

Functional Programming Languages

- The design of the imperative languages is
based directly on the von Neumann architecture
- Efficiency is the primary concern, rather

than the suitability of the language for
software development

- The design of the functional languages is

based on mathematical functions
- A solid theoretical basis that is also closer

to the user, but relatively unconcerned with
the architecture of the machines on which
programs will run

Mathematical Functions

Def: A mathematical function is a mapping of
members of one set, called the domain set,
to another set, called the range set

A lambda expression specifies the parameter(s)
and the mapping of a function in the following form

l(x) x * x * x

for the function cube (x) = x * x * x

- Lambda expressions describe
nameless functions

- Lambda expressions are applied to parameter(s)

by placing the parameter(s) after the expression

e.g. (l(x) x * x * x)(3)

which evaluates to 27

Functional Forms

Def: A higher-order function, or functional form,
is one that either takes functions as
parameters or yields a function as its
result, or both

1. Function Composition
A functional form that takes two functions as
parameters and yields a function whose
result is a function whose value is the first
actual parameter function applied to the
result of the application of the second

Form: h ∫ f  g
which means h (x) ∫ f (g (x))

2. Construction
A functional form that takes a list of functions
as parameters and yields a list of the results of
applying each of its parameter functions to a
given parameter

Form: [f, g]
For f (x) ∫ x * x * x and g (x) ∫ x + 3,
[f, g] (4) yields (64, 7)

3. Apply-to-all

A functional form that takes a single function
as a parameter and yields a list of values
obtained by applying the given function to each
element of a list of parameters

Form: a
For h (x) ∫ x * x * x
a (h, (3, 2, 4)) yields (27, 8, 64)

LISP - the first functional programming language

Data object types: originally only atoms and lists

List form: parenthesized collections of
sublists and/or atoms

e.g., (A B (C D) E)

 3

Fundamentals of Functional

Programming Languages

- The objective of the design of a FPL is to
mimic mathematical functions to the greatest
extent possible

- The basic process of computation is

fundamentally different in a FPL than in
an imperative language

- In an imperative language, operations are

done and the results are stored in variables
for later use

- Management of variables is a constant

concern and source of complexity for
imperative programming

- In an FPL, variables are not necessary, as is

the case in mathematics

- In an FPL, the evaluation of a function

always produces the same result given the
same parameters
- This is called referential transparency

 4

A Bit of LISP

- Originally, LISP was a typeless language

- There were only two data types, atom and list

- LISP lists are stored internally as single-

linked lists

- Lambda notation is used to specify functions

and function definitions, function applications,
and data all have the same form

e.g., If the list (A B C) is interpreted as data it
is a simple list of three atoms, A, B, and C

If it is interpreted as a function application,
it means that the function named A is
applied to the two parmeters, B and C

- The first LISP interpreter appeared only as
a demonstration of the universality of the
computational capabilities of the notation

Scheme

- A mid-1970s dialect of LISP, designed to be
cleaner, more modern, and simpler version
than the contemporary dialects of LISP

- Uses only static scoping

- Functions are first-class entities

- They can be the values of expressions

and elements of lists

- They can be assigned to variables and
passed as parameters

- Primitive Functions

1. Arithmetic: +, -, *, /, ABS,
SQRT e.g., (+ 5 2) yields 7

2. QUOTE -takes one parameter; returns the

parameter without evaluation

 6

- QUOTE is required because the Scheme
interpreter, named EVAL, always evaluates
parameters to function applications
before applying the function. QUOTE is
used to avoid parameter evaluation when
it is not appropriate

- QUOTE can be abbreviated with the
apostrophe prefix operator

e.g., '(A B) is equivalent to (QUOTE (A B))

3. CAR takes a list parameter; returns the first
element of that list

e.g., (CAR '(A B C)) yields A

(CAR '((A B) C D)) yields (A B)

4. CDR takes a list parameter; returns the list
after removing its first element

e.g., (CDR '(A B C)) yields (B

C) (CDR '((A B) C D)) yields (C D)

5. CONS takes two parameters, the first of which
can be either an atom or a list and the second
of which is a list; returns a new list that
includes the first parameter as its first
element and the second parameter as the
remainder of its result

 7

e.g., (CONS 'A '(B C)) returns (A B C)

6. LIST - takes any number of parameters; returns
a list with the parameters as elements

- Predicate Functions: (#T and () are true and false)

1. EQ? takes two symbolic parameters; it returns

#T if both parameters are atoms and the two
are the same

e.g., (EQ? 'A 'A) yields #T

(EQ? 'A '(A B)) yields ()

Note that if EQ? is called with list
parameters, the result is not reliable

Also, EQ? does not work for numeric atoms

2. LIST? takes one parameter; it returns #T if
the parameter is an list; otherwise ()

3. NULL? takes one parameter; it returns #T if
the parameter is the empty list; otherwise ()

Note that NULL? returns #T if the parameter is ()

4. Numeric Predicate Functions

=, <>, >, <, >=, <=, EVEN?, ODD?, ZERO?

