
UNIT – V

TURING MACHINES

 The basic model of TM has a finite set of states, a semi-infinite tape that

has a leftmost cell but is infinite to the right and a tape head that can move

left and right over the tape, reading and writing symbols.

 For any input w with |w|=n, initially it is written on the n leftmost

(continguous) tape cells. The infinitely many cells to the right of the input

all contain a blank symbol, B whcih is a special tape symbol that is not an

input symbol. The machine starts in its start state with its head scanning

the leftmost symbol of the input w. Depending upon the symbol scanned by

the tape head and the current state the machine makes a move which

consists of the following:

i. writes a new symbol on that tape cell,

ii. moves its head one cell either to the left or to the right and

iii. (possibly) enters a new state.

 The action it takes in each step is determined by a transition functions. The

machine continues computing (i.e. making moves) until

i. it decides to "accept" its input by entering a special state called

accept or final state.

ii. halts without accepting i.e. rejecting the input when there is no

move defined.

 On some inputs the TM many keep on computing forever without ever

accepting or rejecting the input, in which case it is said to "loop" on that

input.

 A Turing Machines is an automaton whose temporary storage is a tape.

This tape is divided into cells, each of which is capable of holding one

symbol. Associated with the tape is a read-write, read that can travel right

or left on the tape and that can read and write a single symbol on each

move.

 A diagram giving an intuitive visualization of a Turing Machine is

Computer Science & Engineering Formal Languages and Automata Theory

2

a1 a2 ... ai ... an B ...

Finite Control

 A Turing machine is a seven tuple notation i.e M= (Q, Σ, Γ, δ, q0, B, F)

1. Q is the finite set of states of the finite control.

2. Σ is the finite set of input symbols.

3. Γ is the set of tape symbols; Σ is a subset of Γ.

4. δ is the transition function. It maps (Q × Γ) to subsets of (Q × Γ ×

{L,R}). If (p, Y, D) is in δ(q, X) and M is in state q reading the symbol

X on the input tape, then M can

 go from state q to state p,

 replace the symbol X on the input tape by the symbol Y, and

 move its input head one square in the direction D where D

can be either L (for left) or R (for right).

M is deterministic if there is at most one element in δ(q, X) for any

state q and tape symbol X.

5. q0 is the start state.

6. B is the blank symbol. B is in Γ but not in Σ.

7. F, a subset of Q, is the set of final accepting states. We assume

there are no transitions from a final state so that when M enters a

final state it halts.

Instantaneous Description (ID):

 The ID (instantaneous description) of a TM capture what is going out at any

moment i.e. it contains all the information to exactly capture thje "current

state of the computations".

 It contains the following:

 The current state, q

Computer Science & Engineering Formal Languages and Automata Theory

3

 The position of the tape head,

 The constants of the tape up to the rightmost nonblank symbol or the

symbol to the left of the head, whichever is rightmost.

 Note that, although there is no limit on how far right the head may move

and write nonblank symbols on the tape, at any finite tim, the TM has

visited only a finite prefix of the infinite tape.

 An ID (or cinfiguration) of a TM M is denoted by where and

 is the tape contents to the left of the head

 q is the current state.

 is the tape contents at or to the right of the tape head.

 That is, the tape head is currently scanning the leftmost tape symbol of .

(Note that if , then the tape head is scanning a blank symbol).

 If is the start state and w is the input to a TM M then the starting or

initial configuration of M is onviously denoted by .

Moves of Turing Machines:

 To indicate one move we use the symbol . Similarly, zero, one, or more

moves will be represented by . A move of a TM M is defined as follows.

 Let be an ID of M where , and .

 Let there exists a transition of M.

 Then we write meaning that ID yields

 Alternatively , if is a transition of M, then we write

which means that the ID yields .

Language Acceptance:

 L(M), the language accepted by M, is the set of strings w in Σ* such that

q0w |–* αpβ for some state p in F.

Computer Science & Engineering Formal Languages and Automata Theory

4

Functions of Turing Machine

(1) Turing machine as a language recognizer.

