
UNIT – V 

 
TURING MACHINES 

 The basic model of TM has a finite set of states, a semi-infinite tape that 

has a leftmost cell but is infinite to the right and a tape head that can move 

left and right over the tape, reading and writing symbols. 

 For any input w with |w|=n, initially it is written on the n leftmost 

(continguous) tape cells. The infinitely many cells to the right of the input 

all contain a blank symbol, B whcih is a special tape symbol that is not an 

input symbol. The machine starts in its start state with its head scanning 

the leftmost symbol of the input w. Depending upon the symbol scanned by 

the tape head and the current state the machine makes a move which 

consists of the following: 

i. writes a new symbol on that tape cell,  

ii. moves its head one cell either to the left or to the right and 

iii. (possibly) enters a new state. 

 The action it takes in each step is determined by a transition functions. The 

machine continues computing (i.e. making moves) until  

i. it decides to "accept" its input by entering a special state called 

accept or final state. 

ii. halts without accepting i.e. rejecting the input when there is no 

move defined.  

 On some inputs the TM many keep on computing forever without ever 

accepting or rejecting the input, in which case it is said to "loop" on that 

input.  

 A Turing Machines is an automaton whose temporary storage is a tape. 

This tape is divided into cells, each of which is capable of holding one 

symbol. Associated with the tape is a read-write, read that can travel right 

or left on the tape and that can read and write a single symbol on each 

move. 

 A diagram giving an intuitive visualization of a Turing Machine is 
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a1 a2 ... ai ... an B ... 

                                                  

Finite Control 

 

 A Turing machine is a seven tuple notation i.e M= (Q, Σ, Γ, δ, q0, B, F) 

1. Q is the finite set of states of the finite control. 

2. Σ is the finite set of input symbols. 

3. Γ is the set of tape symbols; Σ is a subset of Γ. 

4. δ is the transition function. It maps (Q × Γ) to subsets of (Q × Γ × 

{L,R}). If (p, Y, D) is in δ(q, X) and M is in state q reading the symbol 

X on the input tape, then M can 

 go from state q to state p, 

 replace the symbol X on the input tape by the symbol Y, and 

 move its input head one square in the direction D where D 

can be either L (for left) or R (for right). 

M is deterministic if there is at most one element in δ(q, X) for any 

state q and tape symbol X. 

5. q0 is the start state. 

6. B is the blank symbol. B is in Γ but not in Σ. 

7. F, a subset of Q, is the set of final accepting states. We assume 

there are no transitions from a final state so that when M enters a 

final state it halts. 

 

Instantaneous Description (ID): 

 The ID (instantaneous description) of a TM capture what is going out at any 

moment i.e. it contains all the information to exactly capture thje "current 

state of the computations".  

 It contains the following: 

 The current state, q 
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 The position of the tape head, 

 The constants of the tape up to the rightmost nonblank symbol or the 

symbol to the left of the head, whichever is rightmost. 

 Note that, although there is no limit on how far right the head may move 

and write nonblank symbols on the tape, at any finite tim, the TM has 

visited only a finite prefix of the infinite tape. 

 An ID (or cinfiguration) of a TM M is denoted by where and  

 is the tape contents to the left of the head 

 q is the current state. 

 is the tape contents at or to the right of the tape head. 

 That is, the tape head is currently scanning the leftmost tape symbol of . 

(Note that if , then the tape head is scanning a blank symbol). 

 If is the start state and w is the input to a TM M then the starting or 

initial configuration of M is onviously denoted by . 

 

Moves of Turing Machines: 

 To indicate one move we use the symbol . Similarly, zero, one, or more 

moves will be represented by . A move of a TM M is defined as follows. 

 Let be an ID of M where , and . 

 Let there exists a transition of M. 

 Then we write meaning that ID yields  

 Alternatively , if is a transition of M, then we write 

which means that the ID yields . 

 

Language Acceptance: 

 L(M), the language accepted by M, is the set of strings w in Σ* such that 

q0w |–* αpβ for some state p in F. 
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Functions of Turing Machine 

(1) Turing machine as a language recognizer. 

 
(2) Turing Machine as a Transducer 

 

Halt state: 

It is a state from which no further transitions can be seen. 

(a) Halt final state: 

If at all string is accepted,T.M goes to halt final state. 

(b) Halt non final state: 

Turing Machine may goes to Halt non final state,if the string is 

rejected,when it reads invalid string. 

Example: 

1. Construct a TM is accept the languages {0n1n|n>1} 

Solution: 

The sample string is 0011 for n=2 

This string is stored on the tape 

... 
B 0 0 1 1 B ... 

First the finite control read the symbol ‘0’ and replaced by ‘x’. Now it will verify 

for one. Until encounter the symbol ‘1’ the tape will move towards right by 

reading one input symbol at a time and all the zeros are replaced by 0’s again. 

When the 1st ‘1’ is encountered, this is replaced by symbol ‘y’, now again head 

movement is towards left side unit ‘1’ encounter the ‘x’. This process is 

repeated. 