5. Output Utility Functions:

(DISPLAY
expression) (NEWLINE)

- Lambda Expressions

- Form is based on l notation

e.g.,

(LAMBDA (L) (CAR (CAR L)))

L is called a bound variable

- Lambda expressions can be applied

e.g.,

((LAMBDA (L) (CAR (CAR L))) '((A B) C D))

- A Function for Constructing Functions

DEFINE - Two forms:

1. To bind a symbol to an
expression e.g.,

(DEFINE pi 3.141593)
(DEFINE two_pi (* 2 pi))

Copyright © 1998 by Addison Wesley Longman, Inc. 9

2. To bind names to lambda
expressions e.g.,

(DEFINE (cube x) (* x x x))

- Example use:

(cube 4)

- Evaluation process (for normal functions):

1. Parameters are evaluated, in no
particular order

2. The values of the parameters are
substituted into the function body

3. The function body is evaluated
4. The value of the last expression in

the body is the value of the function

(Special forms use a different evaluation process)

- Control Flow

- 1. Selection- the special form, IF

(IF predicate then_exp
else_exp) e.g.,

(IF (<> count 0)
(/ sum count)

0

)

 10

- 2. Multiple Selection - the special form, COND
- General form:

(COND

(predicate_1 expr {expr})

(predicate_1 expr {expr})

...

(predicate_1 expr {expr})

(ELSE expr {expr})

)

Returns the value of the last expr in the
first pair whose predicate evaluates to true

Example Scheme Functions

- 1. member - takes an atom and a list; returns #T
if the atom is in the list; () otherwise

(DEFINE (member atm lis)
(COND

((NULL? lis) '())

((EQ? atm (CAR lis)) #T) ((ELSE
(member atm (CDR lis)))

))

 11

- 2. equalsimp - takes two simple lists as
parameters; returns #T if the two simple
lists are equal; () otherwise

(DEFINE (equalsimp lis1
lis2) (COND

((NULL? lis1) (NULL?
lis2)) ((NULL? lis2) '())

((EQ? (CAR lis1) (CAR lis2))
(equalsimp (CDR lis1) (CDR lis2)))

(ELSE '())

))

- 3. equal - takes two lists as parameters;
returns #T if the two general lists are equal;

() otherwise

(DEFINE (equal lis1
lis2) (COND

((NOT (LIST? lis1)) (EQ? lis1
lis2)) ((NOT (LIST? lis2)) '())

((NULL? lis1) (NULL? lis2))
((NULL? lis2) '())

((equal (CAR lis1) (CAR lis2))
(equal (CDR lis1) (CDR lis2)))

(ELSE '())

))

- 4. append - takes two lists as parameters; returns
the first parameter list with the elements of
the second parameter list appended at the end

(DEFINE (append lis1 lis2)
(COND

((NULL? lis1) lis2) (ELSE
(CONS (CAR lis1)

(append (CDR lis1) lis2)))

))

Functional Forms

- 1. Composition
- The previous examples have used it

- 2. Apply to All - one form in Scheme is mapcar

- Applies the given function to all elements of
the given list; result is a list of the results

(DEFINE mapcar fun
lis) (COND

((NULL? lis) '())

(ELSE (CONS (fun (CAR lis))
(mapcar fun (CDR lis))))

))

- It is possible in Scheme to define a function
that builds Scheme code and requests its

interpretation

- This is possible because the interpreter is
a user-available function, EVAL

e.g., suppose we have a list of numbers
that must be added together

((DEFINE (adder
lis) (COND

((NULL? lis) 0)

(ELSE (EVAL (CONS '+ lis)))

))

The parameter is a list of numbers to be
added; adder inserts a + operator and
interprets the resulting list

Scheme includes some
imperative features:

1. SET! binds or rebinds a value to a name
2. SET-CAR! replaces the car of a list
3. SET-CDR! replaces the cdr part of a list

COMMON LISP

- A combination of many of the features of the

popular dialects of LISP around in the early 1980s

- A large and complex language--the opposite

of Scheme

- Includes:

- records
- arrays
- complex numbers
- character strings
- powerful i/o capabilities
- packages with access control
- imperative features like those of Scheme
- iterative control statements

- Example (iterative set membership, member)

(DEFUN iterative_member (atm lst)
(PROG ()

loop_1
(COND

((NULL lst) (RETURN NIL))

((EQUAL atm (CAR lst)) (RETURN T))

)

(SETQ lst (CDR
lst)) (GO loop_1)

))

ML

- A static-scoped functional language with
syntax that is closer to Pascal than to LISP

- Uses type declarations, but also does type

inferencing to determine the types of
undeclared variables (See Chapter 4)

- It is strongly typed (whereas Scheme is

essentially typeless) and has no type coercions

- Includes exception handling and a module

facility for implementing abstract data types

- Includes lists and list operations

- The val statement binds a name to a

value (similar to DEFINE in Scheme)

- Function declaration form:

fun function_name (formal_parameters) =

function_body_expression;

e.g., fun cube (x : int) = x * x * x;

- Functions that use arithmetic or relational
operators cannot be polymorphic--those
with only list operations can be polymorphic

Lazy evaluation

- Infinite lists
e.g.,

positives = [0..]

squares = [n * n | n ¨ [0..]]

(only compute those that are necessary)

e.g.,

member squares 16

would return True

The member function could be written as:

member [] b = False

member (a:x) b = (a == b) || member x b

However, this would only work if the parameter
to squares was a perfect square; if not, it will
keep generating them forever. The following
version will always work:

member2 (m:x) n

| m < n = member2 x n

| m == n = True

| otherwise = False

Applications of Functional Languages:

- APL is used for throw-away programs

- LISP is used for artificial intelligence

- Knowledge representation
- Machine learning
- Natural language processing
- Modeling of speech and vision

- Scheme is used to teach introductory

programming at a significant number
of universities

Comparing Functional and Imperative Languages

- Imperative Languages:
- Efficient execution
- Complex semantics
- Complex syntax
- Concurrency is programmer designed

- Functional Languages:
- Simple semantics
- Simple syntax
- Inefficient execution
- Programs can automatically be made concurrent