(2) Turing Machine as a Transducer

Halt state:

It is a state from which no further transitions can be seen.

(a) Halt final state:

If at all string is accepted,T.M goes to halt final state.

(b) Halt non final state:

Turing Machine may goes to Halt non final state,if the string is

rejected,when it reads invalid string.

Example:

1. Construct a TM is accept the languages {0n1n|n>1}

Solution:

The sample string is 0011 for n=2

This string is stored on the tape

...
B 0 0 1 1 B ...

First the finite control read the symbol ‘0’ and replaced by ‘x’. Now it will verify

for one. Until encounter the symbol ‘1’ the tape will move towards right by

reading one input symbol at a time and all the zeros are replaced by 0’s again.

When the 1st ‘1’ is encountered, this is replaced by symbol ‘y’, now again head

movement is towards left side unit ‘1’ encounter the ‘x’. This process is

repeated.

 δ(q0,B)=(q0,B,R)

 δ(q0,0)=(q1,X,R)

Computer Science & Engineering Formal Languages and Automata Theory

5

 δ(q1,0)=(q1,0,R)

δ(q1,1)=(q2,Y,L)

δ(q2,0)=(q2,0,L)

δ(q2,X)=(q0,X,R)

δ(q1,Y)=(q1,Y,R)

δ(q2,Y)=(q2,Y,L)

δ(q0,Y)=(q3,Y,R)

δ(q3,Y)=(q3,Y,R)

δ(q3,B)=(qf,B,R)

Let us consider a language

 L={abn/n0}

The possible strings in this language are

 L={a,ab,abb,……}

If we consider the T.M for this language

),,(),(

),,(),(

),,(),(

1

11

10

SBHBq

Rbqbq

Raqaq

f











Computer Science & Engineering Formal Languages and Automata Theory

6

Note:

By reading an i/p symbol, Turing Machine may go to either left or right or stays

at that state only.

Let us consider the language L=an bn where n1.

To construct the Turing Machine for this language,the transition diagram is

For the input string w=aaabbb

Instantaneous description is

1st














 

xaaybbq

aaybbxq

aybbxaq

bbbxaaq

abbbxaq

aabbbxqaaabbbQ

2

2

2

1

1

0 ,

Computer Science & Engineering Formal Languages and Automata Theory

7

2nd















 

xayybXq

ayybxxq

yybxxaq

bbxxayq

bbxxayq

ybbXxaq

aybbXxqaaabbbxQ

2

2

2

1

1

1

10 ,

3rd















 

xyyxxxq

yyyxxxq

xxxyyyqyyyxxxq

xxxyyyqyyxxxyq

yxxxyyqbxxxyyq

yyxxxyqybxxxyq

yyyxxxqyybxxxqaybbxxq

f

2

2

0

32

31

31

010

The Transaction table is

 a b X Y B

 q0 (q1,X,R) - - (q3,Y,R) -

q1 (q1,a,R) (q2,Y,L) - (q1,Y,R) -

q2 (q2,a,L) - (q0,X,R) (q2,Y,L) -

q3 - - - (q3,Y,R) (qf,B,S)

*qf - - - - -

2. MODIFICATIONS FOR TURING MACHINES

1. Two-way Infinite Turing Machine

 Language L is recognized by a Turing Machine with a two-way infinite

tape if and only if it is recognized by a Turing Machine with a one-way

infinite tape.

Computer Science & Engineering Formal Languages and Automata Theory

8

2. Multi-tape Turing Machine

 If a language L is accepted by a multi-tape Turing Machine,it is accepted

by a single tape Machine.

3. Non-deterministic Turing Machine

 If L is accepted by a non-deterministic Turing Machine M1,Then L is

accepted by some deterministic Turing Machine,M2.

4. Multi-head Turing Machine

 An N-head Turing Machine has some fixed number,N,of heads.The heads

are numbered I through N,and a move of the Turing Machine depends on

the state and on the symbol scanned by each head.