  δ(q0,B)=(q0,B,R) 

 δ(q0,0)=(q1,X,R) 
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 δ(q1,0)=(q1,0,R) 

δ(q1,1)=(q2,Y,L) 

δ(q2,0)=(q2,0,L) 

δ(q2,X)=(q0,X,R) 

δ(q1,Y)=(q1,Y,R) 

δ(q2,Y)=(q2,Y,L) 

δ(q0,Y)=(q3,Y,R) 

δ(q3,Y)=(q3,Y,R) 

δ(q3,B)=(qf,B,R) 

 

Let us consider a language 

 L={abn/n0} 

The possible strings in this language are 

 L={a,ab,abb,……} 

If we consider the T.M for this language 
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Note: 

By reading an i/p symbol, Turing Machine may go to either left or right or stays 

at that state only. 

Let us consider the language L=an bn where n1. 

To construct the Turing Machine for this language,the transition diagram is 

 

For the input string w=aaabbb 

Instantaneous description is 
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2nd                   
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The Transaction table is 

 a b X Y B 

 q0 (q1,X,R) - - (q3,Y,R) - 

q1 (q1,a,R) (q2,Y,L) - (q1,Y,R) - 

q2 (q2,a,L) - (q0,X,R) (q2,Y,L) - 

q3 - - - (q3,Y,R) (qf,B,S) 

*qf - - - - - 

 

2. MODIFICATIONS FOR TURING MACHINES 

1. Two-way Infinite Turing Machine 

 Language L is recognized by a Turing Machine with a two-way infinite 

tape if and only if it is recognized by a Turing Machine with a one-way 

infinite tape. 
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2. Multi-tape Turing Machine 

 If a language L is accepted by a multi-tape Turing Machine,it is accepted 

by a single tape Machine. 

 

 

3. Non-deterministic Turing Machine 

 If  L is accepted by a non-deterministic Turing Machine M1,Then L is 

accepted by some deterministic Turing Machine,M2. 

4. Multi-head Turing Machine 

 An N-head Turing Machine has some fixed number,N,of heads.The heads 

are numbered I through N,and a move of the Turing Machine depends on 

the state and on the symbol scanned by each head. 

 

5. Multi-track Turing Machine 
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6. Turing Machine with Stay option 

 In these,the read-write head can stay at the current position,upon 

reading on i/p symbol without moving left or right. 

 

 

3. CONTEXT SENSITIVE GRAMMAR 

 A grammar G=(V,T,P,S) is said to be context sensitive if all the 

productions are of the form 

                              

Where ,  )( TV     and       

Note: The length of successive sentential forms can never decrease. 

Context Sensitive Language: A language is said to be Context Sensitive if 

there exist a Context Sensitive grammar G, such that L=L(G). 

Note: Context Sensitive grammar can never generate a language containing the 

empty string. 

Some examples of context sensitive languages 

1) L={an  bn  cn/n1} 

2) L={an bn c2n/n1} 

3) L={an  bm  c9 dm/n1,m1} 

4) L={ww/w {a,b}  } 

Context sensitive Languages are closed under the operations 
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(1) ˜Ā10ᄀn 

(2) Concatination 

(3) Positive clouser 

(4) -free homomorphism 

(5) Inverse homomorphism 

(6) Intersection with Regular sets 

(7) Substitution 

(8) Reversal 

(9) Intersection 

Note: 

1. Whether Context sensitive Languages are closed under complementation or 

not is an open question. 

 If language ‘L’ is a context sensitive language and ‘w’ is a string,we can 

find whether  

wL or not algorithmetically i.e .,there is a ‘membership algorithm’ for 

context sensitive languages. 

 

 

4. LINEAR BOUNDED AUTOMATION 

A Linear Bounded Automation (LBA) M accepts a string w if after starting at the 

initial state with R/W head reading the left-end-marker, M halts over the right-

end-marker in a final state. 

Otherwise ’w’ is rejected. 

 A Linear Bounded Automation (LBA) is a nondeterministic Turning 

Machine(TM) satisfying the following two conditions. 

(1) Its i/p alphabet includes two special symbols and $,the left 

and right end marker respectively. 
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(2) The LBA has no more moves from or right from $,not it may 

print another symbol over or $.An LBA will be defined as 

M={Q, ),$,,,, ,0 FqT    

Where & $ are symbols in  ,the left & right side markers. 

Note: 

(1) If  L is CSL,then L is accepted by some LBA. 

(2) If L=(M) for LBA, M=( ),$,,,,,, 0 FqQ   Then L-{ } is a CSL. 

(3) Every CSL is a recursive but converse is not true. 

 

5. UNDECIDABILITY 

Recursive Languages: 

 A language L over the alphabet  is called recursive language if there 

exist a Turing Machine M that accepts every word in L and rejects every 

word in L(The complement of L). 

Recursively Enumerable Languages: 

 A language L over the alphabet  is called recursively enumerable if there 

exist a Turing Machine T that accepts every word in L and either rejects 

or loops for every word in the language L. 

