(q2, ε)}

δ(q2, ε, R)={(q3, ε)}

4. From a CFG to an equivalent PDA

 Given a CFG G, we can construct a PDA P such that N(P) = L(G).

 The PDA will simulate leftmost derivations of G.

 Algorithm to construct a PDA for a CFG

o Input: a CFG G = (V, T, P, S).

o Output: a PDA P such that N(P) = L(G).

o Method: Let P = ({q}, T, V ∪ T, δ, q, S) where

1. δ(q, ε, A) = {(q, β) | A → β is in Q } for each non-terminal A in

V.

2. δ(q, a, a) = {(q, ε)} for each terminal a in T.

Computer Science & Engineering Formal Languages and Automata Theory

10

 For a given input string w, the PDA simulates a leftmost derivation for w in

G.

 We can prove that N(P) = L(G) by showing that w is in N(P) iff w is in L(G):

o If part: If w is in L(G), then there is a leftmost derivation

o S = γ1 ⇒ γ2 ⇒ ... ⇒ γn = w

We show by induction on i that P simulates this leftmost derivation

by the sequence of moves

(q, w, S) |–* (q, yi, αi)

such that if γi = xiαi, then xiyi = w.

o Only-if part: If (q, x, A) |–* (q, ε, ε), then A ⇒* x.

We can prove this statement by induction on the number of moves

made by P.

Example:

1. Construct PDA that accepts the language generated by grammar

 SaSbb|a

Solution: We first transform the grammar into GNF, changing the productions

to

 SaSA|a

 AbB

 Bb

The corresponding automata will have three states {q0,q1,q2}, with initial state

q0 and final state q2. First, the start symbol S is put on the stack by

 δ(q0, ε, z0)={(q1, sz0)}

The production SaSA will be simulated in the PDA by removing S from the

stack and replacing it with SA, while reading ‘a’ from the input. Similarly, the

rule Sa, should cause the PDA to read an ‘a’ while simply removing S. Thus,

the two productions are represented in the PDA by

δ(q1, a, S)={(q1,SA),(q1, ε)}

Computer Science & Engineering Formal Languages and Automata Theory

11

In an analogous manner, the other productions give

δ(q1, b, A)={(q1,B)}

δ(q1, b, B)={(q1, ε)}

δ(q1, ε, z)={(q2, ε)}

5. From a PDA to an equivalent CFG

 Given a PDA P, we can construct a CFG G such that L(G) = N(P).

 The basic idea of the proof is to generate the strings that cause P to go from

state q to state p, popping a symbol X off the stack, by a non-terminal of

the form [qXp].

 Algorithm to construct a CFG for a PDA

o Input: a PDA P = (Q, Σ, Γ, δ, q0, Z0, F).

o Output: a CFG G = (V, Σ, R, S) such that L(G) = N(P).

o Method:

1. Let the non-terminal S be the start symbol of G. The other

non-terminals in V will be symbols of the form [pXq] where p

and q are states in Q, and X is a stack symbol in Γ.

2. The set of productions R is constructed as follows:

 For all states p, R has the production S → [q0Z0p].

 If δ(q, a, X) contains (r, Y1Y2 … Yk), then R has the

productions

[qXrk] → a[rY1r1] [r1Y2r2] … [rk-1Ykrk]

for all lists of states r1, r2, … , rk.

o We can prove that [qXp] ⇒* w iff (q, w, X) |–* (p, ε, ε).

o From this, we have [q0Z0p] ⇒* w iff (q0, w, Z0) |–* (p, ε, ε), so we

can conclude L(G) = N(P).

Example: 1. Let M =({q0,q1},{0,1},{X,z0} ,q0,z0,) Where is given by

 (q0,0,z0)={(q0,Xz0)

Computer Science & Engineering Formal Languages and Automata Theory

12

 (q1,1,X)={(q1,)

 (q0,0,X)={(q0,XX0)}, (q1, ,X)={(q0,)}

 (q0,1,X)={(q1,)}, (q1, ,Z0)={(q0,)}

 To construct a CFG G= (V,T, P, S) generating N (M)

Let V={S,[q0,X,q0],[q0,X,q1],[q1,X,q0],[q1,X,q1],[q0,z0,q0],[q0,z0,q1],[q1,z0,q0],

[q1,z0,q1]} and T={0,1}.

To construct the set of productions easily, we must realize that some variable

may not appear in any derivation starting from the symbol S. thus we can save

some effort if we start with the productions for S, and then add productions

only for those variable that appear or the right of some production already in

the set . The productions for S are

 S[q0,z0,q0]/ [q0,z0,q1]

Next we add production for the variables [q0,z0,q0]

 These are [q0,z0,q0]0[q0,X,q0][q0,z0,q0]

 [q0,z0,q0]0[q0,X,q1][q1,z0,q0]

 There productions are required by

 (q0,0,z0)={ (q0,Xz0)}

 Next the productions for [q0,z0,q1] are

 [q0,z0,q1]0[q0,X,q0][q0,z0,q1]

 [q0,z0,q1]0[q0,X,q1][q1,z0,q1]

There are also required by (q0,0,z0)={ (q0,Xz0)}

1) [q0,X,q0]0[q0,X,q0] [q0,X,q0]

 [q0,X,q0]0[q0,X,q1] [q1,X,q0]

 [q0,X,q1]0[q0,X,q0] [q0,X,q1]

 [q0,X,q1]0[q0,X,q1] [q1,X,q1] since (q0,0,X)={(q0,XX)}

Computer Science & Engineering Formal Languages and Automata Theory

13

2) [q0,X,q1]1 since (q0,1,X)={(q1,)}

3) [q1,z0,q1] since (q1,,z0)={(q1,)}

4) [q1,X,q1] since (q1,,X)={(q1,)}

5) [q1,X,q1] 1 since (q1,1 ,X)={(q1,)}

Resulting productions are

 S[q0,z0,q1], [q1,z0,q1], [q1,X,q1]

 [q0,z0,q1]0[q0,X,q1] [q1,z0,q1], [q1,X,q1]1

 [q1,X,q1]0[q0,X,q1] [q1,X,q1], [q0,X,q1]1