5. Multi-track Turing Machine

Computer Science & Engineering Formal Languages and Automata Theory

9

6. Turing Machine with Stay option

 In these,the read-write head can stay at the current position,upon

reading on i/p symbol without moving left or right.

3. CONTEXT SENSITIVE GRAMMAR

 A grammar G=(V,T,P,S) is said to be context sensitive if all the

productions are of the form

 

Where , )(TV and  

Note: The length of successive sentential forms can never decrease.

Context Sensitive Language: A language is said to be Context Sensitive if

there exist a Context Sensitive grammar G, such that L=L(G).

Note: Context Sensitive grammar can never generate a language containing the

empty string.

Some examples of context sensitive languages

1) L={an bn cn/n1}

2) L={an bn c2n/n1}

3) L={an bm c9 dm/n1,m1}

4) L={ww/w {a,b}  }

Context sensitive Languages are closed under the operations

Computer Science & Engineering Formal Languages and Automata Theory

10

(1) ˜Ā10ᄀn

(2) Concatination

(3) Positive clouser

(4) -free homomorphism

(5) Inverse homomorphism

(6) Intersection with Regular sets

(7) Substitution

(8) Reversal

(9) Intersection

Note:

1. Whether Context sensitive Languages are closed under complementation or

not is an open question.

 If language ‘L’ is a context sensitive language and ‘w’ is a string,we can

find whether

wL or not algorithmetically i.e .,there is a ‘membership algorithm’ for

context sensitive languages.

4. LINEAR BOUNDED AUTOMATION

A Linear Bounded Automation (LBA) M accepts a string w if after starting at the

initial state with R/W head reading the left-end-marker, M halts over the right-

end-marker in a final state.

Otherwise ’w’ is rejected.

 A Linear Bounded Automation (LBA) is a nondeterministic Turning

Machine(TM) satisfying the following two conditions.

(1) Its i/p alphabet includes two special symbols and $,the left

and right end marker respectively.

Computer Science & Engineering Formal Languages and Automata Theory

11

(2) The LBA has no more moves from or right from $,not it may

print another symbol over or $.An LBA will be defined as

M={Q,),$,,,, ,0 FqT  

Where & $ are symbols in  ,the left & right side markers.

Note:

(1) If L is CSL,then L is accepted by some LBA.

(2) If L=(M) for LBA, M=(),$,,,,,, 0 FqQ   Then L-{ } is a CSL.

(3) Every CSL is a recursive but converse is not true.

5. UNDECIDABILITY

Recursive Languages:

 A language L over the alphabet  is called recursive language if there

exist a Turing Machine M that accepts every word in L and rejects every

word in L(The complement of L).

Recursively Enumerable Languages:

 A language L over the alphabet  is called recursively enumerable if there

exist a Turing Machine T that accepts every word in L and either rejects

or loops for every word in the language L.

 In the case of recursive language ,xx  Turing Machine must go

to Halt state(Halt final,Halt non final) i.e.,no chance of infinite loop

for any string.

 In the case of Recursively enumerable languages (RE), ,xx 

Turing Machine must go to Halt final,Halt non final,Infinite loop.

 Recursive languages recursively enumerable languages.

Note:

(1) Recursive languages are closed under complementation.

(2) Recursively enumerable languages are not closed under

complementation.

Computer Science & Engineering Formal Languages and Automata Theory

12

(3) If language L is Recursively enumerable and L1is also Recursively

enumerable then the language L should be Recursively language.

6. UNDECIDABILITY AND NP COMPLETENESS

For any problem P if algorithm is not available,then the problem P is

undecidable.

Note:

(1) If Problem is recursive, it is solvable.

(2) If Problem is not recursive, it is not solvable.

7. POST CORRESPONDENCE PROBLEM

It is a tool in establishing other problems to be undecidable.

 An instance of post correspondence problem (PCP) consists of two lists.

A=w1,w2,…….wk and

B=x1,x2,………xk of strings over some alphabet  .