 In the case of recursive language ,xx  Turing Machine must go 

to Halt state(Halt final,Halt non final) i.e.,no chance of infinite loop 

for any string. 

 In the case of Recursively enumerable languages (RE), ,xx   

Turing Machine must go to Halt final,Halt non final,Infinite loop. 

 Recursive languages recursively enumerable languages. 

Note: 

(1) Recursive languages are closed under complementation. 

(2) Recursively enumerable languages are not closed under 

complementation. 
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(3) If language L is Recursively enumerable and L1is also Recursively 

enumerable then the language L should be Recursively language. 

 

6. UNDECIDABILITY AND NP COMPLETENESS 

 

For any problem P if algorithm is not available,then the problem P is 

undecidable. 

 

Note: 

(1) If Problem is recursive, it is solvable. 

(2) If Problem is not recursive, it is not solvable. 

7. POST CORRESPONDENCE PROBLEM 

It is a tool in establishing other problems to be undecidable. 

 An instance of post correspondence problem (PCP) consists of two lists. 

A=w1,w2,…….wk and 

B=x1,x2,………xk of strings over some alphabet  . 

 This instance of PCP has a solution if there is any sequence of integers 

i1,i2,….im with m1 

Such that wi1,wi2,…….wim==xi1,xi2,…..xim 

The sequence i1,i2,….im,ia a solution to this instance of PCP. 

Let us consider the following instance of PCP. 

 List A List B 

i Wi Xi 

1 1 111 

2 10111 10 
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3 10 0 

Let M=4,   I1=2,i2=1,i3=1 and i4=3 then w2w1w1w3=x2x1x1x3=101111110 

In the following table: D-Decidable,U-Undecidable,?-open question,T-Trivially 

decidable. 

Question Regular 

sets 

DCFL’s CFL’s CSL’s Recursive 

sets 

Recursively 

enumerable 

sets 

(1) Member ship 

problem? 

D D D D D D 

(2) Emptyness 

problem? 

D D D U U U 

(3) Ompleteness 

problem is L=  ? 

D D D U U U 

(4) Equality 

Problem? 

D ? U U U U 

(5) Subset problem is 

L1 L2? 

D U U U U U 

(6) Is L Regular? T D U U U U 

(7) (7)  Is the 

intersection of 2 

languages, a   

lang,of the same 

type 

T U U T T T 

(8) Is the 

complement of a 

lang,also a lang of 

the same type 

T T U ? T U 

(9) If L is finite or 

infinite 

D D D U U U 
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8.  P-class, NP-class, NP-Hard, NP-complete 

 

P-class problem 

P class problems are those problems to which deterministic polynomial time 

algorithm is possible (covering every possibility). 

Example: Linear search   O(n) 

     Bubble sort       O (n2) 

                Selection sort   O (n2) 

NP-class problem 

NP class problems are those problems to which non-deterministic polynomial 

time algorithm is possible. 

NP-Hard problem 

If there is a language L such that every language L is NP,can be polynomially 

reducible to L and we can’t prove that L is in NP,then L is said to be np-hard 

problem. i.e.,’L’ is polynomially reduced to all NP problems. 

NP-complete problem 

If we can prove that L is in NP and everyNP problem can be polynomially 

reducible to L then L is said to be NP-Complete problem. 

P verse NP 

NP is the class of languages that are solvable in polynomial time on a non-

deterministic Turing Machine. 

(or) 

Equivalently,it is the class of language where the membership in the languages 

can be verified in polynomial time. 

The P=NP question. 

We are unable to prove the existence of single language in NP that is not in P. 

P=NP is one of the greatest unsolved problem. 

(1) If P1 is NP-complete and there is a polynomial-time reduction of P1toP2 

then P2 is NP-complete. 

(2) If some NP-complete problem is in P then P=NP. 
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Examples of NP-complete problems 

(1) Boolean satisfiability problem(B-SAT) is NP complete. 

(2) C-SAT,3-SAT 

(3) Travelling sales man problem. 

(4) Vertex cover problem. 

(5) Chromatic number problem. 

(6) The partition problem. 

(7) A k-clique in a graph G. 

(8) The edge cover problem. 

Note: 

(1) P is closed under complementation,but it is not known whether NP is 

closed under complementation. 

 

(2) If P=NP then P,NP & complement NP all are same. 

(3) NP=Co-NP iff there is some NP-complete problem whose complement is in 

NP. 

 

9. Closure Properties of Formal Languages 

 
Regular 

sets 
DCFL’S CFL’S CSL’S 

Recursive 

sets 

Recursively 

enumerable 

sets 

1. Union Y N Y Y Y Y 

2. Concatenation Y N Y Y Y Y 

3. Kleene closure Y N Y N N Y 
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4. Intersection Y N N Y Y Y 

5. 

Complementation 
Y Y N ? Y N 

6. Homomorphism Y N Y N N Y 

7. Inverse 

Homomorphism 
Y Y Y Y Y Y 

8. Reversal Y N Y Y Y Y 

9. Substitution Y N Y Y N Y 

10. Intersection 

with regular sets 
Y Y Y Y Y Y 
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