 This instance of PCP has a solution if there is any sequence of integers

i1,i2,….im with m1

Such that wi1,wi2,…….wim==xi1,xi2,…..xim

The sequence i1,i2,….im,ia a solution to this instance of PCP.

Let us consider the following instance of PCP.

 List A List B

i Wi Xi

1 1 111

2 10111 10

Computer Science & Engineering Formal Languages and Automata Theory

13

3 10 0

Let M=4, I1=2,i2=1,i3=1 and i4=3 then w2w1w1w3=x2x1x1x3=101111110

In the following table: D-Decidable,U-Undecidable,?-open question,T-Trivially

decidable.

Question Regular

sets

DCFL’s CFL’s CSL’s Recursive

sets

Recursively

enumerable

sets

(1) Member ship

problem?

D D D D D D

(2) Emptyness

problem?

D D D U U U

(3) Ompleteness

problem is L=  ?

D D D U U U

(4) Equality

Problem?

D ? U U U U

(5) Subset problem is

L1 L2?

D U U U U U

(6) Is L Regular? T D U U U U

(7) (7) Is the

intersection of 2

languages, a

lang,of the same

type

T U U T T T

(8) Is the

complement of a

lang,also a lang of

the same type

T T U ? T U

(9) If L is finite or

infinite

D D D U U U

Computer Science & Engineering Formal Languages and Automata Theory

14

8. P-class, NP-class, NP-Hard, NP-complete

P-class problem

P class problems are those problems to which deterministic polynomial time

algorithm is possible (covering every possibility).

Example: Linear search  O(n)

 Bubble sort  O (n2)

 Selection sort  O (n2)

NP-class problem

NP class problems are those problems to which non-deterministic polynomial

time algorithm is possible.

NP-Hard problem

If there is a language L such that every language L is NP,can be polynomially

reducible to L and we can’t prove that L is in NP,then L is said to be np-hard

problem. i.e.,’L’ is polynomially reduced to all NP problems.

NP-complete problem

If we can prove that L is in NP and everyNP problem can be polynomially

reducible to L then L is said to be NP-Complete problem.

P verse NP

NP is the class of languages that are solvable in polynomial time on a non-

deterministic Turing Machine.

(or)

Equivalently,it is the class of language where the membership in the languages

can be verified in polynomial time.

The P=NP question.

We are unable to prove the existence of single language in NP that is not in P.

P=NP is one of the greatest unsolved problem.

(1) If P1 is NP-complete and there is a polynomial-time reduction of P1toP2

then P2 is NP-complete.

(2) If some NP-complete problem is in P then P=NP.

Computer Science & Engineering Formal Languages and Automata Theory

15

Examples of NP-complete problems

(1) Boolean satisfiability problem(B-SAT) is NP complete.

(2) C-SAT,3-SAT

(3) Travelling sales man problem.

(4) Vertex cover problem.

(5) Chromatic number problem.

(6) The partition problem.

(7) A k-clique in a graph G.

(8) The edge cover problem.

Note:

(1) P is closed under complementation,but it is not known whether NP is

closed under complementation.

(2) If P=NP then P,NP & complement NP all are same.

(3) NP=Co-NP iff there is some NP-complete problem whose complement is in

NP.

9. Closure Properties of Formal Languages

Regular

sets
DCFL’S CFL’S CSL’S

Recursive

sets

Recursively

enumerable

sets

1. Union Y N Y Y Y Y

2. Concatenation Y N Y Y Y Y

3. Kleene closure Y N Y N N Y

Computer Science & Engineering Formal Languages and Automata Theory

16

4. Intersection Y N N Y Y Y

5.

Complementation
Y Y N ? Y N

6. Homomorphism Y N Y N N Y

7. Inverse

Homomorphism
Y Y Y Y Y Y

8. Reversal Y N Y Y Y Y

9. Substitution Y N Y Y N Y

10. Intersection

with regular sets
Y Y Y Y Y Y

Computer Science & Engineering Formal Languages and Automata Theory

17

